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ABSTRACT: In this paper, the random features of input earthquake and soil dynamic parameters are simulta-
neously considered. The probabilistic finite element method is introduced into the random vibration analysis.
An effective calculating procedure is established for evaluating the stochastic seismic responses of the random

soil layers. The horizontal soil layers are taken as an example and the effects of soil parameters’ variability on

the dynamic responses are investigated. The results show that the variability of the dynamic responses will also

reach relative high level when considering the variability of soil parameters. It is very necessary to include these

variability in the dynamic reliability analysis of earth structures.

1 INTRODUCTION

As a kind of natural material, the physical and me-
chanical behaviour of soil shows remarkable variabili-
ty. The earthquake ground motions also possess in-
tense randomness. The seismic response analysis of
soil layers should be the stochastic analysis for me-
chanical system with random dynamic parameters. In
the past investigations, the dynamic analyses of soil
layers are mainly concentrated on the deterministic
calculations of seismic responses (Seed 1967 & Mar-
tin 1982). With the developments of seismic risk
analysis and structural reliability evaluation, the the-
ory of random vibration and dynamic reliability is
more and more used in the seismic deformation and
dynamic stability analyses of soil and foundations.
The emphasis, however, is put on the randomness of
input earthquake motion (Faccioli 1976 & Gazetas
1981). Recently, some researchers began to intro-
duce the random finite element method to handle the
variability of soil parameters (Vanmarcke 1986 &
Wu 1991). Using the perturbation theory and Fouri-
er tranform technique, the recurrence equations of fi-
nite element are established and solved in frequency
domain. The variability of dynamic response caused

by the variability of soil paremeters is investigated.
But in general, the input ground motion is assumed
as the deterministic earthquake wave. In this paper,
the random finite element method is combined with
the procedure of stochastic response of soil layers.
The variability of soil parameters, such as dynamic
shear modulus and damping ratio, and the random-
ness of input seismic motion are taken into considera-
tion by simulating the soil parameters as normal ran-
dom variables and the earthquake motion as a station-
ary Gaussian process. Through the second — order
perturbation, the equations of mean and variance of
power spectrum of dynamic response are established,
and then, the spectral curves of mean and variance
are obtained from numerical evaluation. Further-
more, the spectral curve of the variation coefficient of
power spectrum is given through dividing mean by
variance. A horizontal soil layer is taken as the ex-
ample and the dynamic response analysis is per-
formed. The results show that the variability of dy-
namic response caused simultaneously by the random-
ness of soil parameters and earthquake motion is
much larger than that caused only by individual ran-
domness of either soil parameters or earthquake mo-
tion. It is necessary that a due consideration for the
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variability of soil parameters and the randomness of
ground motion should be made for practical engineer-

ing probiems.
2 ANALYSING PROCEDURE
2.1 Soil section model and governing equation

For simplicity, a horizontal soil foundation is selected
as the example, and a vertical trip of unit area of soil
is taken and divided into N layers shown in Fig. 1 by
using one — dimensional lumped — mass model. Un-
der the excitation of the horizontal earthquake mo-
tion, x,(t), the soil layers take place the horizontal
shear vibration, and the governing equation in time
domain is expressed as

MX+DX+KX=—MJ.x,(t) m
in which M is a diagonal mass matrix, K and D are
the tri—diagonal stiffness and damping matrixes re-
spectively, X(t) is the horizontal displacement vector
relative to the base, and J, is a horizontal load mark-
ing vector. By means of Fourier transform tech-
nique, the governing equation in frequency domain
can be obtained

HY (w) = —MJ,y, (@) (2)
in which H = K — ™ + iwD is a frequency re-
sponse function, Y (w) and X (t) is a Fourier trans-
form pair, so is y,(w) and x,(t). Obviously, Eq. (2)
is formally equivalent to a static equilibrium equa-
tion. It is very convenience to apply the random fi-
nite element method to slove Eq. (2) if the matrix H
is a stochastic matrix.

Fig. 1 Simplified Model of Soil Layers

2. 2 Ground motion and soil parameter model

A standard stationary filtered white noise Gaussian
process, which is widely used in earthquake engi-
neering, is introduced to simulate the stochastic seis-
mic ground motion. The stationary power spectrum

can be expressed by Kanai—Tajimi spectrum as
[14+48 (w/w,)?]S,

{ (1= (w/w)? ) +48 (w/w,)?)

where w, and §; are the shape parameters and Sy is a

@)

S; (w)=

strength parameter. The duration of stationary mo-
tion is [0, t.

In order to simulate the randomness of soil param-
eters, for arbitrary j th soil layer, let the mass densi-

tys dynamic shear modulus and damping factor be e-

qual to
mi=moj(l+amjaj)
Gi=GDj(1+ﬂCju;) (4)

di=dy;(1+Qge;)

where mo;, Gg;s do; are the mean values of the mass,
stiffness and damping factor of j th soil layer, Qum;,
Qg;» Qg express the coefficients of variation of mass,
stiffness and damping, and a;is a random variate fol-
lowing standard normal distribution, that is to say,
the mean of q; is zero and variance equals 1. 0. Since
the elements of matrixes M, K and D are the random
variates, M, K and D are the stochastic matrixes, so

is matrix H.
2. 3 Solving the random finite element equation

According to the probabilistic finite element proce-
dure, the stochastic matrixes in Eq. (1) are expand-
ed about the mean values of o; via Taylor series, up to

second —order

M=M,+ 3, M'aa;+-:-l- > M%aa;

im} 2 B8]

K=K,+ 2K’;@+%ZK";M (5)

i=1 foje=1

D=Do+_§n;D'i0i+—;-§31D"ﬁa;ai

= 5=

Y=Yot 2 V05 2 VVia, 6
It can be noted that since the mixed partial deriva-
tives of M, K, D with respect to a;and a; are equal to
zero, the calculations will be greatly simplified. Sub-
stituting Egs. (5) and (6) into Eq. (1) and equating
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equal order terms, the zeroth—, first— and second

—order equations corresponding Eq. (2) can be writ-

ten as

HoYo=—~MJ.y, (@) )
HoY'i+H Yo=—M'J:y, (w) (8
HoY"+2H" Y+ 2H Y (1—8;)=0 )

in which 3;is Krnecker & operator. It is also interest-
ing to observe that the solutions for Egs. (7)—(9)
only need to inverse matrix H, besides the multiplica-
tions of the matrixes.

From Egs. (7)—(9), Ye(®), Y'i(w) and Y";(w)
are derived respectively

Yo(w)=—H; "My, (@) = Aoy (w) 1o
Yi(w)=—H;' (H 1A +M" 1y, (w)

=Biy,(w) i=1,2,,n an
Y (w)=—H; ! (2H' B+ 2H' B, (1 — ;) Iy, (w)

=2Ciy, (@) 1,j=1,2,n (12)

And then, substituting Egs. (10), (11) and (12)
into Eq. (6), Y(w) is

Y@ =(Ac+ 2 Bt ) Caa )y, (w) (13

-y ij=1

2.4 Analysis of random vibration

Considering the high damping property of the soil
layers excited by strong earthquake, the responses of
soil layers will also reach stationary period in a short
duration when the input motion is stationary. Ac-
cording to the definition of power spectrum, the sta-
tionary power spectrum matrix of response X (t) can

be written directly

Sc(@)= A+ D Bia+ >, Cjuy)
1

=1 iai=

- (A + 2B + D) Chaa)'S; (w) (14)
kwy k=)

in which A; is the conjugate matrix of A, and A{ is

the transformation matrix of A,.

Expanding Eq. (14), Sc(w) becomes

S (@)= Ao T+ 2 (AB! T+BAS e
+ 2 (BB T+ ACi T+Cihs Doy

+ 20 20 (BCi T+CiB Dy

fajoel kol

+.z 2 CiCa T moyma (15

iyjm1k,d=1
It can be noted that the response power spectrum ma-

trix is also a random matrix due to the variability of

soil parameters. Taking the mathematical expection
for Eq. (15) and considering the property of N(0, 1)
distribution of «;, the mean value of power spectrum

is

ECS (@) =AAS T+ 2 (BB} T+ AdCi T+CiAi E (aa)

+ .25, 2 CiGiTE Cran) 16
Similarly, the variance of power spectrum is
V(S(0))=E(S:(w)—E(S,(«)]]

« (8! (@)—E(S; (@) ))7 an

Obviously, the calculations in Egs. (16) and (17)

will be involved with the correlation information of
random variates &, @, ay, a. Up to now, it is a
very difficult task to determine the correlation coeffi-
cients among the different dynamic parameters in soil
layers. From initial statistical analysis, it has been
found that the correlations among the parameters are
not strong when the distances among the soil ele-
ments go beyond 3 or 5 meters. Therefore, for sim-
plicity, the correlations of dynamic parameters are
neglected in this paper. That is to say, E[aa] = 0
when i 7 j. Then, Eq. (16) is simplified as

ECS,(@))=AA; T+ 2 (BB T+ A,Ci T+CiAs ™)
i=]

+3 GG a8
And correspondingly, Eq. (17) is also simplified
greatly.

The following procedures are employed in practice
computations. First, Sgl(w) is scattered at a series of
frequency points. For each discrete point w,, com-
plete the calculations of Egs. (17), (18) and obtain
the mean value and variance of power spectrum.
Then, the variance of relative displacement of i th

soil layer can be expressed as

0§;=L S (w)dw

~ 2 (8P (@) S0 (0 ) )bwn/2 a9
in which S{” (w) is the i th diagonal element of matrix
S:(w) and p is the total number of discrete frequency
points. Again, taking the mathematucal expection

and variance for above equation, the mean value and

variance of response variance are as follows
P

E()= 2 {E(S® (w))

am]

+E(S& (wry) ) ) B, /2 (20)
V(oi)=E(et—E(ck))? (21)

1189



Furthermore, in order to evaluate the variability de-
gree of dynamic response, the coefficient of variation
of the response variance of relative displacementis al-
so introduced as

4=V (&) [E() (22)

Other responses, such as shear strain, shear
stress, absolute acceleration, etc., can also be trans-

formed conveniently from the X(t).
2.5 Equivalent linearization iteration

The computations presented above are only the ran-
dom vibration analyses for linear system with random
dynamic parameters. Pactically, the dynamic shear
modulus and damping ratio of soils are intensively de-
pendent on the cyclic shear strain amplitude, .. In
this paper, the hyperbolic model presented by Hardin
and Drnevich (1972) is utilized to describle the dy-
namic nonlinear property of soils, i. e. , the relation-
ships among shear modulus G, damping ratio &,
cyclic shear strain amplitude 7, are expressed as
G,

C=CI =W mT o)
e=$(7 )= Iye/ylllem
1+ Y e

in which, 7z denotes the reference shear strain, & is
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Fig. 2(a) Mean Curves of G~7, and §~7.
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" Fig. 2(b) Variation Coefficient Curves

the maximum damping ratio, G. represents the max-
imum shear modulus which is related to the average
effective surrounding pressure o’ .. The relationship
between G, and ¢',, is selected as follow

Gu=69. 9kn(d x)"* (ton/m*) 24)
where k. is known as the maximum shear modulus
coefficient. ‘

In this paper, Eq. (23) is used to express the
mean curves of G~ 7, and §~7.. Furthermore, in
order to simulate the different variation levels of G
and & under the different cyclic shear strain amplitude
Ye» the curves of Qg~7.and Qe~7. are introduced in
Fig. 2, which are initially assumed as the piece — wise
linear functions.

A modified eguivalent linearization approach (Wu
1990) is appli\éﬂ‘ to obtain the strain compatible re-
sults. In the approach, the equivalent amplitude of
the cyclic shear strain, 7., is taken as

Y=+ nE(})/2 (25)
in which E[c%] is the mean value of the variance of
shear strain response.

The following steps are employed in iteration pro-
cedures. At the begining, a group of initial mean val-
ues and variation coefficients of the shear moduli and
damping ratices are assumed for each soil layer.
Then, the linear system are formed and the stochas-
tic vibration analyses for the linear system with ran-
dom parameters are conducted. The mean value of
the variance of shear strain response, E[0%], can be
calculated easily for each soil layer. Through Eq.
(25), Eq. (24) and Fig. 2, the new mean values and
variation coefficients of the shear modulus and damp-
ing ratio are obtained. The initial values are replaced
by the new ones and the random responses of soil lay-
ers are computed again. This iteration procedure is
carried out repeatly until the strain compatible re-
sults, including modulus, damping ratio, accelera-
tion, shear stress, etc, are obtained. These results
are taken as the final response values and the compu-

tations are completed.
3 APPLICATION

A homogeneous soil foundation with 28 meters in
depth is chosen to verity the effectiveness of the
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method proposed here. The unit weight of soil is 17
kN/m?®. The soil section is divided into 7 layers and
the thickness of each layer is 4 meters. According to
the statistical investigation for general middle —hard
site, the Kanai— Tajimi spectral parameters in Eq.
(3) are taken as w,= 17.9 (rad/s), §= 0. 45 and
S, = 0.0023m%/s?, which repersents the average
maximum earthquake acceleration 4, = 1.0m/s’.
The nonlinear characteristic parameters of soils in
Eq. (23) and Eq. (24) are selected as Yr= 3X10%,
§~x= 0.3 and ko= 65. For each layer the variation
coefficient of mass is taken as Qn, = 5%, and in
Fig. 2 the maximum variation coefficients of shear
modulus and damping ratio are chosen as Qs= 15%
and Q= 30% respectively.

After determining above parameters the random fi-
nite element and random vibration analyses are con-
ducted for this site. First, Fig. 3 shows the mean
and standard deviation curves of response power
spectrum of shear strain at the elevation — 16m un-
der the ground surface. By all appearances, if there
is not the variability of soil parameters, only one
curve can be obtained, that is E[Sy(w)]. When con-
sidering the variability, however, not only the mean
curve but also variance or standard deviation curve
can be obtained simultaneously. Also it can be seen
from Fig. 3 that the variability of dynamic response
reaches relative high level and the variation coeffi-
cient at the peak goes beyond 80%, that is to say,
the response power spectrum is very discrete due to
the variability of soil parameters. The spectrum
curves are very smooth and the dominant frequency
is about 8.2 (rad/s).

E[Sr(w)](107*/s)

2.5

2.0} ——E[S/(w)] h=16m

s 77 V V[Sy(w)

1.0

0.5

] ) , . ]
1 3 5 7 9 11 13

w(rad/s)

Fig. 3 Mean and Standard Deviation

Curves of Power Spectrum

Then, the distribution curves of mean, standard
deviation and variation coefficient of shesr strain re-
sponse are given in Fig. 4, in which RR represents
that the input earthquake motion is Random and the
soil parameters are also Random, RD represents that
the earthquake is Random but the soil parameters are
Deterministic, and the shaded part represents the
area of mean plus and minus standard deviation. It
can be easily found that the influence of the variabili-
ty of soil parameters on the mean curve is not strong,
but the variability of dynamic response caused by the
variability of soil parameters is very intensive. The
variation coefficient is about 35% at the base and
goes beyond 70% at the ground surface, although
the maximum variation coefficient of soil parameters
is only 30%. The shaded part shows that the dis-

crete band is relative wide.
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Fig. 4 Distribution of Shear Strain Respouses

Finally, Fig.5 gives the distribution curves of
mean values of dynamic shear stress and modulus. It
can be noted that the differences of E[G] between
RR and RD is bigger than those of E[o.]. Because
the E[oy] obtained from RD is smaller than that
from RR, which can be found out from Fig. 4, ac-
cording to Eq. (23), the E[G] from RD is larger
than that from RR. However, the dynamic shear
stress is the product of shear strain and modulus.
Therefore the differences of E[o.] between RR and
RD is not big.
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Fig. 5 Distribution of Shear Stress and Modulus

It is not difficult to compute other response statis-
ticses or failure probability. But limlted by the paper
length, these results will not be discussed here.

4 CONCLUSIONS

The aseismic design of earth structures is often in-
volved with a series of indeterminate factors. The de-
signers will pay more and more attention to the inde-
terminate factors with the transformation of struc-
tural design from safety coefficient method into relia-
bility method. The physical and mechanical proper-
ties of soils, taken as a kind of natural and special
construction materials, show intensive randomness.
In this paper, the stochastic properties of soil param-
eters and earthquake ground motion are simultane-
ously taken into consideration in evaluating the seis-

mic responses of soil horizons, and the influences of

the variability of soil parameters on the dynamic re-
sponaes are investigated with emphasis. The analysis
results for a horizontal soil layers show that the vari-
ability of dynamic responses goes remarkably beyond
the variability of input soil parameters. It is very nec-
essary to consider this kind of influences for evaluat-
ing the seismic responses and dynamic reliability of

earth structures.
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