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Developments in understanding, analysing and designing structures with

aseismic isolation

R.Ivan Skinner, Graeme H. McVerry & William H. Robinson
Engineering Seismology Section, DSIR Physical Sciences, Lower Hutt, New Zealand

ABSTRACT: Two aspects of seismically isolated systems are summarised here, namely the effects of the degree
of isolation on the modal profiles and periods, and on the seismic motions and loads, of a linearly isolated system,
and the effects of isolator nonlinearity, as deduced from a study of 81 cases with varying bilinear and structural
parameters. The latter analysis provides an overview of important design parameters, and can be used as a starting

point for more detailed aseismic design.

1 INTRODUCTION

This paper presents some of the ideas and techniques
discussed at greater length in a forthcoming book, "An
Introduction to Seismic Isolation" by the same authors,
to be published by John Wiley and Sons. The modal
approach to the understanding and evaluation of seismic
responses of isolated structures is introduced with
reference to the simple case of a continuous uniform
shear structure mounted on a linear isolator. Extension
of the modal approach to the nonlinear case is
discussed in terms of a bilinear isolator.

An isolation factor I which applies for both linear
and bilinear isolation is introduced to simplify the
presentation of the features of well-isolated natural
modes, Figure 1. An isolator nonlinearity factor NL is
introduced to simplify the presentation of the maximum
seismic responses of modes when the isolator is
idealised as bilinear hysteretic. Modal contributions to
maximum seismic responses have been evaluated by
applying modal filtering techniques to the time-histories
of overall seismic responses. Results based on a range
of case studies are summarised in Figure 2.

2 LINEAR ISOLATION

The primary effects of a high degree of linear isolation
are large reductions in the first mode accelerations and
loads, and usually a substantial increase in structural
displacements, which now apply at all levels down to
the structure-isolator interface. Higher-mode weights
are very considerably reduced so that their contributions
to seismic loads are usually small. "Floor" spectra are
correspondingly reduced at shorter periods.

1977

The degree of modal isolation depends on the ratio
between the flexibility of the isolator and the flexibility
of the structure. To permit generalisation to
non-uniform structures, the flexibility ratio is expressed
in terms of a related period ratio as follows:

I1=T,/T,U)

where T, = isolator natural period when the
structure is rigid
and T (U) = first natural period of the unisolated
structure
4/M /X for the uniform shear
structure
where M = total structural mass
K,, K = isolator, overall structural stiffness.
Without isolation, Ty, = 0, and hence I = 0.
With complete isolation, T, — ¢ and hence I — oo,

The effect of the degree of linear isolation on the
features of natural modes, and on their seismic
responses, is illustrated in Figure 1, for which the
continuous uniform shear structure of Figure 1(a) is
adopted. The cyclic load-displacement loop for the
isolator natural period T, has the form shown in
Figure 1(a)(i), which includes the affect of viscous
damping.

. Figure 1(b) shows the normalised mode-n
displacement profiles, ¢,(z) = u,(z) /|u,(L)|, for no
isolation I = 0, for intermediate degrees of isolation
I = 2.0 or 4.0, and for complete isolation I = e (the
solid lines). By the time the isolation factor I has been
increased to 2.0, the mode shapes are already close to
their completely isolated profiles. The greatest
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Figure 1: Modal features of an undamped continuous uniform shear structure with degree I of linear isolation.
(a): - Model with load-displacement loops for (i) linear spring, (ii) bilinear hysteretic spring.
(®); (©), @):  normalised profiles of displacement §,, shear S, moment M, .

(e): +  Frequency ratio, o (I) /w,(U)
®: Mode weight, T, = | n(L)I
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departure is for the mode-1 profile, which is however
very close to the static profile given by
mass-proportional forces. Since isolator periods T, of
2.0 seconds or more are usually chosen to obtain low
seismic loads and structural deformations, and
sometimes to achieve low floor spectra, an isolation
factor I of 2.0 or more results when T, (U) is
1.0 seconds or less. For such isolation the modal
features and seismic responses approach the values or
relationships given by a very high degree of isolation,
as illustrated by Figures 1(b) to (f). Figure 1(c) gives
the normalised shear profiles S (z) = S (2) / |Sa, max|?
and Figure 1(d) gives the normalised overturning
moment profiles My (z) = Mn(z)/IMh.m|.
Figure 1(e) gives the ratios of the isolated modal
frequencies ®,(I) to the first unisolated modal
frequency ©;(U); where o M)/@,(U) = T (U)/T,1);
asymptotes for the frequency ratios when I is large are
shown dotted. The large reduction in the mode-1
period results in a large reduction in the values given
by acceleration response spectra and a correspondingly
large increase in the values given by displacement
response spectra. Figure 1(f) shows the mode weights
T, = I‘n(L)|, where T (z) (defined for lumped mass
structures in (6) below) is the participation factor for
mode n at level z.

Maximum seismic responses of the isolated mode n
of a general linearly isolated structure with masses m,
at levels z; can be expressed in the usual way as

)(rn = rrn SD (Tn’ cn) (1)
X,, (ebsolute) = T Sa(Tar Co) @
F, = m X (absolute) ®3
S.,=Y F, “
{=r
IVirn = iz} Sln (z‘ln - zi-l,n) (5)
where
Zmu,
Frn =, (63)
2 mug,

Here X and X (abs.) refer to peak values of
relative  displacement and absolute acceleration
respectively, Sp and S, are the displacement and
acceleration response spectra, { is the modal damping
factor, and ', are the modal participation factors.

For isolation factors I = 2.0 or more, equations (1) to
(5) give approximately correct values when based on
completely isolated mode shapes, u,,. However, the
numerator summation for I'; in (6a) is zero for
completely isolated higher modes, n > 1. I can then
be based on the mode shapes with an isolator stiffness
K,. However, it may be convenient to postpone
computing accurate mode shapes for given Ky, values,
in order to evaluate the small differences in the
numerator of (6a), and instead to obtain effective
higher-mode seismic participation factors from the
relationship

um uln M (Tn]z
Zmyug (To

r (6b)

rn

which uses Kyu,, = m: Z myu,, . Since (6b) is not
critically dependent on the exact mode shape, it may
also use the completely isolated u;, values, as can
equations (1) to (5) as noted above.

Since the higher-mode participation factors for
well-isolated structures are very small, as indicated by
the higher-mode weights in Figure 1(f), the higher
modes make no significant contribution to the seismic
displacements, and small or at most moderate
contributions to the seismic loads. Higher modes may,
however, make major contributions to the small floor
spectra, for periods less than 1.0 seconds, provided the
isolation factor I is moderate and the structural and
spectral dampings are low. In the special cases where
the design calls for very low floor spectra it is
necessary to consider the increases in higher-mode
participation factors given by high isolator damping.

Detailed perturbation analysis shows that the
approximate result of increasing the isolator damping
factor, by an amount which is {, above the damping
required to give classical damping for mode n, is to
multiply the higher-mode participation factors as given
by equation (6a) or (6b), by the ratio;

TealKyr Co)/TeaBe) = /1 + (28, @y /@y

It is of interest to note that this is equivalent to
replacing the isolator spring force K} by the modulus of
the complex spring force IKb + iman] when applying
equation (6a) or (6b).

A result of high isolator damping is significantly
non-classical higher-mode shapes, with phase changes
in the profile of any mode n and some consequent
phase changes in the corresponding I'; | values. As one
consequence of the phase changes, it is not strictly
correct to perform the summations in equations (4), (5)
and (6). However, further studies (as will be detailed
in the book), indicate that approximate results may be
obtained by neglecting phase change effects (except for
their contribution of factor (6¢c) above) provided I = 2
and §y has values up to about 0.2, or I = 3 and {;, has
values up to about 0.3. A further consequence of the

(6¢)
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modal phase changes is some (probably small) errors
which arise from the response spectral values Sp and
S 4, which are used in equations (1) and (2).

More accurate modal features, periods, dampings and
shapes (and hence more accurate values for the modal
seismic responses derived from them by equations (1)
to (6)) may be obtained by adding small correction or
perturbation terms to the values given by assuming
complete isolation, or a rigid structure in the case of
isolated mode 1. Such perturbation terms are essential
for evaluating the small higher-mode participation
factors, which are zero when the structure is completely
isolated. The first-mode participation factors may be
approximated by 1.0, as given by a rigid structure, or
more accurately by substituting the static displacements
in (6a).

3 NON-LINEAR ISOLATION

The primary effects of non-linearity of the isolation are
different (and less easily defined) seismic response
spectra for the first mode, and different and sometimes
much larger weights for the seismic responses of higher
modes. A design task is to relate the isolator
parameters to those of the structure in such a way that
higher-mode responses are limited to acceptable levels.
The analysis summarised below provides an overview
of important design parameters and can be used as a
starting point for more detailed analyses of specific
structures.

The seismic responses of a linear structure with a
bilinear isolator are controlled by two sets of natural
modes and the interactions between them. The first
(elastic-phase) set of modes is given by the structure
when the isolator stiffness is Ky;. The second
(yielded-phase) set of modes is similarly given by the
structure with an elastic isolator stiffness Ky,. The
yield level ratio Q. plays an important role in the
interaction between the elastic-phase and yielded-phase
mode sets, including the degree of excitation of the
higher modes of the yielded mode set. Each mode set
has an isolation factor given respectively by:

I(Kbl) = Tbl/Tl(U); I(sz) = sz/Tl(U) @)
where

Ty = 20 MK 5 Ty, = 27 M/K, @)

Since the maximum seismic responses typically
occur during the yielded isolator phase, the distributions
of maximum modal responses are given by
yielded-phase mode shapes. The response distributions
for the uniform shear structure are again illustrated by
Figure 1 (b) (c) and (d) with the isolation factor now
given by I(K,,).

The elastic-phase isolation factor I(Ky,;) and the
non-linearity factor NL, for which the yield ratio is an
essential parameter, combine to play an important role
in the strengths of the yielded-phase higher mode
responses as discussed below.

The dashed curves in Figure 2(a) show the base
shear-to-weight ratio S;/W as a function of the effective
mode-1 period Ty = 2w (i.e. for a rigid
structure, and with Ky defined in Figure 2(c)) and as a
function of the effective damping {5(%). The solid
lines show the corresponding peak displacements X,
These curves were obtained from a "bilinear dataset”
(81 cases given by three values of each of the
parameters Ty, Typ, Q/W, T;(U)). The correction
factor C, as given in Figure 2(b), has been included in
the vertical scales of Figure 2(a) as without Cp there
are substantial departures from the curves for some
combinations of isolator parameters.

The effective period Ty and the damping factor {p
can be related to properties of the bilinear loop using
Figure 2(c), which is based on the bilinear hysteresis
loop of Figure 1(a)(ii). A useful measure of the
non-linearity of a bilinear loop is the ratio NL = OP/S,
(see Figure 2(c)), which becomes unity when the loop
is rectangular and zero if there is no hysteresis.
Because the nonlinearity is proportional to the ratio
between the areas of the hysteresis loop and a
circumscribing rectangle (4S,X,), NL is simply related
to the hysteretic damping, so that {; = (2/m)NL. Where
isolator velocity-damping () is included, the effective
isolator damping is given by {g = § + §;. While the
nonlinearity and {; are constant for any yield point
such as J on the dashed line PR, locations near R give
large values of Ty, which should be avoided (see
below). Similarly, when the yield point J is close to P,
Ty is small and it is difficult to obtain a small ratio
T;(U)T,; and hence to suppress higher-mode
excitations (see below).

For the rectangular-profile approximation to mode 1,
the base shear ratio Sy/M equals the peak mode-1
accelerations X‘,1 (Figure 2(a)). For a S5-storey
structure the peak higher-mode acceleration ratio
5(5,:. / X, varies with the nonlinearity NL and the
period ratio T;(U)/Ty,, as shown in Figure 2(d). (Some
data points for Ty, = 6.0 seconds lie well off these
lines, with departures following systematic trends.)
Since T,(U)/Ty; = 1/I(Ky,;), Figure 2(d) shows that
increasing the elastic-phase isolating factor I(Ky;)
reduces the ratio of higher-mode to mode-1 maximum
accelerations; for a given degree of non-linearity NL.
Hence increasing the elastic-phase isolation, or reducing
the non-linearity, generally reduces the degree of
higher-mode excitation. If the ratio T,(U)/Ty, is small
then the structure is effectively rigid. It is evident that
an effectively rigid structure would have little
higher-mode excitation.

Figure 2(e) shows the variation, with height up the
building, of the shear due to mode 1 alone, namely S,
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Figure 2: Seismic responses of a 5-storey uniform shear structure with a bilinear isolator (Figure 1(a)(ii)), for
scaled El Centro NS 1940 earthquake.

(a):
®):
(c):

(e):

Maximum shear force Sy, and displacement X, at the structure-isolator interface.
Correction factor, Cp.

Bilinear parameters controlling Ty and (g. (d):  Ratios of peak modal accelerations at the top
level.
Shear bulge factor at level r, BF, = S/S, ;. (f):  Contributions of modes to floor spectra.

1981



(dashed line) as well as the total seismic force S, (solid
line). The contribution of higher modes may be
represented as a shear bulge factor BF, = S /S, ; as
introduced by Lee and Medland (Earthq. Eng. and
Struct. Dyn. 7 (1979) 555). The dataset (81 cases)
gives. approximate values for near-midheight bulge
factors as

= 1+ 09Ky, /Xy,f - )

Since X is given approximately by
Figure 2(d) é)r N'= 5, it is clear that higher
nonlinearity, combined with high values of the ratio
T, (U)/Ty,; (low elastic-phase isolation), tend to produce
substantial shear bulge factors.

While the higher-mode acceleration responses of
Figure 2(d) and the shear bulge factors of equation (7)
give quantitative approximations to maximum seismic
responses for a uniform shear structure, the value
become increasingly approximate, but still give general
guidelines, for increasingly irregular or non-shear type
structures.

Figure 2(f) shows the general effect of higher modes
on the floor acceleration spectra FS,. This has been
drawn for cases where X / Xy, is of the order of
unity, see Figure 2(d). The ratio of the total floor
spectra (solid line) to the mode-1 floor spectra (dashed
line) shows that higher-mode accelerations dominate for
shorter spectral periods (T < 1.0 s).

It is therefore clear that non-linearity, if not
suppressed -by a high elastic-phase isolation factor
Ty /T;(U), can give rise to substantial higher-mode
contributions to seismic loads and to large increases in
the floor acceleration spectra at shorter periods
(T < 1.0 s).
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