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Comparison of seismic motions in two- and three-dimensional sedimentary basins
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ABSTRACT: Seismic motion in two- and three-dimensional(2- and 3-D) irregularly layered sedimentary
basins are computed by the Aki-Larner method and are compared to examine the effects of the number
of dimensions and interface shape of basins. Input motions are vertically incident, plane S waves and two
sedimentary basin models are prepared: one with a cosine-shaped basin-bedrock interface and the other with
a trapezoid-shaped interface. Seismic motion in the 3-D basins is larger in amplitude and longer in duration
than that in the corresponding 2-D basin. In particular, these features are much clearer in the wavefield
of the trapezoid basin than in that of the cosine basin. Furthermore, the waveforms in the 3-D trapezoid
model shows a strong spatial variation due to the interference of surface waves generated efficiently at the

periphery.

1 INTRODUCTION

The considerable earthquake damage to Mexico city
by the 1985 Mexicican earthquake reconfirmed the
strong effect of surface geology on seismic motion.
Many investigators have tried to reproduce seismic
motion recorded in sedimentary basins, but achieved
only partial success(Kudo, 1978; Horike, 1988; Vi-
dale and Helmberger, 1988; Yamamoto et al., 1988;
Yamanaka et al., 1989; Sasatani, 1990; Sato and
Hasegawa, 1990). In these studies, the computed
seismic motion was smaller in amplitude and shorter
in duration than the recorded seismic motion. One
cause of this discrepancy between the recorded and
computed seismic motion is that the 2-D modeling
does not reflect the actual 3-D subsurface structures
of sedimentary basins. Therefore, it is meaningful to
examine the difference between seismic motion in 3-
D and 2-D sedimentary basins.

Many numerical methods have been developed for
computation of seismic motion in irregularly lay-
ered structures: the wavefunction expansion method
(e.g., Trifunac, 1971), the finite difference method
(e.g., Boore, 1972), the Aki-Larner method (Aki
and Larner, 1970), the finite element method (e.g.,
Lysmer and Drake, 1971), the boundary integral
method (e.g., Wong and Jennings, 1975), the dis-
crete wavenumber boundary element method (e.g.,

Bouchon, 1985), and the gaussian beam method (Cer-

veny, 1983). In principle, the methods listed above
can be be extended for the computation of seismic
motion in 3-D irregularly layered structures. How-
ever, because these methods have inherent weak-
nesses and strengths, we must choose the method

depending on the configuration of the problems.

Bard and Bouchon (1985) classified sedimentary
basin into two groups (shallow and deep) according
to the ratio of the width to the maximum depth and
showed that different wave phenomena occur in the
two types of basins. Following their classification,
most actual sedimentary basins are shallow ones.
For the computation of seismic motion in shallow
basins the Aki-Larner method (the AL method) is
superior. Therefore, we employ the AL method for
the numerical simulations in this study.

In this article, we first describe the extension of
the AL method to the computation of seismic mo-
tion in 3-D sedimentary basins. Then, we compare
seismic motion in 3-D and 2-D basins to examine the
effect of the number of dimensions on seismic mo-
tion. Moreover, we compare seismic motion in two
3-D basin models to examine the effect of the inter-
face shape. Finally, we draw several conclusions.

2 COMPUTATION METHOD

We outline the computation method. A detaied de- .
scription can be found in Horike et al.(1990). Our
problem is to calculate seismic motion on a flat {ree
surface produced by the incidences of plane S waves.
The configuration of the problem is shown in Fig. 1.
The subsurface structure consists of a half space and
a single overlying layer.

In the 3-D elastic wavefield, the displacement is
represented as

u(z)y) z) =V¢+V x V X(O, 0, ¢)+V(O, 0, X): (1)
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Fig. 1. Configuration of the problem. Parameters
# and ¢ denote the incident and azimuthal angles
of the plane S wave. The medium consists of a sed-
imentary layer and a half space, separeted by an
irregular surface.

where ¢, ¢, and x are P-, SV-, and SH-wave dis-
placement potentials, respectively. Assuming spa-
tial periodicity of the irregular interface with inter-
val L, and L, in the two horizontal directions, the
three potentals ¢, ¥1, and x; in the layer are ap-
proximately expressed by the finite sum over two
horizontal wavenumbers as

¢ = Z E (Alme-"P (ir12) +A,,,,ezp(—w1z))
l==Ng m==N,
erp (i(k.ﬂz + kymy))
N, Ny
hi= 3 X (Bltnezp(i')'lz) + B,;e:tp(—i'ylz))
I==N: m=—N,
ezp (i(kzz + kymy)) (2
Ne Ny
xa= 3 X (Cf.',,ezp(ivlz) + Cezp(—imz))
I=—Ng m==N,

ezp (i(kzz + kymy)),
where k,; = 27l/L, + k2 and kym = 27m/L, + k3,
and v; = (w?/a? — k3, — lc2 )Y and v = ’/rx’—
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k%, —k2 )12, Symbols o and B, are P and S velocity
in theliayer Integers i and m are respectively in the
ranges of =N, <1 < N; and =N, < m < N, where
k2 and lc° are horizontal wavenumbers of incident
plane wave

In the half space, three displacement potentials
&q, Y, and x; are respectively expressed as

N. Ny
= Y, 3. Atezp(ivaz)ezp(i(kuz + kymy))
I==N; m=~Ny

+¢o
Nx NV

= Y Y Blezp(imz)ezp (i(kuz + kymy))
I=—~Ng; m==N,
(3)

+ Yo

+ezp(ivaz)ezp (i(kaz + kymy)),

x:=§j Z

1==N; m=—N,
+Xo
where va = (W?/oB3—k%—k2,)/? and v, = (/B3 -
— k2,)'/2. For the mc1dent plane S waves, the
potentxa.ls are
$o=0

Yo = Eoexp (i(k2z + ky — 102))
Xo = Foezp (i(klz + k,,y 12)),

where k2 = wsiné cos /B, k y wsinfsin @/Ba,
and 9¢ = wcos§/B,. Employing the stress-free con-
dition and the stress and displacement continuity on
the interface, we obtain simultaneous linear equa-
tions for the coefficients A*, B¥, C*, D*, E*, and
F*. Solving these equations, and substituting thses
coefficients into Eq. (2), we obtain the three dis-
placement potentials. Moreover, substituting these

O

‘potentials into Eq. (1) and setting z=0, we get the

displacement on the free surface at frequencies (fre-
quency responses). Seismic motion in the time do-
main is obtained by taking the reverse Fourier trans-
form of the frequency responses.

3. COMPARISON

Two 3-D basin models are prepared. One has a
cosine-shaped interface between the sediment and
baserock (Fig. 2) and the other has a trapezoid-
shaped interface (Fig. 3). The former has a smoothly
curved interface, while the latter has a sharply curved
one. The lengths of the long and short axes are the
same for the two basins: 13 km and 6 km, respec-
tively. The maximum depths are also the same: 0.5
km. The P- and S- wave velocities, densities, and
quality factors are shown in Table 1.

For the comparison of seismic motion in 2-D and
3-D basins, we prepared 2-D basin models useing the
cross-sections of the 3-D basin models just beneath
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Fig. 2. 3-D cosine model. Lines X1 to X4 and Lines
Y1 to Y4 denote the lines on which seismic motion
are computed. The solid- and dashed-line arrows
respectively denote the directions of the incidence
and polarity.

Table 1. List of medium parameters

[ .
Wodent

Layer P velocity S velocity Density @, Q,
(km/s)  (km/s) (g/cm?)

1 2.0 0.7 1.9 200 50

2 5.2 2.5 2.4 1000 300

the line Y1 (Fig. 2 and Fig. 3).

The input motions are vertically incident plane S
waves polarized in the X direction. The waveform
of the input motions in the time domain is a Ricker
wavelet which is expressed as \/7/2(a—~0.5)ezp(—a),
where a = |7r (t = to)/t,,)zl. The characteristic pe-
riod t, is 2.8s, which is equal to a fundamental pre-
dominant period.

3.1 Effect of the number of basin dimensions
3.1.1 Cosine-shaped basin

Figure 4 shows the X-component seismic motion on
lines Y1, Y2, Y3, and Y4 which are denoted in Fig.
2. We readily find three clear phases in it. Phase
A is an amplified S wave and phases B1 and B2 are
the surface waves generated at the basin edges.

Figure 5 shows the X-component seismic motion
in the 2-D cosine model. We compare this wavefield
with the corresponding wavefield of the 3-D model
(on Line Y1 in Fig.3) from the standpoint of wave-
type, amplitude and duration.

The wave types contained in the 2-D wavefield
are the same as those of the 3-D wavefield: ampli-
fied S wave (phase a), two surface waves (phases bl
and b2). We next compare the amplitude and dura-
tion of the main portion which consists of the three
phases. The wavefield of the 3-D basin around the
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Fig. 3 3-D trapezoid model. The figure is the same
as the figure 2 except for the shape of the basin-
bedrock interface.

basin center (at sites Y= 10.5 km, 9.9 km, and 9.3
km on line Y1) is clearly larger in amplitude and
longer in duration than that of the 2-D basin. This
difference is mainly caused by marked excitation of
secondary surface waves in the 3-D basin: surface
waves in the 3-D basin are excited by the interface
surface, whereas those in the 2-D basin are excited
by the interface line. The above results show that
the 3-D subsurface structure must be considered
to obtain quantitative agreement between recorded
and simulated seismic motion.

3.1.2 Trapezoid-shaped basin

Figure 6 shows the Y-component seismic motion on
lines X1 to X4 in Fig. 3. We cannot find clear phases
in this wavefield, because the waveforms strongly
vary in space. For example, the seismic motion on
lines X1 and X2, which are only 1.5 km apart, is
quite different in amplitude, duration, and even fre-
quency contents. This spatial variation is caused by
the interference of the surface waves generated at
the periphery of the basin and propagated in the X
and Y directions.

We compare seismic motion on line Y1 with the
corresponding seismic motion in the 2-D basin (Fig.
7). The waveforms of the 3-D wavefield are up to
two times greater in amplitude and longer in du-
ration than those of the 2-D wavefield. This dif-
ference is explained as follows: the interface of the
3-D basin excites the two surface waves propagating
in the X and Y directions, whereas that of the 2-D
basin excites the surface wave propagating only in
the X direction. This result again shows that 3-D
sub-surface structure must be considered to obtain
a better agreement between the recorded and simu-
lated seismic motion.
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Fig. 4. X-component seismic motion on lines Y1 to Y4 in the cosine model.
The lowermost trace is the incident Ricker wavelet.
3.2 Effect of the interface shape
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Fig. 5. Seismic motion in the 2-D cosine model.
This wavefield corresponds to that on line Y1 in Fig.
4.
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The second conclusion suggests the need of survey
methods that unveil precise interface shapes.
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