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ABSTRACT: A two-dimensional boundary element formulation is developed for the analysis of
steady-state vibration of a strip footing bonded to a fluid-saturated porous half plane. The
governing equations of the medium are derived by applying the Fourier transform to Biot’s
equations of dynamic poroelasticity and replacing the fluid displacements by the fluid
pressure. The boundary integral formulation is obtained through the application of the
Galerkin method to the governing equations of the medium. The fundamental solutions pertain-
ing to this foumulation, which define the solid displacement field and the fluid pressures
due to point forces in the solid and a point source in the fluid, are obtained by a procedure
developed by Kupradze. The results presented in this paper display the variations with freq-
uency of the real and imaginary parts of the impedance functions of strip footings and the
effect of soil permeability on these functions.

1 INTRODUCTION

Dynamic poroelasticity has applications in
numerous branches of science and engineering,
including geophysics, biomechanics and
earthquake engineering. The three-dimensional
theory of this problem was first developed
by Biot (1956, 1962). According to this
theory, a dynamic disturbance in a fluid-
saturated porous medium generates one trans-
verse (shear) wave and two longitudinal
(pressure) waves. The shear and one of the
pressure waves exhibit characteristics which
are essentially similar to those of elasto-
dynamics. The other pressure wave, on the
other hand, is a highly-attenuated low-
velocity wave which is associated with the
out-of-phase motions of the constituents.
More modern theories of continuum mechanics,
such as the theory of mixtures (Truesdell
and Toupin (1960) and Bowen (1976)) have
resulted in equations with similar charac-
teristics (see, e.g., Garg (1971), Prevost
(1980), Bowen (1982) and Auriault (1980)).
Boit’s equations are in terms of the solid
and fluid displacement fields (u-w model).
To use these equations more conveniently
they are often recast in terms of the solid
displacement field and the fluid pressure
(u-p model) in a transformed domain. Such
formulations have been utilized by Bonnet
(1987), Boutin et al. (1987) and Kaynia
(1990) to derive the fundamental solutions
of dynamic poroelasticity and by Zienkiewicz
and Shiomi (1984), Zienkiewicz et al. (1987)
and Bougacha and Tassoulas (1991) to solve

practical boundary value problems by the
finite element method. More recently, Cheng
et al. (1991) developed a boundary integral
formulation for the steady-state vibrations
of porous media and demonstrated its effec-
tiveness by solving a number of soil dynamics
problems.

To investigate the significance of pore
water in soil-structure interaction problens
a number of researchers have attempted to
study the dynamic behavior of rigid founda-
tions on fluid-saturated media. These studies
have invariably been carried out by using
(u-w) models. Gazetas and Petrakis (1987)
nurerically evaluated the compliance of a
poroelastic half space for swaying and
rocking motions of a rigid pervious strip
footing. Halpern and Christiano (1986)
derived Green’s functions associated with
steady-state harmonic concentrated forces
applied to the solid and fluid phases at the
surface of the half space and used them to
numerically calculate the vertical compliance
function of a rigid disk on a porous half
space. A more complete solution of this
problem, accounting for soil layering, has
recently been presented by Philippacopoulos
(1989).

The purpose of this paper is to present a
(u-p) boundary integral formulation for
poroelastodynamics and the implementation of
a boundary element method for the calculation
of steady-state impedance functions of strip
foundations on a porous half plane. The
boundary integral formulation, which is
essentially similar to that developed by Suh
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and Tosaka (1989), is obtained by the appli-
cation of the Galerkin method to the equations
of poroelastodynamics, and the associated
funda mental solutions are derived by the
method developed by Kupradze (1979) for
thermoelasticity.

2 GOVERNING EQUATIONS

Following the procedure outlined by Zienk-
jewicz et al. (1987) and Boutin et al. (1987),
one can write the equations expressing
respectively, the conservation of total mom-
entum, the flow conservation for the fluid
phase, the constitutive equation for a poro-
elastic solid and the generalized Darcy’s

law, as
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where p denotes the fluid pressure, u repre-
sents the displacemsnts of the solid skeleton
and w denotes the average displacements of
the fluid relative to the solid. A and p are
the Lame constants for the solid skeleton.

Pe is the mass density of the fluid, p is

that of the solid-fluid mixture and m =of/n

is another mass parameter, with n denoting
the porosity. « and Q are material parameters
which describe the relative compressibilities
of the constituents and are given by

a=1-Ky/K (5)

1/Q=n/Kgt(amn)/K, (6)

where Kf and KS denote the bulk moduli of the

fluid and the solid granis, respectively, and
Kd denotes that of the solid skeleton. Fina-

11y k is the coefficient of permeability of
the medium and f and q denote the body force
and the rate of fluid injection into the
medijum, respectively.

Assuming a steady-state harmonic vibration,
for which the temporal variation of u(t) can

be expressed as Ge1wt,one can eliminate w
from eqns (1)-(4) to arrive at the following
coupled differential equations of dynamic
poroelasticity:
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It is interesting to note that the trans-
formed equations of poroelasticity (i.e.,
eqns. (7) and (8)) resemble those of genera-
1ized thermoelasticity (Suh and Tosaka (1989)).

where &=

3 BOUNDARY INTEGRAL FORMULATION

In the present paper the Galerkin method is
employed to develop a boundary integral for-

mulation. To this end, the eqns (7) and (8)
are expressed as
Lij Uj = Bi (9)

where the matrix differential operator L and
the force vector B for the plane strain case
are given by
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Also D —a/ax and A denotes the Laplacian.

Def1n1ng G k28 the weighting tensor, one

can write the fo1]ow1ng weighted residual
statement for eqn (9):
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Using eqns (10) and (11) in egn (12) and
integrating by parts, one obtains the follow-
ing integral equation:

dv=0 (12)
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where U =G («=1,2) and 03 =p, and v and s

dethethe domawn and its boundary, respec-
tively. The traction vector 9, and the
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correspond1ng vector Ta , associated with G
are given by J
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Also A is the adjoint operator of L (eqn (10))
with entries similar to those of L except
that A31 =-L13, A32 —-L23, A13 =-L31 and

Ay3= L3

*
If ijsatisfies the following equation
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then the first ferm in egn (13) can be repla-

ced by -cijk(y) where Cyj =Lls  fora

2 kj
smooth boundary and x and y represent field
point and singularity point, respectively.
Incorporating this result in eqn (13) and
assuming zero body force, B, ond obtains the
following Somigliana-type integral equations:
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which can be expressed in matrix form as:
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where ¢ is a diagonal matrix and
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To develop a boundary element formulation
one needs to solve eqn (18) numerically. This
can be achieved by discretizing the boundary
into N segments (elements) and using inter-
polation functions to define the unkowns in
terms of the corresponding nodal values. In
the present study constant element, with one
node in the middle of each element, has been
adopted. In this case one needs to write egn
(18) for the N nodes to arrive at a system
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of algebraic equations of order 3N in the
form:

(21)

Introducing the boundary conditions one
can solve eqn (21) for the unknown boundary
quantities.

4 FUNDAMENTAL SOLUTION

The fundamental solution pertaining to the
present boundary integral formulation is the
solution of eqn (16). The elements of the
fundamental solution tensor for the two-dimen-
sion are given by (for the details of the
derjvation see, e.g., Kupradze (1979))
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(r)= 35 K, (Ar)-nahs = K, (A.r) (26)

$5U00 = gy Kolrgrimnghy K Oy
- 2

x;(r) nyA5 K (ym) (27)

Ko’ K1 and K2 are modified Bessel functions

of the second kind of order zero, one and two
respectively, Aj are defined by the following

relations
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where ki =-w2p1/(k+2u), and n, ¢ and y are
given by

J ;=2
- (-1) (1‘7‘9)\']' /QE)(51J+62J~) N 63j
] 2n(n2u) (3 - 22) 21080,

(31)



('I)J(6lj+52j)

¢, = 32
3 e () (G - 42) o
s 1,2 2
3 (A5 -KT)(8,:46,5)

2 _ 42
(AZ = Al)

5 NUMERICAL RESULTS

The boundary integral formulation developed
in this paper has been used to obtain a set
of results for the impedance functions of
pervious strip foundations on a porous half
plane. The material properties used for the
half plane are as follows:

A=0.274x107  K/mé , uw=0.585x107 KN/m’
Q=0.997x107 KN/m® , 4=0.83 , n=0.195
p¢=1000 , 0=2270 and m=5130 Kg/m’

The drained elastic properties (A and u)

correspond to a medium with E=1.357x107 KN/mZ
and v=0.16. These properties are those measu-
red by Yew and Jogi (1978) that have been
converted to match the parameters appearing
in egns (1)-(4).

The quantities of interest in this study
are the impedance functions (vertical, hori-
zontal and rocking) of rigid strip founda-
tions. Each of these functions is a frequency-
dependent complex quantity, the real part of
which represents the stiffness and the imagi-
nary part represents the damping of the
foundation. The presented results display
the variation of the real and imaginary parts
of the impedances as a function of the non-
dimensional frequency ag= wd/Cq, where d is
the width of the foundation and Cg is the
shear wave velocity of the medium.

Figure 1 (a and b) shows the variations of
the vertical impedance of a strip foundation
for three value of permeability: 0.002, 0.02
and 0.2 m/sec. The results in the figure
suggest that whereas the vertical stiffness
(Fig la) decreases with permeability the
damping tends to increase (Fig 1b).

Similar trends are displayed by the hori-
zontal and rocking impedance functions, as
shown in figures 2 and 3. These figures
portray the variations of the horizontal and
rocking impedances for three values of
k=0.002, 0.01 and 0.02 m/sec.

In order to examine the influence of pore
water on the dynamic behavior of a soil mass
the horizontal impedance of a highly perme-
able medium is compared in Fig.4 with that
of a dry (one phase) mediuum with the same
A, u, and p. The figure suggests that, in
the frequency range of interest, the two
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media display similar characteristics. This
feature, which was also observed for the
other impedances (not shown here), suggest
that the available results for the impedances
of dry media might be used to infer the
impedances of highly permeable saturated soil
media.
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Fig.1 Variations of a) real and b) imagi-
nary parts of the vertical impedance
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Fig.2 Variations of a) real and b) imagi-

nary parts of the horizontal impedance

0.30) Re(K) (a)
Re(K)

0451

040 N

0.0 0.5
Fig. 3(a)

1971

[ Im(K) (b)
IniK)
0.08}
0.06}
oo4l o o B
00 05 1.0
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ces of dry and saturated soil media



6 CONCLUSIONS

In this paper a boundary element formulation
for dynamic poroelasticity was presented.

The integral equation was obtained by apply-
ing the weighted residual method to the
equations of dynamic poroelasticity and the
required fundamental solution was derived by
the Kupradze method. The formulation was used
to calculate the impedance functions of a
rigid strip foundation under steady-state
vibrations. The limited presented results
suggested that for a fluid-saturated medium
as permeability increases the stiffness of
the foundation decreases while the damping
increases. Also, the stiffness characteristics
of a highly permeable saturated medium is
essentially similar to those of the corres-
ponding dry medium.
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