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Modeling unknown structural systems through the use of neural networks
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ABSTRACT: This paper cxplores the potential of using neural networks to identify the internal forces
of typical systems encountered in the field of earthquake engineering and structural dynamics. After
formulating the identification task as a neural network learning procedure, the method is applied to a

representative chain-like system under deterministic and stochastic excitations. The range of validity of

the approach is demonstrated, and some application issues are discussed.

1. INTRODUCTION

System identification refers to any systematic way
of deriving or improving models for dynamic sys-
tems through the use of experimental data. It is
an area of considerable importance in structural
engineering which has been gaining increasing at-
tention over the last decade or so. Some represen-
tative publications on the subject are available in
the work of Beck (1978), Ihanez (1979), Masri and
Caughey (1979), Natke (1982), Masri and Werner
(1985), and the IMAC Proceedings (1992). The
methods of system identification provide a means
of utilizing laboratory and ficld testing to improve
dynamic modeling capabilities for the large civil
structures, that is, high-rise buildings and large
bridges and dams.

For example, by systematically utilizing dynamic
test data from a structure, rather than relying on
theory alone, models can he derived which provide
more accurate response predictions for dynamic
loads on the structure which are produced by wind
or carthquakes. Another application is to contin-
ually update the model through vibration mon-
itoring of the structure to provide a convenient
method for defect identification or damage assess-
ment (Natke and Yao (Eds), 1988; Chen, 1988;
Garba, 1990).

The potential for using active control approaches
to reduce the response of large civil structures
under arbitrary dynamic environments, such as
earthquakes, has drawn a considerable amount of
interest worldwide. Among the key research topics
in this area, is the development of system identifi-
cation approaches that can cope with the challeng-
ing nature of physical structures encountered in
the structural mechanics and earthquake engineer-
ing fields (Housner and Masri, 1990). Since the
model structure in many practical dynamics prob-
lems is by no means clear, an increasing amount of
attention is being devoted to nonparametric iden-
tification methods. These methods do not iden-
tify the physical parameters of the system (such as
mass, stiffness, etc.) but instead identify the pa-
rameters of a mathematical model which fits the
input /output data.

The present paper introduces a new nonpara-
metric identification method for unknown dynamic
systems undergoing arbitrary earthquake-type ex-
citation. The method is based on the use of arti-
ficial neural networks as system identifiers. Arti-
ficial neural networks are the ideal choice in cases
when real time processing of large amounts of data
is required because of their inherent massive par-

allelism, fault tolerance and learning capabilities.
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Several issues related to the use of artificial neu-
ral networks in dynamic system identification are
presented and discussed, such as: the network size
and topology, the network training algorithms, the
amount and type of required experimental data,
validation of the identified model and its predic-

tion capabilities.

2. NEURAL NETWORK FORMULATION
2.1 Neural Network Approach

An Artificial Neural Network (ANN) is a system
with inputs and outputs, composed of a number
of similar nonlinear processing elements. These
processing elements operate in parallel and are ar-
ranged in patterns similar to the patterns found in
biological neural nets. The processing elements or
nodes are connected to cach other by adjustable
weights (Lippmann (1987), Nguyen and Widrow
(1990)). Changing these weights will change the
input/output behavior of the network, hence the
following is a natural goal for such a system: Choose
the weights of the net in such a way as to achieve
a desired input/output relationship. To achieve
this goal, systematic ways of adjusting the weights
have to be developed, which are referred to as
training or learning algorithms. A neural net is
characterized by the following:

¢ The processing elements

e The network topology

o The learning algorithm
Each of thesc network characteristics is described

next.

2.2 The Processing Elements (Nodes)

A typical node stuns n weighted iuputs wy, ug, . . . uy
and a bias term b and passes the result through a
nonlinear function «(.) as shown in Fig. (1):

n
= E wu; + b

=1
Note that the bias term b can be considered to he

v=19(®)

either an input uy = b connected to the node by
a fixed weight wy = 1, or a constant input wg = 1
connected to the node by abwcight weg = b. In
this case the value of b is adjusted by the same
algorithm as the rest of the weights in the net.
Typical nonlinearities used in the nodes are:

‘e Hard-limiters

1, fz>0
7(1)={-1, if z <0,
e Threshold operations
1, ifz>0
7(")={0, ifz <0

o The logistic function (sigmoid)
1
T)=——"; >0
V(%) = T oar o
e The hyperbolic tangent function (sigmoid)
1 — C—(VZ
v(®) =T «

The choice of the nonlinearity depends on the par-
ticular application for which the network is being
used. In cases when it is required that the nonlin-
earity is differentiable, the logistic and the hyper-
bolic tangent functions are widely used. Moreover,

their derivatives are given hy:

¥ (z) = —ay(a)x(x) = 1]
for the logistic function, and by:
7' () = —(a/2)(=) + 1][x(=) — 1]

for the hyperbolic tangent.

2.3 The Network Topology

The network topology depends on the way the
nodes are connected to cach other and to the input
and output vectors. According to their topology,
neural networks can be classified as:

o Single layer networks, when only one layer
of nodes is present, the output layer, or

e Multi layer networks, when the nodes are
arranged in more than one layer.

Moreover, a network can be characterized as:

o A feedforward network, if there is no feed-
back to previous layers from the output of
the subsequent layers.

e Recurrent network, if such a feedback con-
nection exists.

In Fig. (2) a three-layer feedforward neural net-
work is shown. The various signals present in each
layer are:

u = [uy,ug,... 1/,,.]7' =n x 1 input vector

v = [v1,v2,...v,]7 = p x 1 vector, output of layer
1 (first hidden layer)

z = [21,22,...2,)7 = ¢ X 1 vector, output of layer
2 (second hidden layer)
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Y= [y1,y2,... ym]T = m x 1 vector, output of the
net ’
¥ = [01,02,...9p)T = p x 1 vector , intermediate
output of layer 1 (first hidden layer)
Z= [2,,52,...Eq]T = ¢ X 1 vector , intermediate
output of layer 2 (second hidden layer)
¥ = [#1,¥2,..-Im] = m x 1 vector , intermediate
output of layer 3 (output layer) .
W! = {w};} = p x n matrix of weights connecting
the j-th input to the i-th node of layer 1
W? = {w};} = ¢ X p matrix of weights connecting
the j-th node of layer 1 to the i-th node of layer 2
W? = {w};} = m x ¢ matrix of weights connecting
the j-th node of layer 2 to the i-th node of layer 3
~(z) is the differentiable nonlinearity

z)=(1-e")/(1+e7°); a>0
The various inputs and outputs in each layer are
related by the following equations:

Layer 1: o=Wlu; o;=+(%), i=1,...p
Layer 2: =W ; z;=~(%), i=1,...q
Layer 3: §=W32; yi=+#), i=1,...m

It is seen that the output vector y is a nonlinear
function of the input vector u and of the weights
{wi;}. It is precisely this nonlinear dependence
that makes the neural net a powerful tool for ap-
proximating arbitrary functions, hence a potential
tool for system identification.

u; b
U1 1)

u

A2)
. v v
. >- o
. v
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>
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Fig. 1: A processing element.

Fig. 2: A feedforward three-layer network.

2.4 The Training Algorithms

The term training or learning algorithm refers to
a systematic procedure for adjusting the weights
in the network in order to achieve a desired in-
put/output relationship. In the case of “super-
vised” learning the network is being presented pairs
of input vectors and desired output vectors (u", y%),
where the superscript r ranges over all pairs used
to train the network and the subscript d stands for
“desired” output vector. During training the net-
work learns to associate the input vector u” with
the output vector yj. For a given set of weights,
if the network is presented an input u” it will pro-
duce an output y”, which should be identical or
very close to yj if the training was successful.

A general feature of “supervised” learning
algorithms is that a performance criterion E =
f(y,vaq) is evaluated, where ly is the actual net-
work output vector and yq, is the desired output
vector. Then the weights w;; of the net are ad-
justed in such a way as to reduce the value of this
error criterion. The various learning algorithms
reported in the literature differ in the ways this
adjustment is being done.

As an example, the back propagation train-
ing algorithm uses a square error criterion defined

B=2 3 3 - vk

r k=1

as:

where the index r ranges over all training patterns.

The performance criterion is a measure of
the distance between the output vectors y” and the
desired outputs y]. The criterion E is a function of
the actual output values yf, which in turn depend
on the values of the network weights {w;;} and
the input patterns. Because of this dependence of
yf on {w;;}, the criterion E can be reduced if the
weights w; ; are adjusted appropriately. In order to
find a set of parameters (weights) that will reduce
E, we need to calculate the gradient of E with re-
spect to the parameters {w;;} and then adjust the
parameter set in the direction of the negative gra-
dient. The back propagation algorithm calculates
this gradient, i.e. the partial derivatives 0E/dw;;
of the criterion E with respect to the elements
w;j of the weight matrices. The algorithm starts
at the output layer and “propagates” the results
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backwards to the first layer. After the gradient
matrices have been computed, the weights are ad-
justed in the negative gradient direction, so that
the error criterion E is reduced. A typical weight
w;; (which could belong to any layer) is adjusted
from its old value w'i’;d to its new value w" ac-

cording to
w:_’}ew = ;)J{d _ ’)‘a_a—?ﬁ
w?;
The stepsize 7 is termed the “learning rate”. This
n is usually chosen as constant during training,
but it could also be adjustable if this facilitates
the training process.

Detailed descriptions of the back propaga-
tion algorithm can be found in Narendra and Par-
thasarathy (1990), where a graphical representa-
tion of the algorithm is given, and in McLelland
and Rumelhart (1986) for an analytical formula-

tion.

3. APPLICATION
3.1 System Description

A methodology based on a neural network formu-
lation is developed and applied to identify a struc-
tural chain-like system undergoing deterministic
as well as random excitation.
Let the N-degree of freedom chain-like sys-
tem obey the following equation of motion:
Mj(8) + g(y(), 5() = —mi(t) (1)
where §(t) is the base acceleration vector, y is the
vector of relative displacements with respect to
the base, g(y,y) is the vector of restoring forces,
M = diag{m,,ma,...,mn} is the mass matrix
]T

and m = [, ma,...,my

This formulation represents general classes
of structural systemns, such as: systems with lin-
ear force/deflection characteristics, nonlinear sys-
tems having polynomial-form nonlinearities ete.
Assume that the experimental measurements for
§(t) and §(t) are available and that the corre-
sponding relative displacement y(t) and velocity
y(t) vectors can be found by direct measurements
or through integration of #(t). If the measure-
ments are taken at discrete times fx, then the fol-

lowing notation is used:

ye = y(te); gk = g(te); Gk = §(te); e = §(tx)

It is assumed that the masses m;, i =1,... N are.
known, or can be accurately estimated, but the
restoring force vector g(y,y) is unknown. Then
the neural network is trained to identify a model
of g(y,9). The system identification is done on
the basis of input/output data, where inputs are
the measured values of yi,yx and outputs are the
calculated values of gx = (—=Myr — m&). Dur-
ing the training phase, the neural network is pre-
sented repeatedly with the sequence of input vec-
tors {[yx,¥x]7} and the sequence {gi} of desired
output vectors. The training algorithm adjusts
the weights of the network in such a wdy as to re-
duce the error between the desired output g; and
the actual output of the network §y.

After the training procedure is completed,
the network is validated as the identifier of system
(1): given an arbitrary input vector [y,,,f/,.]?‘, at
time t = «, the net should produce an output o
which is very close to the true value of the restor-

ing force vector go = —Mijo — mé,.

3.2 Simulation Results

To test the validity of this procedure, simulations
were performed on a 3-degree-of-freedom system
with linear force-deflection characteristics, under
stochastic as well as deterministic excitation. A
three-layer feed-forward neural network is trained
to identify the unknown system and then its mod-
eling capabilities are validated. Training is done
by the back propagation algorithm. The network
has 6 input nodes (corresponding to the compo-
nents of the displacement and velocity vectors y, 7),
3 output nodes (corresponding to the components
of the vector g(y,y) and 15 and 10 nodes in the
first and second hidden layers, respectively.

During the training phase, system (1) is ex-
cited by a swept sine excitation and the structural
response is used to obtain the input sequence to
the neural net {{yz,yx]”} and the output sequence
{9:} = {-Mix — m&,}. Figs. 3a-3c, show a com-
parison of the neural network output §, and the
actual system output g, after training is com-
pleted. It is seen that the network is performing
very well in matching the system’s response.
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Fig. 3: Identification results;
Solid line: neural net §(y,y)
Dashed line: actual system g(y, )

During the next phase, the neural network
is validated as a system identifier. System (1) is
excited by a random excitation and the responses
{yk, ¥k} are subsequently used as inputs to the
already trained neural network. In Figs. 4a-4c,
the outputs {gx} of the network are compared to
the actual system outputs {gs}. It is seen that
the neural net performs very well even when given
random inputs, on which it has never been trained.

The present paper dealt with with the ap-
plication of neural networks to a linear structural
system. Details on the application of neural net-
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Fig. 4: Validation results;
Solid line: neural net g(y,y)
Dashed line: actual system g(y, ¥)

works to nonlinear dynamic systems are available
in Masri et al. (1992a, 1992b).

4. CONCLUSIONS

This exploratory study demonstrates the poten-
tial of using neural networks for the identification
of the internal (restoring) forces of structural sys-
tems undergoing deterministic or stochastic exci-
tations. It is shown that employing a three-layer
feed-forward net is adequate to characterize the
internal forces in a linear three-degree-of-freedom
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chain-like system. The neural net is validated as
a system identifier and is able to predict the sys-
tem’s response to random excitations.
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