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ABSTRACT: This paper deals with a new method for the active control of building structures subjected to strong
earthquake ground shaking. The structure is modelled as a continuous shear beam. By using the properties of the
mode shapes of vibration of the system, itis shown that the modal response at a given location in the system can be
exactly reconstructed from the time delayed modal responses at (at most) three different locations in the system.
This result is then used to motivate a closed-loop control design which is capable of stabilizing the system and
dampening the vibrations in all its modes, while using dislocated sensor and actuator locations. Simple finite-
dimensional controllers, commonly used in control design, are found to suffice. Explicit conditions are provided to
obtain the bounds on the controller gains to ensure stability of the closed loop control design with no spill-over
effects. Simulation results, which validate the control methodology and the theoretical bounds on the controller
gain, are also presented.

INTRODUCTION

modal responses at (at most) three different locations
The development of new methods for the control of in the system. We show that noncollocated point
building structures subjected to strong ground control of such a building structure, using finite
motions has become a prominent topic of research dimensional controllers, can lead to complete
and development(e.g., Meirovitch, 1980; Udwadia, controllability of the system without any spillover
1981; Yang, 1987). Different methods for achieving effects. Furthermore, it is shown that a large variety
such control have been developed using, for of simple and commonly used controllers, among
example, pulses of short duration applied to the them velocity feedback controllers and lead-lag
struture at appropriate times, the use of proof compensators, are more than sufficient to perform
masses set into motion to reduce the overall such control. This is achieved by the judicious
amplitude of structural response, hybrid control etc. placement of sensors in the system and the
One of the main concerns in the intelligent control acquisition of data from those locations with specific
of large-scale continuous structural systems time delays. From a practical standpoint, the use of
(modelled by linear equations) such as, building time delays reduces the bandwidth needed for the
structures (or its elements), is the fact that there is controller, while ensuring that all modes of the
always a time delay between the signals (responses) structural system are controlled.
measured at the sensor locations and the actuator
locations. This time delay is known to be SYSTEM MODEL
detrimental in actively controlling the system for it
leads to the 'spill-over effect.' Thus attempts to Consider a general structural system subjected to a
control certain modes of the system guarantee that time varying force f(x,t) described by
some other modes will become unstable (Balas,
1979). The only solution to this situation that has so z, =z, + £(x,t) )

far been available is to collocate the sensors and the
actuators. However practical considerations often

make such collocation impossible in the actual where the space parameter x extends from O to L(i
intelligen control of large-scale systems. In this The wave speed in the medium is denoted by c, an
paper we present a new method of control which f(x,t) is the force normalized with respect to the
does not require the constraint that the sensors and inertial mass per unit length of the medium. The
actuators be collocated. subscripts t and x refer to dlffercnpanon \jmh
This paper deals with the active control of building respect to time, t, and space, x. This cquauont,'
structures, or elements therefo, modelled as shear though simplistic, governs the motion, z(x,t), o
beams. By using the physical properties of the mode diverse systems like the torsional vibrations of tall
shapes of vibration of the system it is shown that the tubular structures, the axial vibrations of rods, lhle
modal response at a given location in the system can horizontal motions of buildings, etc. ‘We ;ha 1
be exactly reconstructed from the time delayed assume that the boundary conditions are given by
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Figure 1: Building structure modelled as a
shear beam.

z,(0,t) — h, z(0,t) = 0 )
and
z (L,t) + hy z(L,t) = 0 3)

and that the initial conditions are z(x,0)=z(x,0) =
0. The parameters h,; and h, will be taken to be non-
negative.

A building structure undergoing horizontal
vibrations induced by strong earthquake ground
shaking is often modelled by equations (1)-(3) (see
Figure 1) where we interpret: (a) the displacement
z(x,t) to be the relative displacement between the
structure and the ground, (b) the force f(x,t) to be
independent of x and equal to the ground
acceleration, generated by the earthquake, and (c¢)
hy to be generally equal to zero, signifying a free-
end at x=L. Thus if w(x,t) is the absolute motion of
the structure at time t, then,

z(x,t) = w(x,t) —ug(t) and f(x,t) = -l (),

where ug(t) is the ground acceleration. The
parameter h; refers to the extent of fixity at the end
x=0. It is meant to model soil-structure interaction
effects. The mass per unit length of the structure is
assumed to be constant, and is normalized to unity.

The eigenvalue problem associated with equation

(1) may then be obtained as

2
ug+hu = 0; BP= @
with,
u,(0) - hu(0)=0 ®)
and
u (L) + hu(L)=0. (©)

The ‘cigenfunctions u (x) and the corresponding

eigenvalues B, can now be found in the standard
way. Several different boundary conditions are

included in equations (2) and (3) depending on the
values of h; and h,. For example, when h, =0, the

end x = 0 is a free end; when h,— oo, theend x =0
is fixed; intermediate values of hy correspond to

partially restrained systems. The same can be said
about the boundary condition at the end x = L. Thus
various building structural elements, as well as the
entire structure may be modelled, where
appropriate, by these eqations.

Using the eigenfunction expansion and taking
Laplace Transforms ( the transform variable is s) we
obtain the response as,

2(x,5)= 3, (5)u, (%) ™
which yields
z(x,s) = Tgo(x,é,s) f(&,5)d&. ®

0

where g, (x,x,s) is given by (Ny:= “un“z)

5 u,(x)u, (8)
go(x‘é‘s) = §§K)S%%z)- (93)
_ < Sin(B,x+¢,)Sin(B,& +¢,) 9b)
—E N+ o) ' (

The open loop transfer function, gy(x,x,s), has an

infinite number of poles at s = Hw,. We see that
these poles always lie along the imaginary axis.

A KEY PROPERTY OF MODAL RESPONSES
We begin by noting that the eigenfunction response

(using separation of variables) of the system
governed by equation (1) looks like

u,(x,t) = Sin(B,x+¢,)e "), (10)

which can be expressed as

ellfax+ta] _ o-ilBux+4a]
2i

u,(x,t) = xe'Ptra) - (11)

Furthermore for any location x > x5 we have

X X
un(xl.t——cl) - u,,(x,,t——cl-) =

u, xl -X,, t) - c"w-(‘l ~xz—ct) sin¢n cj‘”n £ s (12)
and, similarly, for any location x, >x3 we get

x:l xl
| X, t===| — u, Xyt =2 | =
[ c

U, (X, = x5, t) = et ging el (13)
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Figure 2: Time-delayed noncollocated control
design using finite dimensional controller.

The subscript ‘a' on x denotes, as we shall see in the
next section, the actuator location. If we further
choose the locations x, > x3 such that x{ - xy = x,

- x3 and subtract equation (13 from (12) we obtain
un(x,.t —ﬁ) = u"(x,,t— 5-3-) + un(x,.t—-i)
c c c

Vn, Vt. (14)

Without loss in generality we can choose x, < xy

so that x3 < xp . Then time shifting equation (23)
by x3/c we get,

for2)

u(x,t) = u,(x,t=T) + u,(x5,t=T) (15)
where,

Ti=(x;-x3)/¢c

T,=(x,-x;3)/ c (16)
T,=(x,-x;)/c.

The time delays Ty, Ty, T3 are all positive and
thus we have been able to obtain a perfect
"predictor” for the nth mode response at location x,
at time t by looking at the nth mode response at
locations x|, x2, and x3 at times (t - Ty), (t - Tp),
and (t - T3) respectively. To predict the response of
the nth mode (n = 1, 2, . . .) at location x, we
therefore need, in general three sensors. Note that
X1 - X = X, - x3. The location of x, relative to x is
left open for now. Two possible configurations
could arise: (1) Cl: x3 < x5 <xp <xj,and (2) C2:
X3 < X3 <X, <xp. For both these conditions,
relations (15) and (16) are valid. For brevity, we
shall use configuration C1 in this brief paper (see
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Udwadia 1990, for other results).
The time delays Ty, T, T3 in equations (15) and

(16) do not involve the mode number and therefore
the same three locations and the same three delays
will provide predictions for all modes.

CLOSED LOOP CONTROL

Having realized that we can obtain a prediction of
up(xga,t) by using at most three sensors at locations

X1, Xp and x3 as described in the previous section,

we can now design a feedback controller for the
distributed system of equation (1), where locatibn
Xg, Of the actuator is chosen so that: (a) it does not

lie on any node of any mode of the system, and (b)
X1 - X9 =X, -Xx3 . Figure 2 shows the control
design. The sensors, which are located at X1, X2, X3

are polled, as shown in the figure, at time delays of
Ty, Ty, and T3 respectively. The outputs from the

sensors located at x| and x3 are added together,
those from x5 are subtracted, and the combined

signal is multiplied by minus one (for negative
feedback) and then fed to a finite dimensional
controller. The controller has a transfer function of

W T (s) := uK(s)/P(s), and the control gain is

denoted by u.

Using equation (8) and letting f(x,s) = fq(x,s) -
fc(u,s) where f. represents the feedback control
force and fq the disturbance we obtain

ngX§S) (&.s)-£(&,s)|dE. am

Using an actualor at location x, we obtain (see
Figure 2)

fe(60s)=
[z(xl,s)c

z(x,s)

-ST] —!Tz

- 2(x,,5)e

HT(s) T,

8(& - x.)-(18)

+ z(x3,s5)e
Equation (17) then becomes,

z(x,s) =

Zgo(X,E,S)fd(i,s) ds -

go(x.x,,s)/,t'T ().
[z(xl,s) 1 —2(x,,5)e™"™2 +2(x3,5)e”

which gives, after considerable algebra, the closed
loop transfer function
] (20)

’Tg

] a9)

Gcl(xrévs)

_[detfAlgo(x,&.5) - a(x.x,.5) TG (&.5)
- det[A] ~
where,




a(x.x,,s) = B T.(s) go(x.X,.5)» Q1) -

(_32(§-S)=[Eo(’.‘w'§’5) gQ(X1,§.S) go(xr‘:»s)r'
(22)

g = [ e—s‘l‘,

- e—sTg e-:T: ]T’ and, (23)

det[A]:= determinant [A]
=1+ a(x,,x,,5)e™™ = a(x,,x,,5)e™™ + a(x,,x,,5)e™®
24

STABILITY AND CONTROLLER DESIGN

1. Stability for Small Gains, p:

To study the stability of the control design, we
shall use the following stability criterion. Noting
that the open loop poles occur at the frequencies s

= Hiwy where wy is real, the root locus s (u) of the

kth closed loop pole, which starts for 4 =0 at oy

on the imaginary axis, will move to the left half s-
plane if,

ds,

Re{——} <0 , Vk. 25)
d[J a=0+

If this condition is satisfied, then in the close
vicinity of u = 0, all the poles will have negative
real parts and will therefore be stable. Using
expansion (9) for gy(x;,x,,s) in (24) we get the
following requirement for the closed loop poles in
order to ensure stability:

Rc[ﬁ }:-ﬂﬂ_}{c{ Lt [Te_(s)]} <0.
a0+ 2Nk s—rtiady S

du
@26)

We can now design controllers which satisfy
equation (49) and are therefore stable. Taking the
controller's transfer function as

. K(iw) .
T(iw)=——>== +ib(@),
- (i) T) a(w) +ib(w) @n
condition (26) requires that at gach open loop pole,
|
Lt [—-—b(“’)] > Gk=12,..,e. 28)
@-ian @

Thus if we choose b(w) to be a continuous function
we then need it to be an odd function of @), with
b(0) = 0, b(w) > 0, w € (0, «°). Throughout this
paper we will assume that b(w) of the controller's

ransfer function has this property, which we shall
refer to as property P1.

Examples of a few such simple finite-dimensional
controllers that satisfy P1 are:

1. a velocity feedback controller with

T,(iw) =i, (29)

2. a lag-lead compensator (with more ‘lead’ than
‘lag’)
=lrien s> 30)
1+iwT,
We have so far proved stability when the controller
gain, i is positive, though only vanishingly small.

2. The Development of an Upper Bound, u™4%, for
the Controller Gain

We denote by u™2X the upper bound on y up to
which the closed loop control described in this
paper is stable. In this subsection we show that one
can actually provide explicit expressions for a

parameter M, M > 0, such that 4™ 2M for the
closed loop dme-delayed, noncollocated system to
be stable when the conrroller's transfer function 7

satisfies property Pl. We will consider
configuration C1.

It can be shown (after considerable algebra) that
(see Udwadia, 1990):

if
Lt{g (x,,x s}>w 3D
50 Q\tartas ’

c?,

then stability can be ensured for all values of u
such that

sml{i‘”("a “"3)} ¢5{ 5 mb(mi } , for all ©.
c H a“(w)+ b (w)
(32

Noting that the maximum of the left hand side of
(32) is unity, this relation will be satisfied if

cobw)
M= for all . 33
he a*(w) + b2 (w) crate @3

In many practical situations, it can be shown that
stability is ensured when

» o) b(w;) . 34
{az(cn;) +b2(w)}| )



Table 1: First ten normalized frequencie of
the building structure.

Mode
Number Bi
1 1577
2 4.713
3 7854
4 10.994
5 14.135
6 17.276
7 20417
8 23.558
9 26.699
10 29.839
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Figure 3a: Root locus of lowest four closed
loop frequencies.
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Figufe 3b: Root locus of next six closed
loop frequencies.

where,

. XY

wy:= —2—(—’-(:—_—;3—) . 35)

The first condition (i.e., relation (31)) is relatively
easy to satisfy by a proper choice of the actuator-
sensor distance (x,-x3). In practice, condition (33)
is easy to verify.

When we use velocity feedback control, then,
a(iw)=0, b(iw)=w for all @, and the closed loop

control is stable for all0 < u <c,i.e., M =c. This is
because the right hand side of relation (33) is now a
constant whose value is c.

SIMULATION RESULTS

We now show some simulation examples of the
control design that we have discussed in this paper
using velocity feedback control. Consider the
structure shown in Figure 1. The effect of soil-
structure interaction is modelled by a linear elastic
spring, as shown. We consider the system described
by equations (1)-(3) with the following parameters
(assumed to be chosen in consistent units):

c=2,L=I,

hl =5000, h2 = 0,
Xa-x3 = 0.34, and,
Xy =0.47

The first ten frequencies fB;=w;/c are shown in
Tablel. The fundamental period is about 2 seconds.

The transfer function of the controller is given by
I.(iw) = iew. Thus we use a simple velocity feed-
back controller. Since M=c=2, we are assured
stability as long as 0 < i < 2. The upper half s-plane

root loci are shown in Figures 3(a) and 3(b) for the
first ten frequencies, using equation (24). The roots,

B = slc, for different values of p (typically u =
0.01, 0.1, 0.5, 1, 1.5, 2, and 2.5) are shown. The

location of the roots for all values of 0 < it <M are
indicated by crosses or pluses. The open squares
show the roots for 4 > M. We observe that the
closed loop poles begin for 4 = 0.01 near the open
loop poles which lie on the imaginary axis. The root

loci of the poles corresponding to the second and
fifth modes are seen to curve around and move into

the right-half s-plane only for values of u >M. For 0

< u <M, all the closed loop poles lie in the left half
s-plane, as expected. Extensive numerical
experimentation using Mathematica showed that the

smallest value of u for the controller to be stable is

about 2.00449 for B = 59.21i. Thus the value M =
2 found theoretically is a good lower bound and

therefore a good approximation to p™ax,

CONCLUSIONS

In this paper we have shown ta new method of
controlling building structures when the sensors and
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actuators are poncollocated. Our control force can
take into account soil-structure interaction effects,
albeit in a rudimentary manner.

1. By properly locating sensors and choosing
appropriate time delays, the modal response of the
system at time t at location x, can be exactly

predicted by measurements taken at three sensor
locations at appropriate prior imes.

2. The control design offered in this paper is
different from those proposed in the past in that we
use time-delayed inputs to the controller. It is this
new feature, which is motivated by our
understanding of the physics of the system, which
appears to be quite important in bringing about
stability of the closed loop system, using finite
dimensional controllers.

3. The paper provides explicit bounds on the
conuoller gains for which dampening of all modes
is ensured. These bounds are provided in a form that
can be easily calculated. More importantly, they are
expressed in terms of the actual locations of the
sensors and the actuators. Treating collocated
controller designs as special cases noncollocated
designs, the resultsof previous investigators are put
in a more general framework.

4. Simulation results are presented for a building
structure, modelled as a shear beam, undergoing
horizontal vibrations induced by strong earthquake
ground shaking. The control design methodology is
validated along with the theoretically obtained
bounds on the controller gains.

5. The technique uses noncollocated sensors and
actuators, a variety of simple finite dimensional
controllers, and feeds back a control force which is
related to the time delayed response of the structure.
The results show that all modes of vibration are
stabilized with no "spill-over" effects as long as the
controller gain is less than M.
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