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Hybrid non-linear response of soft soils
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ABSTRACT: Two techniques are used for the computation of the one-dimensional seismic response

of stratified media with non-linear behavior.
technique and step by step time integration.

One of them makes use of a finite-difference
This allows to follow stress-strain paths pre-

scribed by backbone curves and load-reload criteria. Under the assumpions imposed by these

behavior models. its solution is regorous.

The other technique is the linear equiwalent

method, which is based on the adjustment of viscoelastic dynamic properties to make them com-
patible with the strain level. Comparisons between both methods show the advantages of the
linear equivalence to describe the most important features of the response in layered media
with non-linear properties. Hybrid modeling is also considered to evaluate the non linear
response of a soft soil layer overlying a 2D viscoelastic valley. Results show that lateral
irregularities can modify the non-linear response in both, amplitude and frecuency content.

1 INTRODUCTION

In soil mechanics, earthquake engineering and
seismology it is of interest to know the
seismic response of soil deposits when the
materials behave non-linearly. For most
soils, the stress-strain relationships can
undergo strong non-linear behavior under mod-
erate shaking. Many authors have pointed out
that dynamic behavior of soils, outside the
elastic range, is extremely complicated. How-
ever, it has been observed that this phenom-
enon is, in practice, controlled by the
variations of internal damping and stiffness
modulus in terms of strain. This explains the
success of the linear equivalent method (Seed
& Idriss, 1969). It is very simple and effi-
cient as it captures the essential physics of
the problem. It requires the adjustment of
these two relevant mechanical parameters
(stiffness modulus and damping) to make them
consistent with the strain level.

In this work, we implement the Seed and
Idriss linear equivalent method in the frame-
work of the Thompson-Haskell propagators for
layered media (Aki & Richards, 13880). To
calibrate our exercise we established a ref-
erence that we will regard as “exact". We
used a finite-difference scheme in time and
space in which the backbone stress-strain
curves and the load-reload criteria are
specified. We studied the one-dimensional
response of some soil layer configurations
and the results, obtained with both, the lin-
ear equivalent method and the rigorous one
are presented. In most cases, a very good
agreement is achieved both in acceleration

time series and frequency spectra.

Finally, a hybrid approach is proposed to
evaluate the non-linear response of a soft
soil horizontal layers overlying a 2D visco-
elastic valley. The approximation is better
when the impedance contrast is large. This
hybrid scheme is applied to study in a sim-
plified way the combined effects of rela-
tively large-scale lateral irregularities and
the non-linear response of the uppermost,
softer layers.

2 NON-LINEARITY OF SOILS

Shear stiffness modulus and internal damping
have great variations due to non-linearity.
The complexity of such variations are usually
simplified in order to take them into account
for numerical modeling. Typically, prescribed
stress-strain paths are used to guide the non
- linear behavior in terms of backbone curves
and load-reload criteria, which mimic the
real behavior of soils under large strain.
Several backbone curve models have been pro-
posed. All of them reflect the behavior dur-
ing initial load, from elastic range up to
the failure. The most important are the ex-~
perimental model of Seed & Idriss (1870) and
the analytical ones of Hardin-Drnevich (1972)
and Ramberg-Osgood (Richart, 1975). The load-
ing-reloading criteria account for plasticity
effects during dynamic load. Stress-strain
paths, which must be follow after loading in-
version, are described with them. The most
diffused criteria are due to Masing, Pyke and
Iwan. According to Chen (1981), the last one
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is better to represent the non-linear behav-
ior of the shear modulus and internal damp-
ing, since these criteria includes yielding
elements which simulate the material’s plas-
ticity after certain applied stress level.
This allows to reproduce significant stiff-
ness reductions which limit maximum stress.
Figure 1 shows the stress-strain paths ob-
tained with these criteria.
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Figure 1. Reload paths by using Masing, Pyke

and Iwan criterion. T = stress, ¥ = strain,

¥ = reference strain, p = stiffness modulus.
"

It is clear that to know the values of
shear stiffness at any time, or at any strain
level, is necessary to follow the stress-
strain paths. To this end, we used a step-by-
step time integration scheme. Note that in-
ternal damping due to plasticity is taken
into account, automatically, in the equations
of motion.

An alternative way is to express equivalent
information in terms of effective stiffness
and total damping, that is to say, the damp-
ing due to viscosity of soil and the one due
to its plastic behavior. In this representa-
tion it is assumed that the values are the
average for a harmonic input motion. They are
obtained from the backbone curve and load-
reload criteria. In these plots, the slope of
the secant to the origin at any strain repre-
sents the effective stiffness as well as the
area into the hysteretic cycles is propor-
tional to the total damping. Figure 2 shows
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Figure 2. Stiffness-strain and damping-strain
relations for Hardin-Drnevich backbone curve
and Masing load-reload criterion.

shear stiffness modulus and effective damping
versus strain for the Hardin-Drnevich back-
bone curve and Masing load-reload criterion.
Note that for this case, linear range cover
up to .01 in a reference strain scale (y/7r).
In the linear equivalent method this informa-
tion is used to adjust dynamic properties to
the reached strain level in an iterative pro-
cedure on viscoelastic linear models.

3 ONE-DIMENSIONAL MODEL

In most cases, the local site conditions can
be well described using simple one-dimen-
sional layered media. Because of its simplic-
ity, this assumption allows to include ef-
fects related to dynamic soil properties, in
particular, non-linearity. We use the one-
dimensional shear wave model to study the non
- linear effects in the soil response. Let us
assume horizontal layered media with infinite
lateral extension, overlying an elastic half-
space. Each layer is homogeneous and iso-
tropic. On the other hand, the excitation
will be given by the vertical incidence of S
waves. Two schemes of solution are applied:
finite differences with step-by-step time
integration and the linear equivalent method.

3.1 Finite-difference method

This method requires vertical discreteness of
the medium which can be shown to be equiva-
lent to a lumped-mass system. The size of
discreteness depends on the minimum wave
length of interest. The equations admit the
next matrix expression

MX+CX+KX=P (1)

where M, € and K are the mass, damping and
stiffness matrices of the lumped-mass system,
respectively. X 1s the displacement vector. X
and X are their first and second derivatives
with respect to time. Finally, P is the vec-
tor which contains the input motion. This
equation system can be solved by step-by-step
time integration. In this work, the Newmark's
B-method (Newmark, 1959) is used. It consists
in the evaluation of the the velocity and
displacement, at the time i+1, in terms of
these values at time i and accelerations at
the times 1 and i+1. So, it is possible to
express equation 1 at the time i+1

+ KX =P (2)
1+1 i+1 i+l 1+1

and it can be written as

* L]
M X =P (3)
1 141 1,141
L ]
where M1 is the effective mass matrix, which
contents the constant values of mass and
damping and the values of non-linear stiff-
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ness at the time i. It is assumed as a con-
stant between the times i and i+1, and it's
found by using stress-strain prescribed
paths. Pi,i+1 is the independent vector which
contents all forces related with the motion
at the time 1 and the input motion at the
time i+1. Solution yields accelerations at
the time i+1 and at each lumped-mass.

3.2 Linear equivalent method

The 1D response of a viscoelastic layered
medium is computed by means of Thompson-
Haskell method. An iterative procedure ac-
cording to the linear equivalence is used.
The method is based on a matrix formulation
which permits to know the displacements and
stresses at any depth in terms of a propa-
gation matrix, which contains dynamic prop-
erties of the medium, and input motion spec-
trum, as it 1s shown in the following expres-
sions

v (0) =B S(w (4)
v (21] =R v (0) (5)
Tyz(zi) =R, v(0) (8)

where v(0) is the superficial displacement,
v(z1) and tyz(z1) are the displacement and
stress at the depth zi, respectively, S(w) is
the Fourier spectrum of the input displace-
ment, Ri1 and R21 are components of the ef-
fective propagation matrix, from the top to
the depth zi, and Bi1 is a component of the
matrix which involves the products of propa-
gator matrices from top to bottom of the
stratigraphy and terms related to the radia-
tion towards the half-space. For viscoelas-
tic solids hysteretic damping in the stress-
strain relation is assumed:

= --————.-——1 T (7)

v
Y2 u(1+2iD) 7*

where D represents an internal damping fac-
tor and p is the stiffness modulus. For small
values, equation 7 yields elliptic trajec-
tories in the stress-strain plane which re-
mind non-linear typical pat- terns. Figure 3
suggests that it's possible to find stiffness
moduli and internal damping factors of an
equivalent viscoelastic solid in order to
approximately simulate non-linear behavior.

From equations 4~7 it is possible to write

R, (z,,0,0) B:(w) $(w)

7y (w) = ! 5

yz .
i u, (14240 )
! ! (8)

which allows to compute the strain Fourier
spectrum at any depth in terms of the materi-

al properties and input spectrum. From the
corresponding root-mean-square value of the
strain spectra at each control depth, which
can be computed by using random vibration
theory (Cartwrite & Longuett-Higgins, 1956),
non-linear equivalence is used to adjust
stiffness modulus and damping factor by means
of relations such as the ones showed in
figure 2.
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Figure 3. Stress-strain paths for two differ-
ent viscoelastic solids.

4 NUMERICAL TESTING OF 1D RESULTS

In order to compare results from both tech-
niques, the seismic response of a single soft
layer was studied. Shear wave velocity and2
failure strength are 72 m/s and 10~ dyn/cm
respectively. For the elastic half-space,
shear wave velocity is 200 m/s. Density con-
trast is neglected. Thickness is assumed as
h = 18, 36 and 54 m. Therefore, respective
site periods are TH = 1, 2 and 3 s. Input mo-
tion corresponds to an earthquake recorded at
hill zone in Mexico City (Ms=6.9 with peak
acceleration amax = 15 cm/s“). Its amplitude
was scaled to study different strain levels
by the factors F = 0.25, 0.5, 1.0, 2.0, 4.0,
8.0. Figure 4 shows acceleration time histo-
ries at the surface of the layer with period
equal to 1 s for scale factors F = 1.0, 2.0,
4.0 and 8.0 . Figures 5 and 6 show the same
results for layers with periods T = 2 and 3,
respectively. Note that frequency content
varies and relative reductions of amplitude
increases when the scale factor grows. Figure
7 shows spectral ratios and transfer func-
tions, obtained from finite-difference method
and from the linear equivalent one, respec-
tively, for studied site periods and scale
input factors. Note that both methods reduce
the response in almost the same amount. Be-
sides, they predict a shifting of the domi-
nant frequency to lower values. The differ-
ences in these plots appear for frequencles
greater than the fundamental one. Fortunate-
ly, for most practical purposes, seismic re-
sponse is strongly controlled by the dominant
frequency where both methods coincide.
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Figure 4. Computed accelerations at the sur-
face of 1 s period site for several input

factors. Both discussed method were applied.
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Figure 5. Computed accelerations at the sur-
face of 2 s period site for several input

factors. Both discussed method were applied.
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Figure 6. Computed'accelerations at the sur-
face of 3 s period site for several input
factors. Both discussed method were applied.
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Figure 7. Spectral ratios and transfer func-
tions for the studied sites and for input
factors F = 1/4, 1/2, 1, 2, 4 and 8,

S HYBRID NON-LINEAR RESPONSE

In order to study the influence of large
scale lateral irregularities on the non-lin-
ear seismic response of soft soils, we use a
hybrid model which consist in a 2D viscoelas-
tic valley underlaying a non-linear strati-
fied medium. This kind of modeling was
presented in a previous work (Sanchez-Sesma
et al, 1988). The purpose was to study the 2D
effects in the linear seismic response of
soft soils. They used a 2D model which is
based on the grouping of rays on bands where
one-dimensional wave propagation occurs, and
solution is obtained by superposing folded
bands and neglecting diffraction. Authors
found that this can be done for a class of
symmetric triangular valleys which dip angle
is of the form 6 n/2N, N = 1,3,5... Its
simplicity allows to consider approximately
the effects of deformable basin boundaries,
arbitrary angles of incident SH waves and
realistic waveforms with very low computa-
tional effort.

As in that work, we use the output motion
at any site on the surface of the valley as
input to the non-linear layered medium. The
main assumption is to neglect the interaction
between the uppermost non-linear stratigraphy
and the viscoelastic alluvial valley. This is
a reasonable approximation if the impedance
contrast between both media is sufficiently
high. Since under this conditions, propaga-
tion wave through soft layers is nearly ver-
tical. On the other hand, radiation to the
higher stiffness medium is very low. In our
work, linear equivalent method is applied to
account for non-linearity of the superficial
layers.



6 NUMERICAL RESULTS

Numerical example was performed in order to
compare different 2D effects on the non-lin-
ear seismic response of superficial soft
soils. The model is depicted in figure 8 and
it consists of a viscoelastic triangular al-
luvial valley embedded in an elastic half-
space. Shear wave velocities, mass densities
and quality factors are indicated in the fig-
ure for both, valley and half-space. Upper-
most structure is the same along the surface
of the valley and it is composed by four
layers with the following properties given
from the top to the bottom:

thick- shear wave mass damping failure
ness velocity densitg factor strength
(m) (m/s) (gr/cm™) (dyn/cm”)
7 100 1.5 0.05 linears
15 40 1.2 0.05 1.75x10
18 70 1.2 0.05 5.30x10
18 180 1.5 0.05 linear
4321
e P LY Mo ineer stranignenly
TR = 400 m/s L
B = 2000 m/s : fbg g/cm héx m
p =2.5 g/cm :l
| rTTTTTTTT T :"
s/l ————2250 . m——r
a0t

Figure 8. Viscoelastic valley underlying a
non-linear stratigraphy. Excitation is given
by the oblique incidence of SH waves. Results
are computed at sites 1, 2, 3 and 4.

For 20 degrees incidence angle, we scaled a
record of the 1985 Michoacan earthquake at
hill zone site in Mexico city (Ms = 8.1, peak
acceleration amax = 28 cm/s”) by several fac-
tors in order to reach different non-linear
strain levels in the superficial response.
Figures 9-11 show acceleration time series
computed at the sites indicated in figure 8
for scale factors F = 1/2, 1 and 2, respec~-
tively. As it is expected, non-linear fea-
tures are clearer in the response as the
scale factor increases. However, it is also
clear that frequency content has strong de-
pendency on the space location. It is due to
the 2D effects such as focusing and trapping
of energy, since at any site in the surface
uppermost layers are the same. For compari-
son, figures 12 and 13 show transfer func-
tions at sites 1 and 4, respectively. Linear
case and the ones related to the scale fac-
tors F = 1/8, 1/4, 1/2, 1, 2, 4 are display-
ed. In general, linear transfer function has
the largest amplitudes, as in the 1D model
alone. However, we found that for sites close
to the center of the valley, like station 1,
the fundanental frequency can be efficiently
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Figure 9. Computed accelerations at sites 1
2, 3 and 4 for input factor F = 1/2.
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Figure 10. Computed accelerations at sites 1
2, 3 and 4 for input factor F = 1.
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Figure 11. Computed accelerations at sites 1
2, 3 and 4 for input factor F = 2.

excited by non-linearity. This allows to say
that largescale lateral irregularities can
significantly affect the surface non- linear
response.
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Figure 12. Transfer functions at site 1 for
the linear case (a), and for input factor

F=1/8 (b), 1/4 (c), 1/2 (d), 1 (e), 2 (f)
and 4 (g).
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Figure 13. Transfer functions at site 4 for
the linear case (a), and for input factor
F=1/8 (b), 174 (c), 1/2 (d), 1 (e), 2 (f)
and 4 (g).

7 CONCLUSIONS

One-dimensional non-linear seismic response
has been investigated with finite differences
in space and time domains and with the linear
equivalent method. The first one is assumed
as rigorous, since it allows to follow pre-
scribed non-linear stress-strain trajecto-
ries. The second approach is based on the ad-
Jjustment of dynamic properties to represent
non-linear behavior of an equivalent visco-
elastic solid. Both methods confirm that
principal features of non-linear seismic re-
sponse are: a) relative reduction of response
amplitudes with respect to the linear case
and b) shift of the spectral ordinates to
lower frequencies, that is to say, increase
of the fundamental site period. The results
also show that the linear equivalent method
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provides very good results with a relatively
minor computational cost. Certainly, this is
well known.

We presented a hybrid scheme to approxi-
mately consider the combination of large-
scale 2D site effects with localized non-lin-
ear response of the uppermost softer layers.
To illustrate this we used a simple triangu-
lar valley which allows to obtain results
with reduced computer resources. From syn-
thetic acceleration time series of the stud-
ied model we pointed out non-linear features
in the response in terms of a scaling input
factor. We found that frequency content is
also strongly dependent on the space loca-
tion. In any event, both aspects of the prob-
lem, non-linearity and 2D effects are mixed.
By using linear equivalent method in a full
wave formulation, the hybrid approach can be
followed in a more rigorous way.
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