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Dam response to incoherent ground motions

0.Ramadan & M. Novak

University of Western Ontario, London, Ont., Canada

ABSTRACT: Response of long dams to spatially incoherent random ground motions is theoretically

investigated considering dam-foundation-reservoir interaction.

Dam bending and twisting along its

longitudinal axis are evaluated for vertically propagating incoherent seismic shear waves and for surface
travelling waves. Dam natural frequencies, modes and modal damping ratios stemming from interaction with
the foundation and the reservoir are also investigated.

1 INTRODUCTION

Seismic design of gravity dams is usually based on
two-dimensional analysis of one monolith or slice.
This model provides the basic information but
ignores the interaction between dam monoliths or
slices, and assumes uniformity of dam cross-section,
construction material, soil properties and seismic
ground motion along the dam longitudinal axis. For
large dams, the uniformity assumption may be
inappropriate and a three-dimensional analysis of
the dam-foundation-reservoir system may be called
for. A complete finite element discretization of the
dam, the reservoir and the foundation medium is,
however, computationally very expensive, making
this type of analysis rather impractical. In this
paper, a simplified procedure, complementary to
the slice analysis, is presented which reduces the
solution of this complex problem to the analysis of
a Timoshenko beam.

While the procedure is general and may handle
nonuniformity of all parameters, the focus here is
on the lateral response of the system to spatially
incoherent seismic ground motion. Free vibration
analysis of the dam-foundation-reservoir system is
also includgd and the relative effects of the main
parameters on the system vibration are investigated.
The analysis presented is an extension of the
research reported earlier by Ramadan and Novak
(1991a). Here, the ground motion is generated in
a different, novel way, interaction with the canyon
walls is included and free vibration data are
presented in full detail.
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2 REPRESENTATION OF SPATIALLY
INCOHERENT SEISMIC GROUND MOTIONS

The representation of seismic ground motions for a
specific application depends on both the structural
system and the method of analysis employed. For
linear systems, the random vibration analysis em-
ployed by, for example, Hindy and Novak (1980)
and Novak and Suen (1987), is most suitable be-
cause it provides statistical response characteristics.
In this analysis, incoherent ground motions are
described by their auto- and cross-spectra. The
cross-spectrum  of a stationary homogeneous
random ground motion between any two stations
can be written as

Sr (rw) = SQ (w)R(r,w)exp(ia)rv V) 1)

In Eq. 1, r is the separation between the two sta-
tions, @ is the circular vibration frequency, S l(w)

is the local, invariant auto-spectrum and R(r,w) is
the frequency dependent coherency function; r, is
the separation r projected into the direction of the
dominant travelling wave and V is the apparent
travelling wave velocity.

For nonlinear systems, time domain analysis based
on ground motion time histories may be preferable.
The solution is obtained by the numerical
integration of the governing differential equations.
Time history representation may also be usetul for
linear systems in special cases and is more
convenient for those engineers who are more



familiar with deterministic approaches. Due to a
paucity in recorded seismic ground motions for
specific sites and station separations, artificially
generated motions are usually used. In this study,
time histories of ground motions are simulated to
match ground motion auto-spectra, Cross-spectra
and coherency using the technique due to Ramadan
and Novak (1991b). For the basic case of co-linear
stations, the stationary homogeneous ground
displacement at a distance x from a reference point
is modelled by

Nk N
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In Eq. 2, a,, k=0,1,..,Nk and L; i=1,2,...,N depend
on the coherency function used and z, is the time
lag due to surface travelling waves. The motions
simulated by Eq. 2 satisfy both the target auto-
spectrum and the target coherency function. For
the generation of associated ground velocities or
accelerations, Eq. 2 is to be differentiated once or
twice, respectively. More details and descriptions of
the parameters included in Eq. 2 together with its
generalization for two- and three-dimensional
domains are given in Ramadan and Novak (1991b).
This method works very well as is shown in Figure
1 in which target and simulated spectra and
coherencies are compared.

3 MATHEMATICAL MODEL

Both dam-foundation interaction and dam-reservoir
interaction have significant effects on the seismic
response of gravity dams and, therefore, should be
included in the analysis. In the simplified approach
adopted here, the dam length is assumed to be
much greater than its cross-section dimensions so
that the beam theory may be used to evaluate the
variation of the dam horizontal response along the
longitudinal axis (Figure 2a). The dam response in
the plane of its cross-section is obtained by
convantional analysis of a monolith or slice (Figure
2b). The focus here is on the lateral response of
dams with a high aspect (slenderness) ratio,
modelled as a Timoshenko beam allowing for bend-
ing and twisting along the longitudinal axis, dam-
foundation-reservoir interaction and spatial - inco-
herence of the ground motion. Any nonuniformity:
in the dam cross-section and foundation conditions
can also be accommodated. This analysis yields
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Figure 1. Comparison of target and generated
acceleration spectra and coherencies (parameters
are given in Section 5).
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Figure 2. Two-stage analysis of gravity dams:
(a) lateral response; (b) response in cross-sectional
plane.
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bending and shear stresses of the dam that are
totally unforeseen if only the conventional two-
dimensional analysis is conducted.

The substructure method is used to evaluate the
dam response. In this method, the dam structural
stiffness matrix is assembled using the standard
structural analysis technique and the foundation
stiffness matrix is obtained using the theory of visco-
elastic halfspace. The total stiffness matrix is
formed by superimposing the two matrices and the
reservoir effect. The dam is modeled by N beam
elements featuring (N+1) nodes located along the
dam longitudinal axis; shear deformation is
accounted for. Three degrees of freedom are
considered at each node: the horizontal (lateral)
translation, rotation in the horizontal plane, and
rocking in the vertical plane. The masses associated
with horizontal translations and the mass moments
of inertia associated with torsion are both lumped at
the element nodes. The effect of foundation
flexibility is incorporated in the analysis through the
complex, frequency dependent stiffness matrix
established for the sequence of rectangular tributary
areas indicated in Figure 2a. Through foundation
coupling between all these areas is considered. The
dam is also elastically restrained against rotations
and translations at both ends due to interaction with
the halfspace, as well as with the walls of the
canyon, which is assumed to be rectangular. All
stiffness matrices and dam deformations are
referred to the dam axis which passes through the
centre of gravity of the dam cross-sections.

The reservoir effect is represented by the resultant
hydrodynamic pressure force and its moment about
the dam axis. These forces are obtained analytically
by solving the wave equation assuming an infinite
reservoir with uniform cross-section. For more
information about the mathematical model and the
governing equations of motion, the reader is
referred to Ramadan and Novak (1991a).

4 FREE VIBRATION ANALYSIS

The system natural frequencies, vibration modes
and damping ratios are obtained by solving the
associated eigenvalue problem. For the dam-
foundation-reservoir system the eigenvalue problem
is nonclassical and nonlinear. Nonlinearity is due to
the ftequency dependency of both the soil stiffness
parameters and the hydrodynamic pressures. In
addition, the use of frequency-independent,
hysteretic material damping for the soil and the
dam materials together with the non-proportional
damping generated by the reservoir also contribute
to the nonclassical nature of system damping. The
eigenvalue problem is solved by means of iteration

and the complex eigenvalue analysis. To obtain the
k™ natural mode, an initial value of the undamped
natural frequency is assumed and used in evaluating
the complex soil stiffness matrices and the reservoir
effects. A complex eigenvalue analysis is then
performed to obtain damped and undamped natural
frequencies together with the vibration modes.
Then, the k™ undamped natural frequency obtained
is compared with the initial frequency assumed and
the analysis is repeated until the two frequencies
approach each other with the required degree of
accuracy. The whole procedure is then repeated for
each vibration mode.

For numerical applications, an 853 m long con-
crete gravity dam with a constant cross-section
similar to that of the Koyna in Western India is
chosen. The dam is 103 m high and has a base
width of 68.5 m. Its mass density, Young’s modulus
and Poisson’s ratio are 2300 kg/m?, 30000 MPa and
0.2, respectively. The halfspace foundation is basalt
with mass density, shear wave velocity and Poisson’s
ratio of 2400 kg/m? 1218 m/s and 0.3, respectively.
Hysteretic material damping ratio is assumed to be
0.02 and 0.05 for the dam and the soil, respectively.
The reservoir is assumed to be infinitely long with
a constant cross-section and a rigid base. The
velocity of sound in water, c, the mass density of
water and the water depth, H, are 1440 m/s, 1000
kg/m?® and 90 m respectively. Effects of sediments
are not considered. The dam was discretized into
10 elements featuring 11 nodes. Free vibration
analysis was performed to evaluate the first ten
vibration modes for four different cases (case 1 to
case 4). Through-rock-coupling (interaction
between foundation tributary areas) was considered
in cases 3 and 4 only while the reservoir was
assumed to be empty in cases 1 and 3. The obtain-
ed natural frequencies and damping ratios are dis-
played in Figure 3 (the discrete data are connected
to emphasize different cases). Ignoring the through-
rock-coupling of foundation results in underestima-
tion of the system damping at low frequencies and
averestimation at high frequencies when the reser-
voir is empty. When the reservoir is full, the
damping is underestimated at some frequencies and
overestimated at others, depending on the dam-
foundation-reservoir interaction. = The sudden
changes in the trend of natural frequencies and
damping ratios for cases 2 and 4 beyond the seventh
mode are due to first resonance of the reservoir at
its fundamental frequency, sc/2H=25.13 rad/s.
Modifications of the system complex vibration
modes due to both through-rock-coupling of foun-
dation and reservoir-interaction were also observed.
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Figure 3. Natural frequencies and damping ratios of
the dam-foundation-reservoir system.

5 RESPONSE ANALYSIS

To investigate the effects of ground motion
incoherency on long gravity dams, the lateral
response of the dam-foundation-reservoir system to
simulated ground motions is analyzed. The seismic
ground motions are simulated using the technique
outlined above. The random field comprising the
ground motion time histories is assumed to be
homogeneous and therefore the dam response
statistical parameters should be symmetrically
distributed with regard to the dam midpoint if
repeated runs are made. The local power spectrum
used is the modified Kanai-Tajimi spectrum (Clough
& Penzien 1975) with the parameters o, = @, = 57,
&, = L = 0.6 and s, = 0.01 m?*s® The coherency
function is chosen in the simple exponential form,
ie. R(rw) = exp[-c(wr/V)]. The ratio ¢/V is
estimated as 0.001 and this value agrees quite well
with the radial motions of event 20 of the SMART-
1 seismic array. The motions are assumed to be
caused by vertically propagating shear waves and,
therefore, the wave passage effect is absent. With
these parameters, the length scales, defined in
Hindy and Novak (1980), assume the values of
3259, 447 and 97 m for the ground displacement,
velocity and acceleration respectively.

The simulated accelerations are shown in Figure
4. Nonstationarity characteristics were introduced
by superimposing a sine-time-envelope function to
the simulated stationary time histories. A 0.02 s
time step was used in the simulation. Figure 4
shows the variation of seismic input from station to
station. The maximum ground acceleration is 20%
of the gravitational acceleration. The target auto-
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Figure 4. Simulated ground accelerations at dam
nodes 1 to 6.

spectrum, cross-spectrum for a separation r=50 m
and the coherency function are compared with
those of the generated motions in Figure 1. The
match is quite good. The variation of the simulated
motions along the dam length at five discrete time
instances is shown in Figure 5.

To evaluate the dam response to the simulated
motions accounting for the frequency dependence
of the foundation stiffnesses and hydrodynamic
pressures, the complex response analysis is used. In
this procedure, the ground motions are first
transferred to the frequency domain using the FFT.
The response analysis is then performed in the
frequency domain and the results are finally
transferred back to the time domain through the
inverse FFT. For the response analysis presented
here, the reservoir is assumed full, H=90 m, and
the through-foundation-coupling is considered. All
parameters for the dam, the foundation and the
reservoir are as in section 4. The dam lateral
response to the spatially correlated (SC) ground
motions is shown in Figure 6 in which the response
to fully correlated (FC) ground motions is also
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Figure 5. Variation of simulated ground displace-
ments along dam axis.

shown for comparison. For the FC case, the ground
motions at all dam nodes were taken as identical.
While the dam responds almost as a rigid body
under the FC motions, its bending under the SC
motions is quite marked. To demonstrate the dam-
foundation-reservoir interaction effects, the Fourier
amplitudes of the absolute dam displacement
normalized by those of the ground displacement are
shown in Figure 7. This figure presents the data at
the dam midpoint. Note that more higher vibration
modes participate in the response to the SC ground
motions than in the case of the FC ground motions.
The resonance of the reservoir is pronounced at its
fundamental frequency of 25.13 rad/s. Distributions
of dam bending and torsional moments are shown
in Figures 8 and 9, respectively. The bending and
torsional moments developed under the FC motions
are due to the dam end conditions. They are higher
near the dam ends and decrease towards the dam
midpoint. For an infinitely long dam, these stresses
would disappear. The maximum bending stress
under the SC motions is 7.26 MPa which is very
significant. The actual stress level for a specific
.case will depend on several parameters including
the design acceleration, relative structure to
foundation stiftnesses, the frequency contents of the
ground motion, and also the reservoir resonance
frequencies and other factors.

The dam was assumed to be continuous over its
entire length in this study. This may be adequate
for some dams like the Old Aswan Dam in Egypt
(2142 m long) and the Willow Creek Dam in
Oregon, US.A. (543 m long) which were built
without expansion joints. For dams having expan-
sion joints, the stresses may be reduced, depending
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Figure 6. Dam lateral response at different time
intervals.
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Figure 7. Ratio of dam absolute motion to ground
motion at dam midpoint.

on the nature of the joints but the along-the-dam
response would still be significant.

The dam response to fully coherent travelling
waves was also considered. In this case, the ground
motions are assumed to be the same at all dam



t = 2.0 SEC

/\ e
—] \/
M= 60290 MNm
t = 4.0 SEC

AN

t = 10.0 SEC

———

%
Figure 8. Distribution of dam bending moments.
t = 2.0 SEC

t = 4.0 SEC T= 12190 MNm

' =
t = 6.0 SEC ‘
g‘%——l e ]
SC
- —FC
t = 8.0 SEC
prem—— — —
E_____.;-:;.:_—_l‘ = — | v—
t+ = 10.0 SEC
c— 3 P

Figure 9. Distribution of dam torsional moments.

nodes but with different time lags calculated from
the wave propagating velocity. For waves propa-
gating along the dam longitudinal axis at 4.265 km/s,
the maximum bending stress is 1.74 MPa. This
bending stress becomes 3.37 MPa when the propa-
gation velocity is taken as 2.133 m/s. This suggests
that, for the system considered, the dam stresses
due to ground motion incoherence are higher than
those due to travelling waves.

6 CONCLUSIONS

Response analysis of a dam-foundation-reservoir
system to spatially incoherent seismic ground
motions is presented, leading to the following
observations:

(1) The dam response is strongly affected by the
incoherence of ground motions. The dam responds
almost as a rigid body to fully correlated motions
but bends and twists significantly under incoherent
ground motions.

(2) The stresses caused by the spatial variability of
seismic ground motions are not insignificant even
under moderate lack of coherence and can be more
severe than those caused by travelling waves.

(3) The stresses due to ground motion incohe-
rence remain completely unforeseen in the usual
design methods; they should be considered in the
design of large structures such as large dams,
tunnels, pipelines, and long bridges.

(4) Dam interaction with both the foundation and
reservoir has a significant effect on the dam
response.
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