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ABSTRACT: The paper proposes a method of obtaining the interaction stiffnesses of a founda-
tion embedded in the radially inhomogeneous soil and undergoing sway-rocking motion. The
analysis model is constructed by (1) discretizing the soil stratum into a number of thin

layers,

rigid plate embedded in a layer which consists of annular inner and outer zones,

(2) obtaining the laterally axial, shear and rotational stiffnesses of a circular

and (3)

distributing the stiffnesses along the embedment depth in accordance with the soil property
variation and at the same time considering the modification of shear stiffness due to the

series connection.

The method is verified by the simulation analysis performed to the ex-

perimental test of the forced vibration tests of a reinforced concrete block.

1 INTRODUCTION

The rigidity of soil surrounding and neigh-
boring an embedded structure is frequently
reduced due to excavation and backfill works.
Among the analyses discussed such reduction,
tvo studies by Novak et al. (1980) and Veletsos
et al. (1988) are vell known. The former dis-
regarded the mass of the soil close to the
structure, vhile the latter took this effect
into consideration. The present analysis
follovs the latter and introduces the shear
stiffness to evaluate positively the soil
reaction vhich probably transmits downvard
to the hard soil other than toward horizon-
tally. The method treats a circular foundation
undergoing svay-rocking motion and proceeds
(1) to discretize the soil stratum into a
number of thin layers, (2) to take a single
layer into account to obtain the laterally
axial, shear and rotational stiffnesses of a
circular rigid plate embedded in the layer
vhich consists of annular inner and outer
zones, and (3) to construct the sway-rocking
model by distributing the above stiffnesses
for single layer along the embedment depth
in accordance with the soil property variation
and modifying the shear stiffness owing to
the series connection, as shown in Fig. 1.
To verify the effectiveness of the proposed
method, a simulation analysis is performed
and discussed by the results of the forced
vibration test of the reinforced concrete
block (Mizuno et al., 1985).

2 STIFFNESS PUNCTIONS FOR A SINGLE LAYER

A thin layer having the thickness of H is
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Soil spring model for an embedded

Figure 1.
structure.

laterally spread to infinity and its top
and bottom surfaces are denoted by 1 and 2,
respectively. The layer has a cylindrical
hole into vhich a circular plate, namely,
a sliced portion of the foundation is
inserted. In addition, the layer is divided
into an annular inner zone I and its sur-
rounding outer zone o, as_shown in Fig. 2.
Owing to an approximate analysis, assume
that the displacement linearly varies along
the z-axis, and the vertical displacement
during horizontal excitation and the hori-
zontal one during vertical excitation are
disregarded as like as discussed by lkeda
et al. (1992).

" Now, let the circular plate translate horizon-
tally in the x-direction with the displacement

= b T
vector Q; [le. szl vith respect to the
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faces (1,2). the

time function ei(d
Denoting gx

In the above and following,

t is omitted.
in the cylindrical coordinates,

U, = u cosé - u, sinb (1)
Then, the response displacement vectors
r r r
(gr + Up) and stress vectors (g o -r0)

of the surrounding soil in the T ~zone (T =
[ or o) have the foras of

r_..r r
U =¥, cos 6 g r %Bp cos 8 (2)
F F . r _r
ug = 031n6 , are-pasine
Furthermore, the displacement and stress
vectors represented by v =[vr‘. !e]
F [pr , Qa ] satisfy the vave equation
and can be written as
yPo=sTeal ool (r=1, 00 (9
vhere
yr‘= Displacement and stress vector,
§I‘= Modal matrix of horizontal displace-
ments of faces (1,2)
é[‘= Matrix relating to the lateral propa-
gation of waves,
gr‘= Normal coordinates vector associated

vith modal matrix.

Omitting the superscript symbol of zone T,
the above vectors V¥ and matrix Q are given by

¥ = [y, pl (1)
v = [y, ‘_’g]T- 2= (g ne]T
L= [vrl' er]T' By = [prl pr2]T
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Figure 2. Single layer having a circular

hole with annular inner and outer zones.

g=tg. g1 (5)
g = Loy, a0, ¢ = le,. g5t
1, = [“al' qale. 9y = [q'al. 4, 2]'r
1p " lagy agy00 gt lugy agyl

where

q = Normal coordinates vector of waves

r-direction,
of waves

propagating in a positive
9" = Normal coordinates vector

propagating in a negative r-direction,

9y 9; = Normal coordinates vectors

relating to compressive wvaves
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L. PR - 1B (8
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ig - gh = Normal coordinates vectors
relating to shear waves.
Furthermore, S and A are
= [ §22] s [ ™ 1)
(6)
le,1L5] ]
$90° [, s3] + [e1175 [1 z]
1 N -
By (ay 1) 3 Bz(Bzr)
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g<z)=[ B‘I)B(Z)] : 9(!>’[ c(1)c(2)]

(2) (2)
di;“’(z) H,%7(2)
51(2) = _1.____ Bz(z)= .1_

dz ' z
(1) (1)
di;* ' (z) 177 (2)
. = * =
Bl(z) = —é;——— . Bz(z) l;——
_ on(2) _ 4 (2)
cl(Z) = 2H2 (z) p 2 zH1 (2)
¢, (@) = 21t () - o 28 (2)
¢ () = 2P @), oy = wiV @)
¢y () = 280 (2)-21{P (2)
¢y(2) = 203 (2)-28{ (2)
r_,r r
SR HVAN
Vg‘ = Shear wave velocity,
Vg‘ = Compressive wave velocity,
H<1)(z) = Hankel function of the 1st kind
v of the v -th order,
8 (2) = Hankel function of the 2nd kind

of the v -th order.

In the above, aEF and ,6{(!.-1.2) and
$ = [%,.X,] = [Y;.Y,] satisfy the follow-
ing eigen equations:

(a 20a 1406 1-0 2N (X) = (0)

(8)
(82 1+[6 J-0 2N (Y) = (0)
vhere,
G
(a]) = GHle,). [G) = le,)
[Ap] = (2 +26)H[e,;]. [M]=p H[e,]
1 -1

g = [ 171 ]

GP :Shear modulus, A r :Lame’ s constant,

o r :Mass density.

It follows that

r,r r_ T
@y =t By, X [1, 1]

r r,r r_ _q41T
a, = ¢ ﬁz, X, [1,-1]
(9)

' 1 ol r_ T
Fy=§,T ¥y = (11

s

r__.1 _ r'y241/2 r._ _41T
Bg=-ig -(er/v AR vy = [1,-1)
Bvidently, the stresses and displacements in

the [ and o zones satisfy the condition of
continuity at r=R°

(10)

) o .00
TR )=3:A°R ) -

It connects the normal coordinates vector of
the inner zone Ql vith that of the outer zone
Q° as

I Lol -1,,0 .0°
qQ (A (RO)] A (Ro) q (11)

Furthermore, the displacements and stresses
of the inner zone !I(RI) can be written in
terms of the normal coordinates of the outer
zone Q°:

vrp=seat @)1l )1TR ) )

In particular, one has (9-)I'. {0} in the

outer zone, so that Eq. (12) can be separated
into the equation of displacement vector and-
that of force vector:

D =[ D}k 2 ] (3, %)=(1,2)
ik D3 ' .
p'RD = §5,080% B = [Eg] (14)

1
-| E -
B, | Bk Bfk] L GR=LD)

Since the cylindrical hole in the inner zone
maintains its circular shape, one has

| I
!r(Rl) + Yo (R[) = {0}
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Hence, Eq. (13) leads to

8% = (0540, T (00 oG = 20gf (1)

Thus, the displacement along the x-direction
of the hole surface gx is represented by

the following form:

= . . 0
U, =[S1Q0, 4Dy, D) v (18)
Likewise, using Eqs.(14), (15) and (16), the
resultant force on the hole surface in the
x-direction as a whole is obtained as

Ex T Rl( Bp ~ EGJ
7Ry

-1

Eq. (17) can be rewritten in such a form as
defining the laterally axial stiffness ka

and the shear stiffness kw

(18)

-1
1

0
1

k

.a 1
7 [ ]*‘%[-1 ]
¥hen the layers are stratified over the
enbedment depth D , the shear stiffness of
the individual j-th layer of the thickness
Hj requires the multiplication of D/HJ to

kb in Eq. (18) for a single layer, because
of its series connection.

0

Next, as a case of vertical excitation,

let the circular rigid plate rotate around
the y-axis. Then, the SVY-wave alone propa-
gates in the single layer. Noticing that the
present case takes the scalars of displace-
ment and stress because of their uniform
distribution across the thickness, the
response of the surrounding soil may be
expressed in a manner as like as Bq. (2),

r_.r r_ T
u, =V, cos @ LAl s cosé (19)

Corresponding to Eq.(8), one can write

r

LR L (20)
vhere
A O L L (L (R L

r r
o . Byy By sT. 1 af
= BF BF ' H vP
21 C22 s
r_ (), ,r r 1, ., T
Byy = Hy (8" r), By, = B (8" 1)
(21)
r r r dH;Z)(ﬂ I‘r)
BZI"G BA r
d(B8 " r)
r r r 1
Bzz'-"G Hﬁ T
d(B8 " r)
: B (R )]
ral I .l -1] "11% %o 0
v,=[By (R B, RDI-IB'(R)ITH g
BZI(R )]
o 0
= FV q
r BO (R )T
«frl I el -1 "11 70 0
p,=[By (R By, (RDI-[B (R )] 8. () q
L P21 R
- o
Pp q
As a result, the rotational stiffness k_can

be obtained as ¢

oo pl .
My '”Rl pz<Rl) kce (22)
F
I »
k. ==aR
e I Fv

3 SIMULATION ANALYSIS OF THE FORCED VIBRA-
TION TEST OF REINFORCED CONCRETE BLOCK

The specimen was a reinforced concrete block
of 4m x 4m x 6mH of Mizuno et al. (1985). The
test was carried out for two soil conditions
(A) and (B), as shown in Fig. 3(i). These
correspond to the pre- and post- embedment to
investigate the influence of backfill soil.
The physical properties of the soil have been
estimated by the field survey and laboratory
test. In the case (A) of neglecting the exis-
tence of the surface layer of 2m thick, the
block is directly supported on the bottom
soil which is assumed as a uniform halfspace
having the shear vave velocity of Vs-440|/&

In the case (B), the block rests on the
bottom soil and laterally backfilled by the
soft soil vhich has Vs-150|/s for its upper

part of 1m thick and Vs=190|/s for the re-

maining. These backfilled soil are laterally
surrounded by the surface layer of v8-4zon/m

The experimental and analytical results are
compared as shown in Figs. $(i) and 8(ii).
respectively. The curves are drawn for the
frequency response functions of the horizon-
tal displacement amplitude at the center of
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(ii) Analysis results
Figure 3.

Plots of amplitude of horizontal displacement at the center of gravity versus

frequency comparing the test result to analysis result.
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Figure 4. Plots of amplitude of horizontal displacement at the center of gravity versus

frequency in comparing the analysis results due to three kinds of Model (B),

gravity of the block. From the figures, it
is found that simulation analysis predicts
well the resonant frequencies and associated
amplitudes being in close agreement with the
experimental results in both cases.

The supplemental analysis is performed to
investigate the effect of the lateral boundary
of the backfill soil by using two models of
(C) and (D), as shown in Fig. 4. The model

(C) has the backfill soil as same as used for
the model (B) and unbounded, while the model
(D) has no backfill and is directly surround-
ed by the surface layer of Vs-LZOI/s. As a

result, the model (C) indicates that the
resonant frequency decreases slightly and the
resonant amplitude becomes as low as 60X of
the results of the experiment. On the other
hand, the model (D) indicates that the reso-
nant frequency shifts tovard the higher range
and the associated amplitude becomes about
1/3 of the experimental results. From these
findings, it is found that as far as concerned
to the present configuration of the model,

(1) the resonant frequency mainly depends on
the rigidity of soil of the inner zone and
(2) the radiation damping decreases owing to
the reflection of waves from the boundary
vith the surrounding hard soil

4 CONCLUSIONS

In order to predict the dynamic characte-
ristics of a structure embedded and

(€) and (D).

surroundingly backfilled, the present paper
proposes a practical method of obtaining the
foundation stiffness relating to the embed-
ment in a radially inhomogeneous soil. The
availability of the method is verified by
performing the simulation analysis to the
field test of forced vibration of a rein-
forced concrete block. Probably, the method
vill be applicable to deal with the
nonlinearity of soil surrounding embedded
structures.
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