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Direct output feedback control for multiple-degree-of-freedom seismic structures
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ABSTRACT: This paper demonstrates the effectiveness of direct output feedback control algorithm in
reducing the dynamic responses of a multiple-degree-of-freedom structure subjected to earthquake excita-
tion. The optimal feedback gain is obtained such that certain prescribed performance index is minimized.
The control force is then calculated by multiplying this feedback gain by the output measurements. Since
the full order structural model is considered throughout the derivation, spillover in control and observation
is no longer a problem. Numerical results show that the performance of direct velocity feedback control
with one controller and one sensor, which is not necessarily colocated, is as good as that of state feedback.
On-line calculation in this method is very simple that is favorable to real implementation. Finally, the
allocation pattern of sensor and controller is suggested.

1 INTRODUCTION

Active structural control is one of the promising al-
ternatives to reduce structural responses and hence
enhance structural reliability under stochastic envi-
ronmental loadings like earthquake. In recent years,
considerable amount of work has been carried out
in the feasibility study of active vibration control
of civil engineering structures (Reinhorn and Mano-
lis 1985; Yang and Soong 1988; Soong 1990). Im-
plementability was also studied through a series of
model and full-scale experiments (Chung et al. 1988,
1989). It has become clear that some practical and
important problems remain unsolved such as limited
number of sensors and controllers, etc.

Since structure is a continuum, there are infinite
number of degrees of freedom. Even the structure
is simplified by a discrete-parameter model, it still
posesses a large number of degrees of freedom. Gen-
eralized displacements ‘and velocities of all degrees
of freedom are defined as the state of structural sys-
tem. Economy, data processing and on-line calcula-
tion considerations make it impractical and impossi-
ble to require full state measurements and feedback.
Only output measurements, which are usually the
combination of responses at few degrees of freedom,
are available for control force calculation. Direct
output feedback is thus necessary from a practical
point of view.

Three methods have been proposed to compensate
for the problem of limited number of sensors:

1. Observers, States are estimated based on the
measured outputs by using dynamic observers. Then,
the control force is calculated based on the estimated

states. In this method, the observers make on-line
calculation complicated (O’Reilly 1983).

2. Modal Control. Assumed that output measure-
ments are contributed by the structure’s first few
modes. The number of controlled modes selected is
equal to or less than the number of measurements.
Then, control force is calculated based on the modal
information. However, the assumptions will intro-
duce control and observation spillovers (Balas 1978).

3. Direct Output Feedback. Control force is cal-
culated based directly on the output measurements
(Balas 1979). In our previous paper (Lin et al,
1991), an optimal direct output feedback control al-
gorithm was developed in simple fashion.

The purpose of this paper is to demonstrate the
effectiveness of proposed direct output feedback con-
trol algorithm in reducing the dynamic responses
of a multiple-degree-of-freedom (MDOF) structure
under earthquake excitation. Since the full order
model of the structure is considered throughout the
derivation, no model reduction is assumed. There-
fore, spillover in control and observation as men-
tioned by Balas (1978) is no longer a problem. More-
over, control force is calculated by multiplying the
output measurements by a time-invariant feedback
gain. Thus, on-line calculation is very simple which
is favorable to real implementation. Finally, the allo-
cation pattern of sensor and controller is suggested.

2 CONTROL ALGORITHM

Consider an n-DOF discrete-parameter structure un-
der dynamic loading w(t) and active control force
U(t). The equation of motion takes the form
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MX(t) + Cx(t) + Kx(t) = B,U(t) + E\w(t) (1)
where M is the nxn mass matrix, C is the nxn vis-
cous damping matrix, K is the nxn stiffness matrix,
x(t) is the nx1 displacement vector relative to the
moving base. B, is the nxm location matrix of m

control forces, and E; is the nxk location matrix of
k external loadings.

Equation (1) can be rewritten in state-space rep-
resentation as

z(t) = Az(t) + BU(t) + Ew(t) (2)

= (30)

is the 2nx1 state vector,

[ o I
4= (-—M“K -—M"C’)

is the 2nx2n system matrix,

0
B= (M“B,)

is the 2nxm controller location matrix, and

0
EB= (M"El)

is the 2nxk external loading location matrix.

Because of limited number of sensors, say p and
P<2n, output !(t) is just some combinations of states
z(t). The output equation is expressed as

(&) = Dz(t) ®

where D is the px2n output matrix. Control forces
are calculated by multiplying output vector by a
constant feedback gain

U(e) = 6y() ()

where G is the mxp feedback gain matrix.

The problem becomes that determining the con-
stant feedback gain matrix G such that the quadratic
performance index

where

7= [Tar 00z + URU ®)

is minimized. In equation (5), Q is the 2nx2n posi-
tive semi-definite weighting matrix for the states and
R is the mxm positive definite weighting matrix for
the control forces. T is the transpose operator.
Suppose that the structure is only subjected to an
initial disturbance z(0)=z,, substituting equations
(3) and (4) into (2), the state equation takes the form

| () = A2(t), z(0)=2, (¢

where A‘’=A+BGD is the equivalent system matrix
with the application of control forces. Solving equa-
tion (6), we get ,

z(t) = e* 'z, (7
The substitution of equations (3-4) and (7) into (5)
yields
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J=zI| /o e""r‘(Q + DTGT RGD)cA"dt)z, =2 Hz, (8)

where
H= / A7(Q + DTGTRGD)eA" dt ©)
0

The integral exists if and only if A’ is a stable matrix.
Differentiating H with respect to t, we get

ATH+HA +Q+DTGTRGD =0 (10)

Now the problem is converted to one that mini-
mizes the performance index J subject to the con-
straint of equation (10). The performance index can
be rewritten as

J = 2] Hz, = tr(H Z) (11)

where tr(-) is the trace of a matrix and Z_-—-gogo".
Coupling with the constraint, the Lagrangian can
be expressed as

J' =tr(HZ) +tr{L|A" H + HA' + Q + DGTRGD|} (12)
where L is the 2nx2n Lagrangian multiplier matrix.

By using the necessary condition for minimization
of the performance index, we get

()
%% =A"H+HA' +Q+D'GTRGD =0  (13)
(]
giH =Z+LA" + AL=0 (14)
aJ T T T
3G = 2BTHLD™ +2RGDLDT =0 (15)

By solving the simultaneous algebric equations (13 -
15), the optimal feedback gain matrix G can be ob-
tained iteratively.

3 NUMERICAL VERIFICATION

An idealized three-DOF structure with tendon con-
trol device in place shown in Fig. 1 is studied to
demonstrate the effectiveness of proposed control al-
gorithm. The first 10 second acceleration of El Cen-
tro earthquake (N-S component, 1940) shown in Fig.
2, which includes the strong motion part, is used as
the base excitation. The control force produced by
adjusting actuator displacement, u(t), is transmit-
ted to the structure through four pretensioned ten-
dons. The state equation of the controlled system is
described by equation (2) with control force vector

(1)

where k. and a are the stiffness and inclination angle
of the tendons with respect to the base, respectively.
Here we assume that the actuator is placed at floor
with the same inclination angle. The weighting ma-
trices are given as

-(¥0° -
Q‘(o o)’ R= fok.coa’

to make J be the summation of system strain en-
ergy and applied control energy, in which K is struc-
tural stiffness matrix and I is the mxm identity ma-

U() = 4k conan(t)
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Fig. 1. Schematic Diagram of 3DOF Structure.
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Fig. 2. El Centro Earthquake acceleration (N-S,
1940).

trix. The coefficient § determines the relative impor-
tance of control effectiveness (response reduction)
and economy (control force requirements). When
B < 1, control effectiveness has more weight and,
when g > 1, economy is more important. When g
= 1, they are equally important. § = oo represents
uncontrolled case. The relevant system properties
and ¢utput matrix are listed in Table 1.

Matrix Z is specified to be an identity matrix.
Starting from zero initial feedback gain matrix G,
the optimal G matrix is obtained by solving the al-
gebric equations (13-15) iteratively for different con-
trol cases. As concluded for the control study of
SDOF structures (Lin et al, 1991), direct displace-
ment feedback is found to be ineffective. Hence, only
direct velocity feedback control is studied in this pa-
per. To examine the influence of reducing numbers

Table 1. System properties and output matrix of
3DOF structure.

. 5.6 0 0
M (ib-sec?/in.) { o 5.6 [} jl
0 5.6
15649 =-9370 2107
K (Ib/in.) [ -9370 17250 -9274 ]
2107 -9274 7612
. 2.185 -0.327 0.352
C (lb-sec/in.) [-0.327 2.608 -0.015 ]
0.352 -0.015 2.497
2.24
W (Hs) [ 6.83 ]
11.53
1.62
& (%) [ 0.39 :l
= 0.36
k. (b/in.) 2124
(%) 36
0.262 0.743 0.583
) [ 0.568 0.373 -0.728 ]
0.780 -0.555 0.360
4.116 -1.785 0.240
D, [-1.642 2.254 -0.686 ]

0.060 -1.210 1.125

of sensors and controllers on control effectiveness,
direct velocity feedback with various numbers and
locations of sensors and controllers is investigated.

In general, J decreases as § decreases. For a given
value of B, J increases as the number of sensor or
controller reduces. Modal damping ratios increase
significantly and, thus, the reduction in responses
is guaranteed. For g = 10, the results for different
control cases, compared with those of uncontrolled
case and state feedback, are given in Table 2 and
summarized in the following:

1. The control effectiveness with three velocities
measurement and feedback is as good as that of state
feedback.

2. Reduced the number of controller, the perfor-
mance of Ulv123 is worse than that of U123v123,
but still quite effective.

3. Comparing case Ulvl with Ulv123, number
of sensors is reduced from three to one, its control
effect is significant and acceptable.

4. For the extreme case of one controller and one
sensor, it is found that Ulvl is effective because
modal damping ratios increase. However, Ulv3 re-
duces modal damping ratios even with great con-
trol effort. This agrees with the finding obtained by
Balas (1979) that the sensor and controller must be
colocated.

The simulation results mentioned above are based
on the assumption that a sensor only measures the
response contributed by the degree of freedom in
which it is placed. However, in real situation, each
sensor measurement is usually the combination of
responses at several degrees of freedom with output
matrix in the form of
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Table 2. Control effect of different control cases.

Modal Modal
Control Frequency Damping
Cases J (Hz) Ratio (%)
2.24 1.61
Uncontrolled 44910 [ s.ao] [ 0.39]
11.49 0.36
2.95 46.04
U1238TATE 2093 [ 7.15] [21.64]
11.70 13.43
2.24 40.94
Ul23vi23 2135 [ s.so] [21.13]
11.49 13.32
* 2.27 13.74
Ulvi23 3875 [ 6.93] [13.37]
11.27 6.87
2.26 8.56
Uivl 4081 [ 6.87] [zo.ls]
11.24 5.69
2.24 1.51
U1v3 44419 { s.so] [ 0.46]
11.49 0.34
2.24 2.78
Uivi[D1} 4451 [ 6.90] [11.33]
11.31 7.56
2.27 13.74
Uliv3(Da) 3875 [ 5.33] [13 37]
11.27 6.87

*Ulv123: Controller placed at 1st floor
Velocity measured at 1st, 2nd, 3rd floor

D= (% 1‘)’1) a7

where D, is shown in Table 1. Taken this into con-
sideration, the control performance of Ulvl[D,]| be-
comes worse than its corresponding ideal case. But,
control effectiveness can still be achieved. How-
ever, if the output matrix can be adjusted to be-
come scalar multiplication of the matrix GD which
is obtained from the control case of Ulv123 with
the same value of g, its control performance can be
dramatically improved and be the same as that of
U1lv123. Furthermore, the sensor is not necessarily
colocated with the controller as the case of Ulv3(D,]
given in Table 2.

The transfer functions of relative displacement and
absolute acceleration at top floor with respect to
ground acceleration for uncontrolled, Ulvl[D,] and
Ulv3|D,] control cases are shown in Figs. 3—4. The
relative displacement and absolute acceleration at

top floor and drift between first and second floor
under El Centro earthquake are shown in Figs. 5-

7 for uncontrolled, Ulvl|[D,] and Ulv3[D,] control
cases. The peak responses and peak control force are
also listed in Table 3. It is seen that the responses
are reduced significantly due to system dampings in-
crease.
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4 CONCLUSIONS

The theoretical development of the proposed con-
trol algorithm and simulated results given indicate
that direct velocity feedback with one controller and
one sensor, which is not necessarily colocated, is ef-
fective in reducing the structural responses as that

of state feedback for MDOF structures under earth-
quake excitation. Since the full order model of the
structure is considered throughout the derivation,
the spillover effect in control and observation is elim-
inated. Moreover, since on-line calculation in this
method is very simple, the contribution of such a
control algorithm to the real implementation is quite
significant.
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Table 3. Peak responses and peak control force for
different control cases.

Control Xemaz Xamas Xdmas Umas
Cases (inch) (g's) (inch) (pounds)
1.08770.879r1.34
Uncontrolled [2.42] [1.31] [ ]
3.12° “1.66° “0.70
0.37970.19 301.11
U1238TATE [o 38] [0 39 [ :l 530.79]
0.46° “0.40- -0.08 692.11
0.3477r0.39770.36 295.26
U123vi23 [0 70] [0 43 [ 528.25]
0.87- “0.45- ~0.18 704.53

0.477r0.44
Ulvia3 [0.96 [0.59
1.20- ~0.73

Ulv3

Ulvi[D1]

]

]

Jle:22]
[
]

2],

2]

OO
Ulh
-

Uiv2([Da])

}_(,,,,..,,: Peak relative displacement

X..,,M, Peak absolute acceleration
Ximax: Peak inter-story displacement
Upmea: Peak control force
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