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ABSTRACT: The simple and practical method for ecalenlating the compliance function of
The process of solving the
is proposed by means of dispersing into the
The coefficients of unknow quantities in the

is developed in this

insoluble theoretically
equations concerned with contacl pressure.
linear simultaneous
solutions of

paper.

In the
soils,
especially for more complicated cases.

case

1 INTRODUCTION

Dynamic analysis of the soil-structure is
very important in the design of structures
and fundations. Then, this problem has been
researched by many researchers, such as
T.0daka‘'"", .Tazimi ‘2 In these
researches, one of the rescarch method,

substitues spring constants, dampers and
attached mass which is concenlrated mass
system instead of the structure 'is

considered to be more economical, simple and
more efficient. However, how to evaluate
the constants of the springs and the damping
efficients of the damper or compliance
function of soils is Lhe main problem. lip
until now, many kinds calculating melhods
concerning this problem  have been
suggested 3 (42 5

If we compared with the advantages of
these calculating methods, we have found
that the calculating method which is

recommended hy H.L.Wong has more advantages.
This method has less calculating cost.,
suitable for any sharp functions and easicr
to applicate. The main process of the method
is shown as follows. (1)The contact
surface between soil and function is divided
into a few small elements. (2)Disperse the
integral equation into the linear
simultaneous equations conserned with
contact pressure. (3)lUsing Green's function
Lo evaluate these coefficients of every
unknow quantities in the linear simultaneaus

equalions. (4)Solving Lhe linear
simultaneaus equations.
llowever, Green's function is not infinite
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equations are evaluated by using the Green's function
the points of exciting forces in soils.
substitute the simple third power spline function instead of Grenn’s function, for
the linear simultaneous equatious. The compliance function of soils is finally
of compared with other metohds of caluculating the
this method has been proposed is more reliable,

shils
cquation which is
linear simultaneous

integral

which are the
have proposed to
solving
represnted.
compliance function of
less calculating time, appliable and

[n this paper, we

integral pole, but its integrated function
is very complicated. Therefore, when the
integral equation 1is dispersed into the
linear simultaneous equations, there are
some problems, such as long calculating
time, special calculating technique, big

calculating error and difficult to
applicate. FEven though some methods have
been recommended to solve these problenms,
up-to-date be reliable and practicle method

has been proposed to show a relatively
prefect efficiency.
In this paper, a simple method for

calculating the compliance function of soils
is proposed. That is, by substituting spline
functions instead of Grenn’s function, the
influence coeff{icients are thoretically
evaluated. Because the third spline function
is the sum of many third power polynomial

expressions. It is possible to present the
influence coefficients theoretically. And
all evaluated work becomes easy and
accurate.

In order to compare this method with other
advanced calculating methods, the compliance
function of elastic half-space under the
rigid rectangle plate which is placed on ils

surface has been represented by the above

mentioned method.

2 GREEN’S FUNCTION

2.1 The solution of the point of exciting
force on the surface of the elastic

half-space

treen’s funetinn is the solJution of the



point af exciting force in soils.

In this paper. in order to easily
represent. the method of substitute the 3rd
spline function instead of Grenn’s function,
the solution of the point of exciting force
on the surface of the elastic half-space is
only discussed. First, we write down the
solution.

According to the coordinates system which
is shown in Fig.1, the displacements on the
surface of the elastic half-space caused by
the point force that excits on the surface
of the elastic half-space, which is
represenied by the following equations:
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Vhere,

Pe!*': a concentrated load which excites
vertically on the origin of the
coordinate,

Uzz: the vertical displacement on the

surface of the elastic half-space when
Pe!¥t excites vertically on te origin
of coordinate,

Uxz, Uy2.: the displacement of x-direction
and y-direction for the horizontal
displacement respectively,

G: the shear modulus of soils,

w: frequency of exciting force,

Jo{&a),l:(&a): zero power and the Ist
power of lst kind bessel
function respectively,

i=J-1,
J = @/V: : the number of wave,

t =28 7-1)2-4 82/ (&3 v )L 3-1),
= J(I-2v)/i2ti-vii,

v: poisson ratio of soil,

t: time,

a = wr/Ve : non-dimensional frequency of
the exciting force,

V.: the velocity of shear-wave.

In the other case, when the concentrated
load whose direction has O angle with
x-axis excites on the point(0,0,0), the

displacements on any point(X,Y,0) is given

by following equations.
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Where, Uxx.u,\'x, and ”:x are the

displacements of x-direction, vy-direction
and z-direction respectively. J,( &a) is the
second power of first kind of Bessel
function.

In the case of horizontal exciting force
in y-direction, the displacemenls can be
given by switching Uyx—=>Uxv, Uxx=>Uypy, Uzx—>
Uzy and U=>(m /2,0 ) in Eq.(1-3)~Eq.(1-6).

Eq.{1-1)~Eq.(1-6) are infinite integral
with singular pole. They can be calculated
by changing them into the finite integral
and residual parts. Therefore, Eq.(1-1)~
Eq.{1-6) can be written as follows‘*':

e - ’—'71’ {£1(8) + 1 T2(@)} -eeveee(1-7)
Ux 2= - Q:‘;;;t . (l;’.v)x {ei(a) + i ex(a)} ------- (1-8)
w2 T2 feya) + i exta)) oo (1-9)
T 1—7—" 21(2) + i g2(a)}

X2
"y {hi(a) + i h(a)
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Where, f,(a).f-(a) are the real number part

and imaginary number part respectively.

2.2 Substitution of the 3rd spline function
for Green's function

When the dvnamic compliance function of
soils is calculated by divided method, it is
necessary to integratc with respect to
E£q.(1-7)~Eq.(1-12) for calculating the
influence coefficients. However, because
the integrated functions in Eq.(1-7)~Eq.(1-
12) are very complicated, the calculation is
very hard. The method that we  have
mentioned above is that Green's function is
substituted by the third power spline
function which 1is the sum of many third
power polynomial expression. Compared with
other approximate calculating methods, the
method has many advantages such as spline,
practical and accurate. The substitution
process is shown as following:

(1) Several values of real number part and
imaginary number part at a region we need in
Eq.(1-7)~Eq.(1-12) respectively.

(2) Calculate out the 3rd spline functions
which substituted real number part and
imaginary number part of Green’s function in
Eq.(1-7)~(1-12) respectively.

The  comparison of the accurate
the real number part f,(a), the imaginary
number part f.(a) and value of spline
function coresponding f,(a) and f.(a) is
shown in Fig.2. It can be seen that there
is almost no error came out by using spline
function instesd of Green's function. And
in the range of [-vo, oo], this effect still
exists. [llence, the Eqs.(1-2) and (1-12) can
be written as the following forms.

value of
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3.0 / = The curve of spline function substituting fi(a) [real}
2.0
1.0
A=wr/y,

~2.0 \ \
L_ The curve of spline function swbstituting f.{a) [imaxinary)
N The curve of precisely solution [y(a)

Fig.2 Substitution of spline function tor Green's function (v=1/3)
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Here, when a=a, in Eq.(1-7), yf.,y’f: are

the values of the real number part f£,(a) and

the imaginary number part fa(a)
respeclively. y";, y'": are the real number

part h;(a) and the imaginary part h(a)

respectively in Eq.(1-11). b*,, c"y, d"

are coefficients of the 3rd spline function

in the imaginary number part of Eq.(1-11).

b’"y, ¢'"y, d’"y are coefficients of the 3rd
spline function in the imaginary number part
of Eq.(1-11). The rest of symbols are
similar to that mentioned above.

2.3 Evaluation of the Dynamic function in

elastic half-space

In order to explain the advantages of using
the above substitution method to replace
Green’s function to calculate compliance
funclion in soils, an example for Lthe
calculation of the compliance Tfunction is
given.
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Considering a rigid structure of area. S
where ecxsit on the surface of elastic half-
space. In this situation, the distribution
of the contact pressure can be evaluated by
solving the following Fredholm’s inlegral
equation.

w;(x,y)=J=;zZ.y . Ssa . YGra(x,y | €,7)

-qi(€,m) déd7y

J = x,v,z. The footnotes I, J
represent the directions of displacement.
¥ represents the sum of the displacements
cause by contact pressures of the three
directions. W: is the surface displacement
inside of the contact surface S. gy is the
unknown contact pressurc inside of contact
surface  S. Gra(x,yl &€,m) 1is Green’s
funclion in elastic half-space. Namely, il
is the displacement at (x,y) which is caused:’
by a unit point excited force efforted on
the surface (&,7).

A numerically analytical method is used to

iere, I,

divid integral equation. As shown in TFig.3,
divided contact surface into a few finite
elements. Then, divided integral equations
into linear simultaneous equations. Finary,
solved these equatlions. Eq.(3-1) can be
changed to the following form.
B=a-m
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Fig.3 Divisional madel on the contact surface

kel = 3

JEx v,z i=-m

2 QJ(i’j)
J==-n

351 JSGIJ(xkyYI E,n)dédnle  --e-e-- (3-2)
(k=-m~m, l=-pn~n, E=1~4mn)
Where,
Wi(k,1): displacement of (k,l) element,
qs(i,j): equal distributed contact pressure

in (i,j) eclements,
Si.y: area in (i,j) element,
Xx,y1: the coordinates of the central point
in (k,1) element,
§ §6io(Xe,v2 | €,7)d&dn: double integral
of Green’s function over (k,l) element.

It can be seen from Eq.(3-2) that if the

influence coeflicients are given and in
addition boundary conditions are known, then
we can get contacl pressure by solving
linear simultaneous equations. By using all
contact pressures we get above, the dynamic
compliance function can be evaluaued.

m n
Cw=BA/( 2 = qz(i,j) S1.5)

l=-m J=-n

m n

Chn=GBA/(1_Z_m J-zn (i, i) Sy ) e (3-3)

Cnn=GB3A/(l=2_ JE QZ“-.J) Sl J Xt )

Cvv, Cnny, Cnn are compliance function of the
vertical vibration, horizontal vibration and
rotated vibration along y-axis respectively.
A, Q are the displacement and the angle of

rotation in the direction of vibration.
When the calculating the influence
coefficients, we paid a special attention on
it. Because a lot of time 1is -used to
calculate the influence coefficients, in
addition the accuracy of the influence
coefficients directly effects the accuracy

of the compliance function of soils, we can
easily get the influence coefficients by
substituting spline function instead of the
complicated Green’s function and then

directly making double integral of Eq.(1-1)
~ (1-6) over the elements instead of either
doing over-laborate numerical inlegral or
subslituting concentrated loads instead of

distributed force to do approximate
calculation which causes divided elements
increase. The integral results are shown in

literature.

3 COMPARISON OF RESULTS

In order to make sure the advantages of the
calculation method in this article, the
compliance function of elastic half-space

under the rigid square plate which is placed

on its surface has been represents by the
above mentioned. The comparison of the
results among this method and other methods
are shown. Calculation is based the

following conditions. The divided number of
the contact surface is 2m=2n=6, 2m=2n=8
respectively; Divided element 1is square;
Vibration is vertical, horizontal and
rotated vibration; No binding force is
considerd in this paper.

3.1 The comparison of accuracy

I.L.Wong ‘4> and T.Kitamura ‘s’

also  used
divided method to calculate

compliance
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function in elastic half-space. The result
of the comparison is shown in Fig.4~Fig.y.

H.L.Wong supposes that the contact
pressure in all elements are equal
distributed. Then  double integral of
Green’'s function makes over every elements.
Finaly, ohtains the influence coefficients
accurately. flowever, T.Kitamura is proposed

simplified calculation under the same
assumption. That is, substitution of equal
distributed contact pressure in each
elements for the concentrated loads on each

unit. The influence coefficients are
obtained as displacements caused by these
concentrated loads. Therefore, the accuracy
of Lhis method is between Il.L.Wong and
T.Kitamura’'s methods. [t can be seen in
Fig.1~Fig.9 that the accuracy of this
method is much more higher than T.Kitamura,

almost the same as H.L.%Wong’s result. in
the mean time the error of T.Kitamura
increases with the increases of non-

dimensional vibration frequency a, but there
is no phenomenon in this method.

[t can be concluded that the accuracy of
this method is not decreased even though
this method we used is approximate method in
which spline function is substituted instead
of Green’s function. The result almost had
the same accuracy as H.L.Wong's method.
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Fig.4 Comparison with other researchs (vertical vibration L/B=1)
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Fig.5 Comparison with other researchs (vertical vibration L/B=1)

3.2 The comparison
amount of work

of computation time and

[t can be seen from Fig.3~Fig.8 that if
compariug 8 elements division in our method
with 10 elements division in T.Kitamura's
method, our method has higher accuracy.
Even though the number of division is not
decreased compared with H.L.Wong's method.
Making double integral of Green’'s function
over every element is needed in H.L.Wong’'s
method, which makes the amount of
calculation work very big. All in all, the
amount of computation work decreases to 2/3
of T.Kitamura's method. And  pergonal
computer can casily be used to solve the
problem. The cpmputation time and amount of
work decrease several time compared with
H.L.Wong’'s method.

3.3 Comparison of application

The greater the stiffenss of structures is
and the softer the soil is, the grater the

effect of dynamic interaction in the soil-
structure is. For the colossal rigid
structure especially such as nuclear pover
station and ocean structure, their non-

dimensional frequency a are very high. As
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Fig.6 Comparison with other researchs (horizontal ;i—l;ration L/B=1
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Fig.9 Comparison with other researchs (rotating vibration L/B=1)

what mentioned above, the error of
T.Kitamura's method increase in the big non-
dimensional frequency field, so that it is
unreliable to use T.Kitamura’'s method in the

high non-dimensional frequency field.
Although there is no such problem in
II.L.%ong's method, it is also difficult to
applicate because of huge work of and long
time of computation. This method overcomes
the shortcomings of the two methods. It
also has good future for some complicated
situations such as multi-layer soils and
buried fundations.
4 CONCLUSIONS
Some advantages in this method have been
established in this reseach.

1. Green’s function is substituted with
the spline function, its error 1is very
small. And computation precision has been

improved and the results are more reliable.

2.0 Green's function is integrated
numerically, the computation time and amount
of work has decreased more than 50% in
comprison with other methods.

3. Even though the method in this paper is
an approximate computation method, the
evaluate results are also more reliable in
the field of high non-dimensional frequency.

4. The method is applicable especially for

more complicated cases such as multi-layer
soils and fundations which are buried.
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