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Dynamic-stiffness matrix of unbounded soil by finite-element cloning
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ABSTRACT: To calculate the dynamic-stiffness matrix of the unbounded soil, the multi-cell cloning algorithm
can be used. The basic cloning equation is formulated for each cell, supplemented by a smooth interpolation
function of the dynamic-stiffness matrix. The resulting nonlinear equations are solved iteratively, whereby in
each iteration for each cell a quadratic eigenvalue problem similar to standard cloning is processed. 2- and
3-cell cloning lead to very accurate results for all frequencies for a vast range of practical problems (homoge-
neous and inhomogeneous wedges and halfplanes with excavations of different shapes).

1 INTRODUCTION

To analyse dynamic soil-structure interaction based
on the substructure method, the dynamic-stiffness
matrix of the unbounded soil must be determined.
As an alternative to the boundary-element method,
which applies an analytical solution to incorporate
the radiation condition, the cloning algorithm based
solely on the finite-element formulation can be used.

In this ingenious cloning concept the essential no-
tion of infinity is captured by stating that adding a
finite part to an infinite quantity does not change its
value. The fundamental idea of cloning is illustrated
in Fig. 1 for the semi-infinite soil taking the embed-
ment into account. Adding the bounded cell of finite

Figure 1: Fundamental concept of cloning algorithm

elements to the unbounded (semi-infinite) domain
with the characteristic length r, results in a similar
unbounded domain with length r;. The concept can
be applied to their dynamic-stiffness matrices in the
frequency domain by assembling the known dynamic-
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stiffness matrix of the cell and the unknown matrix
of the unbounded soil characterised by the length r.,
which results in the unknown dynamic-stiffness ma-
trix of the unbounded soil with length r;. As a re-
lationship for the dynamic-stiffness matrices charac-
terised by different lengths exists, the cloning algo-
rithm leads to an expression for the dynamic-stiffness
matrix of the unbounded soil as a function of that of
the cell, denoted as the basic cloning equation. Po-
tentially, this method is a stand-alone finite-element
formulation capable of capturing the radiation con-
dition at infinity without using analytical solutions.
Only the conventional static stiffness and mass ma-
trices of the bounded finite-element cell need to be
calculated.

In the standard cloning algorithm pioneered by
Dasgupta (1982) over ten years ago, it is assumed
that an average value of the characteristic lengths of
the inner and outer boundaries r; and r. of the cell
can be used in defining the dimensionless frequency of
which the dynamic stiffness of the unbounded soil is a
function. Or in other words the dynamic stiffnesses of
the unbounded soil characterised by the outer and in-
ner boundaries are assumed to be equal. This is not
consistent with the derivation of the dynamic stiff-
ness of the cell with the exception of cases where the
dimensionless frequencies are the same at the inner
and outer boundaries (such as for a soil layer or in
the static case). For this special case of constant
depth of the layer built-in at its base, Lysmer and
Waas (1972) developed essentially the same concept
for the dynamic case. The inconsistency present in
the general case leads to incorrect results outside the
high-frequency range. It is shown in Wolf and Song
(1991) that the standard cloning algorithm actually
determines the dynamic-stiffness matrix of a different



physical system for which the mass density decreases
proportionally to the square of the radial coordinate.
In particular, an artificial cutoff frequency exists be-
low which no radiation of waves takes place. This
is demonstrated in Wolf and Weber {1982). In the
same reference, the procedure has been extended to
take the variation of the dimensionless frequency from
the inner to the outer boundary of the cell into ac-
count. This generalized cloning method results in or-
dinary nonlinear first-order differential equations for
the dynamic-stiffness matrix with the dimensionless
frequency as the independent variable. The system
can be solved numerically starting from the value at
infinite dimensionless frequency.

Another procedure called multi-cell cloning is in-
troduced for the scalar case (i.e. a single dynamic-
stiffness coefficient) in Wolf and Song (1991). For n
cells, the basic cloning equation can be formulated
n times. An additional equation is introduced stat-
ing that the n + 1 dynamic-stiffness coefficients for
all boundaries form an n — 1 degree polynomial of
the dimensionless frequency. The standard cloning
of Dasgupta (1982) corresponds to one-cell cloning.
The multi-cell cloning with 2- or 3-cells as applied to
the scalar case leads to a highly accurate dynamic-
stiffness coefficient for any specific frequency.

In this paper multi-cell cloning is extended to the
matrix case, i.e. the dynamic-stiffness matrix of a
foundation with arbitrary geometry of the embed-
ment is determined. In Section 2 the formulation and
the solution of the resulting nonlinear equations by
iteration are described. The procedure is applied in
Section 3 to the calculation of the dynamic-stiffness
matrices of several practical cases ranging from the
out-of-plane motion of a semi-infinite wedge to the
inplane motion of an inhomogeneous halfplane with
excavation. A suggestion for further research follows
in Section 4.

2 BASIC CLONING EQUATION AND ITS ITER-
ATIVE SOLUTION

For multi-cell cloning, n geometrically similar cells
each with its interior and exterior boundaries as
shown in Fig. 2a are introduced. This leads to n +1
boundaries, each with its own dynamic-stiffness ma-
trix.

For a typical cell j (j = 1,...,n) the basic cloning
equation is derived as follows (Fig. 2b). The force-
displacement relationship of the cell located between
the interior and exterior boundaries is written as

{ {P:} }= ( [Si] [Sie) ] { {w} } (1)
{P,} [Sei) Esee} {u,}

where {P} and {u} are the amplitudes of the nodal
forces and displacements. [S] denotes the dynamic-
stiffness matrix of the cell composed of finite ele-
ments. The corresponding equations for the interior
and exterior infinite domains are formulated as

(R} = [S¢Hw} (2)

1646

{ui} {Pi}

{ue} {Pe}
(b)

Figure 2. Multi-cell cloning

—{P} = [S&Nu} (3)

Eliminating {P;} and {P.} from equations (1), (2)
and (3) results in

(5] = [Sil = [Sel ([SZ°] + [Seel) ' S]  (4)

This basic cloning equation can be formulated for
each cell, leading to n sets of equations in n + 1 sets
of waknowns (S} (5 = 1,...,n + 1). To determine
the (n + 1)* set of equations to supplement equa-
tion (4), it is assumed that [S{°] varies as a smooth
interpolation function of the radial distance

n+1 1:

Z ,.1_:12 [5°1=0 (5)

j=1 "2
I; depends on the selected interpolation function and
all radial distances of the boundaries. k is the spatial
dimension (2 or 3). The following coefficients are used
for one-cell cloning (standard cloning)

L=-l=1 (6)
for two-cell cloning

h=rs—r; L=r—-r3 lz=r;—n (7)

for three-cell cloning

7‘1(7‘4 - 7‘2)
(7'4 - Tl)(fz - 7‘1)
—T2(7‘3 - 7‘1)
(ra—m)(rs—r2)

Iy, = r3(ry —r2)
(ra—r3)(r3—ra)
—ra(rs — 1)
(ra—11)(ra — 13)

L (8a)

Iy (8b)

(8¢)
(84)

I4=

The system of nonlinear equations (4) and (5) de-
scribing the multi-cell cloning procedure is solved



iteratively as follows. For each cell a quadratic
eigenvalue problem is formulated similar to standard
cloning. A set of independent {u;} vectors at the in-
terior boundary is combined to form the unit matrix
[I]. Eliminating [P;} from equations (1) and (2)

[S2°] = [Sil + [Seelle] ©)

follows, where [u.] is the corresponding displacement
matrix at the exterior boundary. Eliminating [P.]
from equations (1) and (3) results in

=[S ue] = [Sei] + [Seel[we] (10)
Multiplying equation (9) by [u.] and adding it to
equation (10) yields

[Sielluel® + ([Si) +[See) = [S7°) +[SN)luel +[Sei) = 0
(11)

When —[58°] + [S°] is known, this quadratic eigen-
value problem is solved using standard procedures.
For [S¢°] = [S2°], the equation of standard cloning is
derived.

To solve equations (9) and (11) formulated for each
cell and equation (5) the following iterative procedure
is used. In the first iteration (S| = [$%] is assumed
for each cell. [u.] follows from equation (11), whereby
the same criterion as in standard cloning (Dasgupta
1982) is used to select the eigenvalues, and then [S°]
is determined from equation (9). This is performed
for each cell which leads to [S$°] for j =1,...,n. Us-
ing the latter values, [S%,] is calculated using equa-
tion (5). For the second iteration —[S{°] + [S%°] is
determined using the results from the first iteration,
which allows the procedure to continue. Convergence
is reached when [S%3,] calculated from equation (5)
at the end of an iteration satisfies equation (10) for-
mulated for the n-th cell within an error margin.

3 EXAMPLES

In all calculations the cell width measured in the
radial direction is chosen equal to the finite ele-
ment length in the circumferential direction for the
static case and then reduced to guarantee 10 points
per wavelength in the dynamic case. Poisson’s ra-
tio equals 0.25. The dynamic-stiffness coefficient
§%(ag) as a function of the dimensionless frequency
ap = wro/c, (ro = characteristic length as shown in
the following figures, ¢, = (smallest) shear-wave ve-
locity) is non-dimensionalized as

5%(ao) = K([k(ag) + iaoc(ap)) (12)

with the static stiffness K. If K vanishes, the
(smallest) shear modulus G is used for the non-
dimensionalization.

First, the out-of-plane motion of a wedge with
an opening angle a = 30° with a free and a fixed
boundary extending to infinity is addressed (Fig. 3).
The dynamic-stiffness coefficient corresponding to
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Figure 3: Semi-infinite wedge with prescribed linear
displacement and 4 finite elements per cell
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Figure 4: Out-of-plane motion of semi-infinite wedge

the out-of-plane motion v() prescribed as a linear
function in the circumferential direction on the arc is
calculated with 4 elements per cell. The 2-cell cloning
leads to accurate results (Fig. 4) as is verified when
compared with the exact solution which can be found
in Wolf and Song (1991). The solution is also pre-
sented for dynamic condensation, which consists in
applying equation (4) recursively; starting with the
initial value at ap = 20 provided by 2-cell cloning.
Throughout the frequency range, this result agrees
very well with the exact values. The results of dy-
namic condensation can thus be used to evaluate the
accuracy in cases where no exact solution is avail-



Figure 5: Inhomogeneous semi-infinite wedge with
prescribed linear horizontal displacement and 6 finite
elements per cell
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Figure 6: In-plane motion of semi-infinite homoge-
neous wedge

able. 1-cell cloning (standard cloning) leads to large
discrepancies and can not be used.

Second, the in-plane motion of the same wedge is
examined. $%(ag) corresponding to a horizontal mo-
tion prescribed again as a linear function in the cir-
cumferential direction is calculated (Fig. 5), whereby
6 finite elements per cell are chosen. For the homoge-
neous case (G = Gy), 3-cell cloning leads to excellent
results for the horizontal dynamic-stiffness coefficient
and the solution for 2-cell cloning is highly accurate
(Fig. 6). For the inhomogeneous case G,/Gy=4, 2-
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Figure 7: In-plane motion of semi-infinite inhomoge-
neous wedge
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Figure 8: Semi-circular rigid foundation embedded in
inhomogeneous halfplane with 12 elements per cell

cell cloning works very well (Fig. 7).

Third, the vertical motion of a semi-circular rigid
foundation embedded in a halfplane with 12 elements
per cell in the circumferential direction is discussed
(Fig. 8). The results of the dynamic-stiffness coef-
ficient for the homogeneous case G; = G2 = G
(Fig. 9) agree very well with the boundary-element
solution specified in Wang and Rajapakse (1991).
3-cell cloning leads to highly accurate results with
Gz/Gl = 2, and Ga/Gl =3 (Flg 10)

Fourth, a rectangular rigid foundation embedded
in a homogeneous halfplane with e/r¢=1 is evalu-
ated by using 20 elements per cell (Fig. 11). Again,
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Figure 9: Vertical motion of semi-circular foundation
embedded in homogeneous halfplane

the dynamic-stiffness coefficients for the horizontal,
vertical and rocking motions agree well with the
boundary-element solution taken from Wang and Ra-
Japakse (1991) (Fig. 12).

4 SUGGESTION FOR FURTHER RESEARCH

The cloning algorithm is by no means restricted to the
analysis of a dynamic system described by one non-
dimensional number (which is the dimensionless fre-
quency). By defining further non-dimensional num-
bers, such as ratios of the dimensions of the foun-
dation and of the site, a dimensional analysis can be
performed. The basic cloning equation remains valid.
This should allow more general cases to be calculated,
such as a foundation of arbitrary shape embedded in
a layered halfspace.
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Figure 10: Vertical motion of semi-circular founda-
tion embedded in inhomogeneous halfplane
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Figure 11: Rectangular rigid foundation embedded in
homogeneous halfplane with 20 elements per cell

REFERENCES

Dasgupta, G. 1982. A finite element formulation for
unbounded homogeneous continua. Journal of Ap-
plied Mechanics, ASME 49: 136-140.

Lysmer, J. and Waas, G. 1972. Shear waves in plane
infinite structures. Journal of Engineering Me-
chanics Division, ASCE 98: 85-105.

Wang, Y. and Rajapakse, R.K.N.D. 1991. Dynamics
of rigid strip foundations embedded in orthotropic
elastic soils. FEarthquake Engineering and Struc-
tural Dynamics 20: 927-947.

Wolf, J.P. and Song, Ch. 1991. Dynamic stiff-



3 8
__ | ——3-Celi Cloning 3 I\
& ----Dynamic Condensation T 13
X | e Boundary-Element Method I~ N b
g rrag BN
92' 9 ..............
& i
w 41
o o —3-Cell Cloning
011 o ----Dynamic Condensation
(O] - Boundary-Element Method
Z é?-'
i
5 g
0 —r T 0 —T T Y -
0 1 2 3 4 5 0 1 2 3 4 5
DIMENSIONLESS FREQUENCY a, DIMENSIONLESS FREQUENCY &,
(a) Horizontal
3 8Te
_ | =——38-Cell Cloning S |E
& -~=-Dynamic Condensation k3 ‘v‘
X | e Boundary-Element Method £ 6l
£ w \,,_______/___7-——
w2 o | T
o e
Y 0 4-
Q 8 —3-Cell Cloning
O 44 o ----Dynamic Condensation
o] - Boundary-Element Method
z £21
i =
[N <
7] o
0 T T T r T 0 r v T — -
0 1 2 3 4 5 6 0 1 2 3 4 5
DIMENSIONLESS FREQUENCY a, DIMENSIONLESS FREQUENCY a,
(b) Vertical
8 6
_. | —38-Cell Cloning § | ——8-Cell Cloning
é -=--Dynamic Condensation T ==~-Dynamic Condensation
Zgd, T Boundary-Element Method =2 Boundary-Element Method
< |, E4.
woe O
o i
i
b41 Lou ,{
Q o |}
O o2{i
O] Z |3
Z2 T |
c =y
o < |
7] o
0 ™ 0 r r T , v
0 0 1 2 3 4 5
DIMENSIONLESS FREQUENCY a,

i 2 3 4 5
DIMENSIONLESS FREQUENCY &

(c) Rocking

Figure 12. Rectangular foundation embedded in homogeneous halfplane

dynamic-stiffness matrix of the unbounded soil by
cloning. (Ed. Dungar, R. et al.), International
Symposium on Numerical Models in Geomechan-
ics, Zurich, Switzerland: 486—-494. A.A. Balkema,
Rotterdam.

ness of unbounded soil by finite-element multi-cell
cloning. Soil Dynamics and Farthquake Engineer-
ing V, Karlsruhe, Germany, Vol.1: 429-440. Com-
putational Mechanics Publications, Southampton.
Wolf, J.P. and Weber, B. 1982. On calculating the

1650



