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ABSTRACT: A method to quantify the non-linear behaviour of soils subjected to cyclic loading is presented. The
method is based on Fourier decomposition of the recorded response time histories from harmonically excited cyclic
tests on laboratory samples. It is demonstrated that secant modulus, hysteretic damping and shape of the hysteresis
loops may be quantified with sufficient accuracy by six parameters, derived from the three first Fourier components

of the measured response.

INTRODUCTION

Due to their non-linear natur, soils respond by hyster-
etic behaviour when subjected to cyclic loading. The
size and shape of the resulting hysteresis loops depend
on the soil type and vary throughout a test, depending
on stress level and number of load cycles. The objec-
tive of the present study was to find a convenient set
of parameters that can be used to generally quantify
the size and shape of these hysteresis loops. Attention
was given to finding a method that requries 2 minimum
of parameters, and to find parameters that are simple
to estimate even when the test data contain noise.

1 SOIL MODELLING USING FOURIER
COMPONENTS

A soil element subjected to cyclic loading can be con-
sidered as a "input/output" system where the response
is a function of the excitation and soil properties. The
properties of a linear soil are independent of the exci-
tation, and can uniquely be determined by relating re-
sponse to excitation.

For soils with non-linear behaviour, certain restric-
tions must be put on the excitation. One useful way to
quantify the non-linear properties is to study the re-
sponse to a pure harmonic excitation:

T() = 7, coswt 0))

Due to the non-linearity, the response, «y(t), will gener-
ally not be sinusoidal. However, if the soil properties
do not develop as a function of time (t), or if the time
dependence can be separated, «(t) will be periodical.
It can then be Fourier expanded, according to Egs 2
and 3:

¥(t) = a,+ Y [a, sin(nwr) +b, cos (n-wh)
"0 @

a,+ Y [eacos(n-wt - ¢,)]
n=1

T
Here: o = X J (1) sin (n- o) dt
Tl
T
b, = iJ v(t): cos (n-wt)dt ©)
T
tan¢, = -a,/b,

The above approach can easily be implemented in cyc-
lic soil testing, where tests on soil specimens are usu-
ally run under harmonic load control.

Section 2 will demonstrate that by truncating the
Fourier series of «(t) to its three first components, any
reasonable non-linear soil behaviour can be modelled
with sufficient accuracy for all engineering applica-
tions.

2 ANALYTICAL FORMULATION

2.1 Case of no phase shift between excitation and re-
sponse

If the response is not biased, the truncated Fourier ex-
pression will read:

() = 'yo[cos Wl + o oS {/wt +B-cos 3wi] 4
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By transforming the cosine expressions for double and
tripple angles and eliminating the time (t) by the sub-
stitution from Eq. 1, the r-y relation for the corre-
sponding soil model will be:

2
X o | D) a2l X a1
Yo To To (5)

4

As seen, the assumption on the response of Eq. 4 leads
to a 3rd degree polynomial stress-strain relation, with
no discrimination between loading and unloading.

The a-term adds non-symmetry to the stress-strain
curve. a > 0 gives downward curvature and o < 0
has the opposite effect. The §-term adds the "S-shape”
to the curve: B > 0 causes a "stiffening" behaviour,
while 8 < 0 causes "softening".

The condition that the 7-y curve should be mono-
tonic puts restrictions on « and 8. Figure 1 pictures
the set of acceptable values of « and B.

Acceptable set of o and
B values

Figure 1. Set of acceptable « and g8 values.

2.2 Case of phase shift between excitation and re-
sponse

Usually soils respond to cyclic loading by producing
open 7-y hyseresis loops.

In the present approach open loops are obtained by
introducing a time shift (At), or a phase shift (¢), bet-
ween response and excitation:

Y@ = v,[cos(wt - ¢,) +acos2(wt ~ ¢,) + ©)
B-cos3 (wr —¢5)]

The simplest form is obtained for « = 8 = 0 and
¢; = ¢ # 0, which represents a linear system with
viscous or "linear hysteretic" damping.

For the linear hysteretic case, ¢ will be constant.
For the viscous case it will increase linearly with fre-
quency.

The corresponding equation of the 7-y hysteresis
loop becomes:
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The negative sign is for the loading part and the posi-
tive sign for the unloading part.

The hysteresis loop is a straight line with an ellipse
added to it.

The hysteretic damping of the loop is defined as:

D = -1_1V£ (8a)
dr W,
where
(o d
w, = jo T(t)--d—Zdt = 71,0, sing (8b)
i.e. the area enclosed by the loop
Wy = Ly, coso (8c)

2
i.e the maximum, potential energy.

By substituting for W;_and Wp in Eq. 8a, the damping
becomes:

tan ¢ ®

For a response including all three Fourier components,
the strain time history will be expressed by the follow-
ing if the same phase shift is assumed for all compo-
nents:

() = v [cos (wr - ¢)+ (10)
a-cos2(wt - ¢) + B-cos3(wz - ¢)]
For this case the equation for the corresponding stress-
strain loop has the same basic form as Eq. 5, and the
coefficients o and § have the same effect on non-
symmetry and S-shape of the curve. The effect of the
phase shift ¢, corresponding to a time lag:

A = $lo an

is to add width to the loop.
The equation for hysteretic damping for this case
yields:

I_WL_I'ta.né (12)

For a # 0 the 7-y loop is non-symmetrical and -y,
# ~ynia. Defining the secant modulus Gy, = 7o/Ymax
Of ~To/Ymin gives two different values. Here, the
following definition was chosen:



- C—;sec = 210/(7max - 7min) (133)
This mean secant modulus will be:
p 1 To
G = .o (13b)
1+8 1,

The damping in Eq. 12 is consistent with the G, defi-
nition of Eq. 13b.

Equation 10 is somewhat restricted in its ability to
describe all variations of hysteresis loops encountered
for soils. Required flexibility is obtained by adding
some freedom in terms of § and ¢ to the phase angle of
the 2nd and 3rd harmonic components, leading to the
following expression for the strain response:

() = v {cos(wrt - ¢) +
o cos[2(wt - ¢) - 8]+
B-cos[3(wt - ¢) - £]}

(14)

with this description of the response, the stress-strain
hysteresis loop yields:

T

T

(4

X - cos¢-[ } +0acos(29 +9)- 2[
Yo

T

+B-cos(3¢ +&): 4[

+)sin¢ +a-sin(2¢ +8)- [

T
T

o

T

2
]-1
pu

o

+B-sin(3¢p +&)* 4[

In this case, analytical expressions for D and G,,, have
not been derived.

To define criteria that restrict Eq. 15 to describe
only geotechnically sound hysteresis loops (monotoni-
city etc.) and map the limits of « and 8, as in Fig. 1
for various values of ¢, & and ¢, is a complex analy-
tical exercise not performed here.

From an harmonic excitation, Eq. 1, and a response
function like Eq. 15, a secant modulus can always be
defined. However, since the series of ~(t) is trun-
cated, the stress-strain hysteresis curve will always
have some "roundness” at its upper and lower ends.
The initial (maximum) shear modulus, G, is there-
fore not defined in the model.

The stress-strain hysteresis loops defined by models,
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as expressed by the Eqs 5, 7 and 15 all express the
strain as a function of the stress, y(r). The equations
can be inverted to express 7(y). The 7(y) formulation
will be mathematically close to the formulation of y(r).

3 PRACTICAL APPLICATION OF THE MODEL

Soil stress-strain relations, v(t), as those expressed in
Eqs 5, 7 and 15 can be considered as soil models,
where the behaviour is controlled by the parameters ¢,
a, 8, B and 7. /v,

d

In a practical application these parameters will be esti-
mated by processing the recorded strain response time
histories from cyclic laboratory tests with harmonic ex-
citation. The parameters have to be made functions of
cyclic and static stress or strain level, consolidation
stresses, pore pressure, present loading history etc.,
what ever is relevant for the actual soil type and the
actual laboratory test. Methods to estimate the para-
meters from experimental data are discussed in Sec-
tion 5.

The usefullness of the model is to quantify non-
linearity and development of non-linearity from experi-
mental data.

7122, 6,0,8,8,¢ (16)
7.

[

4 FELXIBILITY OF THE MODEL

To study the flexibility of the model to reproduce dif-
ferent load-deformation hysteresis loop-shapes, numeri-
cal simulations were made. Figure 2 presents 7(y)
curves for four different combinations of the para-
meters ¢, a, 6, 8 and . The plots are normalized to
+ unity along both the 7 and v axis, i.e. the function
(r/7.)(y/v,) from Eq. 15 is plotted.

Active ¢ =10° Active 6 =10
dilatant contractant
S =-0.05 =-0.1q
’ - B=005] " B =-010
§=0° 8=0°
£ =-20° € =40°
Y Y
Passive 0 =10° Passive |9 =102
dilatant contractan
T 0 = 0.054 ¢ o=0.101
B=0.05 B =-0.10
§=0° §=0°
£ =-20° £=50°
Y Y

Figure 2. Typical hysteresis loops generated by model.



The figure demonstrates the ability of the model to re-
produce an entire family of hysteresis loop shapes usu-
ally found in cyclic soil testing.

All loops in the figure were drawn with a phase lag,
¢, of 10°, corresponding to a hysteretic damping of
about 9%. Larger or smaller values of ¢ would have
widened or closed the loops and given higher or lower
damping.

The parameter, «, controls the up or downwards
curvature and thus the non-symmetry of the loops. «
< 0 gives a shape usually seen in triaxial compression
tests and o > O gives shapes from extension tests.

The parameter, B, controls the S-shape of the loops.
B > 0 gives an increased stiffness towards the max
and min points of the loop, usually seen for dilatant
soils. B < 0 gives shapes often seen for contractant
soils.

Increasing the absolute value of o or B will
exaggerate the characteristic shape of the loops.

The phase angle 6 is 0° in all the examples pre-
sented. Other values of § would give minor adjust-
ments to the loop shape without distorting the main
characteristics. & controls the sharpness at the
transition between loading and unloading at the max
and min points of the loops.

Including more than the three Fourier components
used in Eq. 15 will not extend the flexibility of the
model, or increase its accuracy in reproducing re-
corded hysteresis loops beyond what is needed in most
egnineering applications.

5 ESTIMATION OF MODEL PARAMETERS
FROM LABORATORY TEST RESULTS

The major advantage of the Fourier component soil
model is that its parameters can be estimated effici-
ently and accurately from recorded response time his-
tories from cyclic laboratory soil tests, even if the data
are disturbed by noise. The parameter estimation pro-
cedure can easily be automated.

If the final goal is to derive parameters for another
more commonly used soil model, it will usually be be-
neficial to derive functional relationships between these
parameters and the Fourier component parameters.

The straightforward procedure to estimate the para-
meters ¢, «, 8, 8, € and the secant modulus 5m is by
numerical integration of Eqs 3a and 3b to first detor-
mine a,, a;, b;, a,, by, a; and by (i.e. by Direct
Fourier Transformation).

From these intermediate results, the parameters can
be calculated from:
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2 2
Yo = al+bl ’

o =\/af+b§/ at+b?, 8
g = \Ja32+b§ /Vaf«*bf, £

By restricting the phase angles § and ¢ to the range
(90° - 0° and 0° - 90°), o~ and B-parameters with
negative values are found where the tan-function deter-
mines phase angles in the range (90° - 180° and -90° -
-180°). When ¢, a, §, 8, &, 7, and 7, are determined
for the data, v, and v, and thus the secant mod-
ulus can be calculated from Eq. 15.

For noisy data, there are better procedures to esti-
mate the parameters than the direct Fourier transforma-
tion. Procedures based on least square fit or such as
the Pisarenko harmonic decomposition algorithms, may
give far more stable estimates (Ref. 2).

Digitally filtering the data before parameter determi-
nation may improve the results. However, extreme
care must be taken to avoid introducing phase errors
due to the filtering. Phase shift between stress and
strain can easily be avoided by subjecting both signals
to exactly the same filter. Relative phase shift, i.e.
time lag, or amplitude distortion between the first, 2nd
and 3rd harmonic component of the strain signal can
be avoided only by using a high quality filter with no
phase or amplitude distortion up to three times the ex-
citation frequency.

To avoid frequency leakage and thus inaccurrate
estimates of the parameters, it is essential that the inte-
gration of Eq. 3 be made over an exact number of
complete excitation load cycles. Therefore the inte-
gration range can be set only after the excitation fre-
quency f, is determined. The integration time range is

T = nif, (18)

where n is an integer number.

For this reason it will usually not be feasible to use
Fast Fourier Transform (FFT) algorithms for the para-
meter estimation. This is because the FFT algorithm
puts restrictions (e.g. 2") on the number of data points
and thus the integration time to be used.

It is also important that the excitation has been
purely sinusoidal. However, there are possibilities to
correct data from tests with non-sinusoidal excitation,
as long as the excitation is regular and well defined.

¢ = tan(a,/b))

tan (a,/by) -26 (17

n

tan (a,/b;) - 3¢

6 TEST ON SYNTHETIC DATA

The ability of the above model was tested on synthetic
data from a multi-surface kinematic hardening soil
model.



The model was run in harmonic stress controlled
conditions: 7(t) = 7 -cos bt.

The resulting (t) ~ time history, together with 7(t)
were processed by the procedures described in Sec-
tion 5 to obtaine the non-linearity parameters, ¢, «a, 8,
B and e. Tests were done at nine shear strian levels
ranging from 104% to 1.0%.

Figure 3 plots the determined a, f8, ¢, = ¢, ¢, =
(2¢ + §), and ¢5 = (3¢ + &) versus the cyclic shear
strain amplitude, 7.y, in a logarithmic scale. For
strains below 3:102%, o and 8 = 0 and the model be-
haves virtually linearly. At higher strains the S-factor
increases significantly while « remains about constant
and is very close to 0. To illustrate the extent to
which Eq. 15 is able to reproduce the stress-strain
hysteresis loops of the kinematic hardening soil model,
and to see the deviation due to the truncation of the
Fourier series of Eq. 2, to the first three terms, Fig. 4
presents a comparison for stress controlled conditions.

The two curves in the figure present results for
v = 3-10'%. The figure presents both time histories
of stress and strain and strain plotted versus stress in
hysteresis loops.

The hysteresis loop shown with solide line repres-
ents the behaviour of the kinematic hardening soil
model. The dotted loop represents the best fit
"Fourier component" model (Eq. 15). The parameters
for the "Fourier model” are tabulated to the right in
the figure. The values correspond to those presented
in Fig. 3.

Minor deviations are visible near the end points of
the hysteresis loop. Even for this high non-linearity,
the deviation between the two loops never exceeds 3%.
The deviations are due to the sharp breaks from
loading to unloding in the kinematic hardening model.
To represent such sharp breaks frequencies higher than
three times the excitation frequency are needed, but
real soils never have such sharp breaks.

For all practical purposes, all information on the
non-linearity and shape of the hysteresis loops pro-
duced by the kinematic hardening soil model is con-
tained in the five parmeters, ¢, a, 8, 8 and ¢, and the
formulation in Eq. 15.

7 TEST ON NOISY LABORATORY DATA

The Fourier component model was tested out on lab-
oratory data from two cyclic triaxial tests on lightly
overconsolidated clay.

Each test contained five consecutive "storms”, each
with six load levels in ascending order. The first one
having a cyclic load level of 1/10 of the last one.

The test had a nearly constant average shear stress.
At the highest load level of each storm (last level in
storm) the shear stress cycled between approximately
0 and 0.8 s,, where s, is the undrained shear strength
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Figure 3. Kinematic hardening model. Damping and
parameters.
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Figure 4. Fit to kinematic hardening model.
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Figure 5. Example on noisy, low strain laboratory data.

from monotonic loading.

Each "storm" contained a total of 240 load cycles.
The test covered the cyclic shear strain range from
3-10°% to 0.75%.

Especially at the lowest strain levels, the signals had

a high noise level, as illustrated in Fig. 5.
Data parcels containing five load cycles taken from the
beginning and end of each load level from each of the
storms, were filtered and processed by the above pro-
cedures to determine the "non-linearity" parameters as
described in Section 5. For the filtering a "Blanck-
man-lucky guess filter" with cut off frequency of 6 x
excitation frequency was used (Ref. 3).

Figure 6 presents the resulting values of ¢, = ¢, «,
¢, = (2¢ + §), Band ¢ = (3¢ + &) plotted versus
cyclic shear strain in a logarithmic scale. The circular
symbols are data from the laboratory results. The
solide curves are smooth best fit lines through the data.

The damping is mainly controlled by ¢, and can be
approximated by: D = tan ¢/2, ref. Eqs 9 and 12.

Asseen D = 2% for v, = 10°% and increases to
about = 22% fory = 1%.
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Figure 6. Non-linearity parameters from laboratory data.
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Figure 7. Recorded and regenerated hysteresis loops.

For shear-strains less than yo, ~ 5:102%, o = 8 =
0 and the soil behaves nearly linearly.. For v, >
5-102%, the non-symmetry through o dominates. 8 is
small for the entire strain range.

The figure shows scatter in the data, especially at
low strains. However, the data seem consistent and
conclusive for ¢, o and 8. As expected ¢, and ¢, are
undetermined in the range where « and § = 0.
Above y = 102% also ¢, and ¢, give conclusive
values.

A direct comparison is made between the hystresis
loops reproduced by the Fourier component soil
model, Eq. 15, and directly recorded loops. The com-
parisons are made at strain levels when the noise in the
directly recorded data are not disturbing.

The two hysteresis loops chosen for the comparison
have cyclic strain amplitudes of 0.28 and 0.69% re-
spectively. From the smooth, best fit lines in Fig. 6,
parameters, ¢, a, &, B and & are picked out at the
same strain levels, and synthetic hysteresis loops are
constructed from Eq. 15.

Figure 7 plots the results. The loops drawn by

solid lines are the synthetic ones from the Fourier
Component model. The data points plotted with cir-
cular symbols represent smoothed values of the direct-
ly recorded hysteresis loops.

The Fourier component soil model gives an excell-
ent average representation of the recorded data points
despite the poor signal quality.

CONCLUSIONS

Non-linear, hysteretic soil response to harmonic, cyclic
loading, may be represented with sufficient accuracy
for any engineering application by three Fourier com-
ponents. This leads to a hysteretic soil model defined
by six parameters which uniquely quantify the secant

_ shear modulus, the hysteretic damping and the shape

of the hysteresis loop.

The development of these six parameters throughout
a test can easily be determined from recorded stress
and strain time histories from cyclic laboratory tests.
Stable and reliable estimates of the parameters can be
obtained even if the data are disturbed by noise.

It is proposed that the parameters and the method of
determination present an efficient and automatic proce-
dure to quantify soil non-linearity in cyclic loading.
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