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Closed-form solutions for SRSS response of shear beams

J.Betbeder-Matibet

Electricité de France, Paris, France

ABSTRACT : Closed-form solutions are derived for Square Root of the Sum of the Squares (SRSS) seismic
analysis of power-law shear beams (commonly used for modeling of soil columns and earthfill dams), when the
excitation is defined by a typical regulatory spectrum (constant acceleration up to a given period Ty, sloping branch
for periods greater thant To). These solutions are expressed either in exact form (involving Bessel functions) or in
approximate form. They should permit to improve simplified methods (mostly based so far on consideration of the
first mode alone) for preliminary design of dams, site effects of alluvium layers and design of end-bearing and

floating piles.

1 INTRODUCTION

The shear beam model is extensively used for seismic
analysis of soil columns and earthfill dams. In most
cases, analysis follows the modal response spectrum
approach, using “Square Root of the Sum of the
Squares (SRSS) as the combination rule for modes.
This requires the computation of an appropriate
number of natural periods and mode shapes, a rather
light task for a shear beam model with present-day
computers. Nevertheless, simplified methods based
upon various approximations of the fundamental
mode remain popular for preliminary design
purposes.

It has been shown recently, Matsushima (1984),
Betbeder-Matibet (1989), that for some particular
cases of ground response spectrum, closed-form
solutions could be derived for SRSS analysis of a
number of shear beam models. The first of these
solutions is the formula obtained by Matsushima
(1984) for a constant pseudo-velocity spectrum :

V(z) = K x PSV x [m(2)]1/2 M
in which V(z) is the shear force at elevation z, m(z)
the mass of the part of the beam above this elevation,
PSV the pseudo-velocity value which defines the
spectrum and K a constant which depends on the
mass and stiffness distributions of the beam.

Equation (1) is exact if the effective modal mass is
proportional to the square of the period for all the
modes of the beam. This modal property, which may
be termed Matsushima’s assumption, holds true for
“power-law shear beams”, i.e. shear beams for which
mass and stiffness distribution follow power-law in
(H - z)2, H being the total height and o an arbitrary
constant. For most other cases of shear beams,
Matsushima’s assumption is only approximate but
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equation (1) still provides very good results,
especially when the beam characteristics vary
continuoulsy along its height.

The object of this paper is to provide closed-form
solution for power-law shear beams when the ground
acceleration response spectrum has the shape of
typical regulatory spectra, i.e. constant
acceleration Ag up to a given period T, with a sloping
branch Ag(To/T)P for T > To. Such solutions should
result in a significant improvement of simplified
methods for soil columns and earthfill dams, due to
the actual consideration of higher modes and the
flexibility of power-law distribution to represent real
soil profiles.

A more general theory, including flexion beams as
well, and taking into account elastic and fixed base
support conditions is given in Betbeder-Matibet
(1992), in which the spectrum can be expressed as the
square root of an arbitrary polynomial with the square
of the period as the independent variable.

2 SRSS SOLUTIONS FOR A SHEAR BEAM

For a shear beam with mass density p, shear modulus
G and section S, the equation of motion is :

2
pS (§—2+ iig) v

= (2)
ot oz k
u being the displacement relative to the base, i, the

acceleration of the base and V = GS %P- the shear
Z

force. The boundary conditions are :

Wz=0 =0 ; (V)z=H = 0 3)



Noting : 5
po=(p)z=0 ; Go = (G)z=0 = po C0 ;

So = (S)z=0
H S
m@) = [p() S(") dz’ ; mo = m(0) ; ¥o = E"—nc,;;g
z

mp T
Po Go So
Eqgs (2) and (3) can be rewritten as follows :
u 3 [ ou
_2 + Ug = o — ¢_
ot 0§ \ o8
ou
(u) = =0 4 ¢_' =0 = 0
i (%L“

Natural modes up(§) corresponding to circular
frequencies wp, n = 1, 2, ... are defined by :

dVy, _ A2 . __ . duy _ oy
E“Qnun (wnhVn —-¢d§ , Qn CDo) )
() g=1=0 ; (V) g=0=0 )]

Participation factors P, and non-dimensional
effective modal masses py, are :

P,.=Ulundé}/ulu%dé} @

Mo = P%flu%di (wih X o= 1) ®

When the solution of Eq. (4) is sought through a
modal development :

u(, v =§Tn ® un (§) )

@

one has, for shear force V and absolute
acceleration a :

VED = mw Tn®Va®  (10)

2 2
aGn=-03Q m®u@® 11
on n
It stems from the definition of pseudo-acceleration
response spectrum S3 () that :
1 2
ME ] =25 [Pal Sa @i/@. (1)
o)

0o

and, using Egs (9), (10) and (11), the SRSS
solutions are found to be :

i ® = L [}: P2 vk (8) 2 (@) /Q?;]”2 (Ls)

o

Vo &) = m, [2 P2VZ(E) S (@) / Q:]m(m

am [Z P2} §) S} (w,o]‘” 15)

3 NATURAL MODES OF POWER-LAW SHEAR
BEAMS

A power-law shear beam is defined by :

p=po:G=Go(1 - £ ;S=so(l -
(16)
0G , as being arbitrary constants (oG > 0, ag > 0,
oG < 2).

For such a beam, the quantities £ and ¢ previously
defined are :

E= (1 - }—2;)‘*“5 : 6= EQ with @ =28F298 (|7
1+og

and the natural modes have the following
expression (Dakoulas 1985), Elgamal 1991) :
' la 2a
n®=—2— 51, (6.8 a8
Cn Jlﬁ-l (gn)

with A = %;l and {p being the zeros of Bessel

function Jy, ; with this definition all Py are equal to 1.
The non-dimensional natural circular frequencies

Qp are given by :

[+
Qn =(1 - 7) Cn (19)
Interesting particular cases of these power-law
shear beams are :
l.ag=0,05=0
=0 a=-1 = 4 14
a—O,l——z.un(é)——(-l)“ (Zn_l)ncos [(2n - D= 2]

2.aGg = %, as = 1 non homogeneous triangular

dam (Gazetas 1980)

a=4§”"=%-“n(¢)=-(’1)"nnzl/asi" [oret3)]

homogeneous soil column

For power-law shear beams, the product s Qﬁ can

be shown to be equal to 2 — o for all modes. This is
achieved by multiplying both sides of Eq. (5)

by 2 § q:?", thus obtaining

gload (VA + Q% Ed (W) = 0
n n n
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Integrating by parts from &= 0 to &= 1 and using
boundary conditions results in :

[V2e-1 +(1—a)f v,.dun—ﬂif wdé =

which is readily shc;wn to be equivaient to:
1 2 1
a; U u,.dé] = <2-a>j whdt

Matsushima’s assumption is valid for these beams.

ie. tn Qi =2-a 20)

4 SRSS SOLUTIONS FOR POWER-LAW
SHEAR BEAMS IN CASE OF A CONSTANT
ACCELERATION SPECTRUM

Let us consider the following functions :
wio @, g)=1 0<§<¥
wi0@E,&)=0 E&<Es1

wo@ 8 =rl-[1-8" osrsy
wz.o<§.§'>=1 a[l-i“‘] Esgs

Their development on the basis of natural modes up
(8) is easily obtained :

@n

(22)

wi o0&, E) = Y, -——n— Va E)un®)  (23)
" oUn Q-n
2
w068 = Y B un @u®

o

Fori=1or2andl2 1, let us define the following
set of functions :

wi1 (€, &) = f wi 1.1 (§", §) wa, 0 (§", ) dE"(25)

wi (&) = f wi1 G E) wio B EVAE  (26)

From Eqgs. (23) and (24), and orthogonality of
modes, it is readily demonstrated that :

2
Wit 68 = X ——g—i—;——; Va &) ua ©27)
L

1

2
a1 € 8) = X ——f‘:l—z un &) v ©)28)
" Hn

From which it follows, using Eq. (26)

Wi ) = €

2
Yy —ta_v2 29)
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War ®) =X ——§1—+—4u2 ® @0

and from Eq. (20)
YR2w®/ 27 = 2-0) Wy 6D
T R2V2E) /2 = 2-a) W (B) (32)

Whex;lce it is finally concluded, from Eqs (13) - (15),
that for a constant acceleration spectrum

Sa (0))=A0 :

Um ) = m2[<2 @) W @7 33
Vi (8) =m0 Ao[(2-0) W11 B (34
an® = A[@- 0 Wo  ® (35

The SRSS problem for constant acceleration
spectrum has thus been reduced to closed form. From
the definitions (21), (22), 25, (26) the following
formulas are obtained, after some algebra :

Fy@&=Q2-09 Wy 1(§)=

8-3q 482
2-0)@3-0)(5~-30) 2-a)(3-2a
(4-(1) §4-2a 6 (2-(1) é5-30L

TR0 (a)B-0) (3200530 ()

Fyv@8=C-0)Wi1 ©=22[g - 228
G7)
Fa (068 =2- 00 Wy, @ = 222[1 - £']®)

These expressions are valid if oz 1, ot # % a# §3~

For a= 1 (homogeneous triangular dam) one
obtains :

Fu (1, é)—-—4§+—§2 SE2Lat (39)
Fv(LH=58-2Lak  (40)
Fa(1,8)=-Lng )

5 SRSS SOLUTIONS FOR POWER LAW
SHEAR BEAMS IN CASE OF A TYPICAL
REGULATORY SPECTRUM

Typical regulatory spectra usually comprise :

- aconstant-acceleration plateau S, = Agfor : £ T
< To,



- a sloping branch S, = Ao (To/T)P for T > To

(with B = 1 or 2/3 in most cases).

For such a spectrum the SRSS solutions previous
ly determined (Egs (33) - (35) are valid if all the
modes are located in the plateay, i.e. if the following
condition is satisfied :

2] o To21 (42)
2n

If the first mode is located in the sloping branch
(with the higher modes remaining in the plateau),
formulas (33) - (35) can easily be corrected ; for
instance, noting A, the spectral acceleration of the
first mode, one has for displacements :

of uk (B) = A3 2- o) Wa, (§) —(A2- A2 P2 4} Jaf

SRSS solutions (33) - (35) can thus be rewritten as
follows :

Urn (§)=ﬁ§ [F (@, §)-$; P o} (é)]‘” @3)

1

Vi (€) =mo A, [Fv (0, §)-—é—; A% (&)]”’ (44)

1

an €) = A, [Fa (0, &) - T B w2 ®)]'?

with :
- Fu, Fy, F, given by Eqs (36) - (41)

- Q =—2—£2 €1 (€, first zero of Bessel function
-1
o, A= 25
A

-1 = 0 if Eq. (42) is satisfied; if not

t=1- (910)0 To)zﬂ
2n

) o2 = 2
oy ® =2 R
(46)
PV L 2-0 g2 2o
P1V1¢§) = Jx+1(C1)§ Jatl (Ch& 2 )
)

Good approximate substitutes for Eqs (46) - (47)
are given by :

(5-20-8% .8 2-ap
122- 0y

pru €)= (48)

nVi (E')EZ‘(;'-‘&S (s -2a- a“)z (49)

The corresponding approximation for £ is :

(45)

Q = 9 -40) (17 - 6a)]1/2
2ol 12e (50)
These approximations are sufficiently accurate for
practical purposes, as can be seen from table 1 and 2
where the relative error percentage is computed for the
two following cases :

- o= 0 (homogeneous column), B=1, 1 =%
(To = period of the second mode),
-a= %— (Gazetas triangular dam), B= 1, 1=%

(To = period of the second mode)

oo

Table 1 : Relative error (%) for a=0, B=1, 1= 3

¢ Displacement  Shear Force  Acccleration

0 +1.6 0 + 3.6
0.2 +15 +2.0 +0.8
0.4 + 1.1 +2.3 +0.5
0.6 + 0.6 +1.7 + 0.1
0.8 +03 +0.6 + 0.0

1 0 +0.1 0

Table 2 : Relative error (%) for o= ‘—;-, B =1,

023
3
13 Displacement  Shear Force  Acceleration
0 +73 0
0.2 +4.7 +7.8 +1.8
0.4 +25 +5.3 +0.5
0.6 +1.3 +2.5 +0.1
0.8 +0.8 +1.1 + 0.0
1 0 +0.7 0

Comparison with the response obtained with the
first mode alone (as in most simplified methods)
shows that the proposed formulas (Eqs (43) - (45)
and (48) - (49)) provide a significant improvement for
base shear (which is underestimated by 13.3 % for

= % in the first mode solution) and a considerable

improvement for accelerations (which are very poorly
represented in the first mode solution, with relative
errors in the range 25 - 70 %). It is also to be noted
that the proposed formulas are on the safe side
(positive relative error).

The acceleration figure for the first line of table 2 is

not given as for o 2 1 the SRSS combination results
in a diverging series for accelerations at the top of the
beam (see Eq. (38) for Fa).
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6 CONCLUSIONS

Simple closed-form solutions have been obtained for
SRSS response of power-law shear beams when the
seismic excitation is defined by a typical regulatory
spectrum. This result should be of interest for
simplified methods (preliminary design of earthfill
dams, site effects in alluvium layers, design of
piles,...).
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