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Spectral estimation of bivariate non-stationary processes
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ABSTRACT: A new technique is developed for the estimation of auto-spectra and cross-spectra of
multivariate non-stationary random processes which are used as models of earthquake accelerograms. The
spectra are estimated by considering the statistical moments of the energy of linear systems (filters) excited

by the stochastic seismic processes.

The usefulness of the proposed technique is demonstrated by a number of applications involving both
simulated and measured data. For the simulated data, the estimated values of the spectral parameters

are found in good agreement with the theoretical ones.

1 Introduction

Stochastic modeling of strong ground accelerograms
has already been established as a useful option
for predicting and mitigating earthquake related
hazards. Essential to this modeling approach, is
the availability of reliable models which can be
used to simulate artificial earthquakes involved in
analytical studies. A large body of research already
exists which deals with extracting such information
from measured earthquake records. Most of this
research, however, treats the seismic accelerograms
as univariate stationary processes.  Multivariate
models of earthquakes have been treated with the
simplifying assumption of the various components
being uncorrelated. The nonstationary aspect, on the
other hand, has received a great deal of attention
from various researchers. = The main focus has
been the estimation of time dependent envelope
functions used in modeling evolutionary processes.
Typically, a mathematical form of this envelope
has to be adopted prior to its identification. A
technique is described herein which allows for the
estimation of nonstationary spectral density functions
without having to assume a particular form for the
envelope function. It is an improvement of the
technique in Spanos et.al (1987). Further, approaches
for estimating quantities related to multivariate
processes, such as cross-spectra and quad-spectra are
presented.

2 Estimation of Evolutionary

Auto-Spectra

Consider the single-degree-of-freedom oscillator de-
scribed by the following equation of motion

#+ 2wot + wiz = f(1), (1)

where ( € 1 and wp are its damping ratio and natural
frequency, respectively. The symbol f(t) stands for
a nonstationary excitation process. Further, let z;
denote z, and z; denote . Then, it can be shown
that oscillator response can be expressed as

1
z(1) = /o hi(t = ) f(r)dr @

where h; are the impulse response functions of the
system. They are given by the equations,

hi(t) = (1/wi)e~¢“°tsinwt (3)

and P

ha(t) = ]
where w; = /1 — (%wp denotes the damped natural
frequency of the system.

The nonstationary feature of the excitation process
f(t) is accounted for by introducing a deterministic
modulating function A(t,w) (Priestley, 1973) in the
form

hi(t) =~ e~¢wo!coswyt , (4)

flt) = /_:A(t,u)e-"de(w), ()
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where Z(w) is a process with independent increments.
Since f(t) is a real function, its spectral density func-
tion is an even function of frequency, and therefore
the following relation holds for the envelope function

Alt,w) = A™(t, -w). (6)

Furthermore, it can be shown that the time depen-
dent spectral density function of the excitation pro-
cess f(t) is given by the equation

(M

where S{w) is a time-independent function of fre-
quency. Using equation (2) in conjunction with equa-
tions (5) and (7) gives,

S(t,w) = At w)PS(w)

<@Wn> = [ S@E GG ©)
where

Atw) = /0 ()AL = rw)eTdr ()

Performing integration by parts on the last integral,
and assuming that A(0,w) is equal to 0, yields

Hi(t,w) = —A(t,u)Hj(O.w)+L‘A(t-—r,u)Hj(r,w)df,
(10)

Hi(rw) = / hy(r)e=dr . (1)

Assuming that most of the contribution to the inte-
gral in equation (8) is concentrated around wq, and af-
ter substantial algebraic manipulations (Tein, 1992),
the following expression is obtained for the ensemble
mean squared values of the response,

where

25-2 t
<::J?(t)> = Zﬁ(—ﬂ)):)—o——/ |A(L = 7, wo) e~ 2w dr .
wo 0
(12)
Consider the total energy E(t) of the oscillator,
B() = 3320 + 53(0) (13)

Then, because of equation (12) one derives,

1]
<E@)> = rS(wo)/ JA{t — 7,wo)2e~X¥eTdr . (14)
()
The above equation can be rewritten as the following
differential equation,

<E@)> + Awo<E(t)> = mA(l,wo)S(wo) . (15)

This equation has also been derived in Spanos et.al
(1987) relying on the Fokker-Planck equation asso-
ciated with Markovian processes. The evolutionary
spectrum can therefore be estimated by the expres-
sion,

S(t,wo) = A(t,wo)S(wo) = % [<E®> +2wo<E@®)>] .

(16)
The above equation provides an estimate of the evolu-
tionary spectral density function of a process f(t), at
a frequency wp, based on observations of the response
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to this process of a single-degree-of-freedom oscillator
with natural frequency equal to wg. The above pro-
cedure can be repeated for various values of wq, to
sweep the frequency domain with a desired accuracy.
Figure (1) shows a target evolutionary Kanai-Tajimi
spectrum and its estimates. Simulated time histories
corresponding to the target spectral density function
are used as excitation to a lightly damped system.
In addition to the procedure described above, results
corresponding to estimation using only the energy of
the response process, that is E(t) = 0 in equation
(16), are shown. It is seen that the inclusion of the
time derivative of the energy has improves the esti-
mated spectral density functions. It is emphasized
that the estimation procedure based on equation (16)
does not involve modeling the modulating function
A(t,w). Thus it eliminates assumptions regarding
this envelope, which may not be accurate. This is
also true for errors that are usually associated with
the smoothing of the estimated modulating function
A(t,w).

3 Multi-Variate Estimation of Evo-
lutionary Cross-Spectra

3.1 Models for Evolutionary Cross-Spectral
Density Functions
Consider a bivariate process {(X(t),Y())}, in which

each component is a nonstationary random process.
These processes can be represented as

X(t) (17)

/ At w)edZy () |

and

Y (18)

]

/ ¥ Ay (tw)etdzZy (w)

where Zx(w) and Zy(w) are two Gaussian processes
with independent increments satisfying the relation-
ship

<dZx(w)dZy (w)> = Sxy(w)b(w)d(w) .

The cross-covariance function of the two random pro-
cesses can be expressed by the equation,

(19)

<X@Q)Y(@)>

'/m Acz(t, w)A;(t,w)Sxy (w)dw

(20)

]

/ Sxy(t,w)dw .

Note that the cross-spectral density function Sxy (¢, w)
defined here lends itself to a physical interpretation
similar to that of the cross-spectral density function
of a bivariate stationary process, which represents the
average value of the product of the intensity of the
two processes with respect to frequency. However,
in the nonstationary case these intensities are time
dependent, and accordingly, the cross-spectral den-
sity function is also time dependent. In general, the
stationary cross-spectral density function Sxy(w) is
a complex function and has the following properties
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Figure 1 Evolutionary K-T Spectrum

Sxy(-w) = Sxy(w) = Syx(w), (21)
and can therefore be expressed as

Sxy(w) = Cxy(w) - iQxy(w) . (22)

In the above equation, Cxy(w), called the co-spectrum,
is a real-valued even function of w, and Q y y (w),called
the quad-spectrum, is a real-valued odd function of w.

3.2 Approximate Analysis of Evolutionary

Cross-spectral Density Functions
A procedure is now developed for estimating nonsta-
tionary cross-spectral density functions of bivariate
processes. These processes are viewed as the input
to the same lightly damped single-degree-of-freedom
oscillator with responses denoted by z(t) and y(1)
respectively. The expected value of the responses can
be written as

<z;t)ye(t)> = /;‘” Sxy(w)i}j,(t,w)fl;y(t,u)du (23)

where z; and z, denote z and & respectively, while
% and y; denote y and y respectively. Further,

- ' .
Ha(tw) = /oh,(r)A,(t—r,w)e-'wdr (24)

Hiy(tow) = /0' he(r)Ap (L = rw)e™Tdr.  (25)

Similarly to the univariate case, equations (24) and
(25) can be integrated by parts with initial conditions
Az(0,w) = 0 and 4;(0,w) = 0 to obtain,

fi,-,(t.w) = —A,(t,w)Hj(O,w)+A‘ A,(t—-‘nw)l'fj(r,w)dr
(26)

and

I;’;,(t,w) = Ay (t,w)Hi(0,w) + 4/: A;(t—r,w)Hg(r,w)dr.

(21

Using the above equations along with the assumption
that the contribution to the integrals is concentrated
around frequencies twy, leads to the following expres-
sion for the expected value of the cross-product of the
response processes,

L4 (=1)+%
<z;(ye(t)> = Ulo ["_(2—)——!#5“ 3Cxv (wo)

ok 1= (Z1)+F
— H'l‘—'—(Tl—QXY(WO)] x

it
/A,(t—-r,wo)A;(t-—r,wo)e"2<”°’dr. (28)
o

Letting j = k = 1 and j = k = 2 in the above
equation gives

t
<z()y(t)> = fz‘CXY(‘”O)/ Az (t—7,w0)A; (1—7,wo)e~ W dr
o o

(29)
and

]
<Ey(t)> = way(wo)/ Az(t=7,wo) A (1—T,wo)e™ Ko7 d7,
o

(30)
-espectively. As in the uni-variate case, introduce an
mergy like quantity,

Exy(t) = 5 (@3=(0u(0) + 0500) . (D)

Then, a differential equation is obtained for < Exy(t)>.
Specifically,

<Exy(1)> + 2wo<Exy(1)> = 7A.(t,wo)A(t,wo)Coxy (wo)
7Cxy (t,wo) . (32)

The next step involves estimating the quad-spectra.
This can be achieved by letting 7 = 1, ¥ = 2 and
J =2, k=1 respectively in equation (28) to yield

<zyt)> = —<z()y(t)> (33)
= I [ Aut - rwo) A3t = r,wo)e™ X "dr .
wo Jo

Defining the following quantity,



Dxy() = F (0 w(t) - =) . (39)

and substituting equation (33) into the ensemble av-
erage of equation (34) yields,

t
<Dxy()> = 7 Qxy (wo) / A (=7, w0) A3 (=7, wo)e™ X7 dr
0

(35)
The differential equation corresponding to equation
(35) can be expressed as

<ny(i)> + 2¢wo<Dyxy (1)> = mAL(1 - T,wo)A;(t - T,wp)
7Qxy(t,wo) (36)

i}

An effective procedure for the nonstationary cross
spectral estimation of multivariate earthquake ground
motion has been developed with the aid of multifilter
techniques (Sawada and Kameda, 1988). The corre-
sponding results were obtained as follows,

Cxv(t,wo) = 2(:°<Exy(l)> 37)
and 5
Qxy(tws) = 29 pyy(t)> (38)

T
These results do not account for the rate of change of
the energy function.

Two examples are now developed to demonstrate
the effectiveness of the proposed techniques. The first
example involves two sets of uncorrelated white noise
processes. These are obtained using the following
linear combination,

X(1) = [Lv Lo Wi(t) (39)
Y(t) Ly Ls| | Wa(1)
where W;(t) and W(t) are two uncorrelated white
noise processes with constant spectral density func-
tion S and S2, respectively; the symbols L;, Ly, L3

and L4 denote constants. The modulated correlated
processes are

() - {88 @

Therefore, the analytical expressions for the co-spectrum
Cxy(t,w) and quad-spectrum Q xy(2,wq) are

Cxy(t,wo) = Ci(t)Ca2(t) ( L1LaS1 + LyL4S2) (41)

and
Qxy(t,wo) =0. (42)

In Figure (2), it is seen that both the co-spectrum
and the quad-spectrum are very well approximated.
The target spectrum itself is well estimated using the
proposed technique.

The second example demonstrates the usefulness
of the proposed technique for processes having the
Kanai-Tajimi spectrum. The equation of motion for
this model is given by the equation,

Y+ 2(,4.),)” +wl¥ = 2(,0.1,)1( +wlX (43)

where X is a white noise with constant spectral den-
sity function S, and Y is the process with Kanai-
Tajimi spectrum. Therefore, The frequency response
function corresponding to equation (43) is given by
the equation,
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Figure 2 Cross-Spectrum of Evolutionary
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Figure 3 Cross-Spectrum of Evolutionary
Broad Band Process
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The correlated processes are given by equation (40).
Therefore, the co- and quad- spectra of X and Y can
be approximated using the following expressions

2 (2 — w?) 4+ 4¢2w202
w3 (o]~ ) 4G G G w)S
(w2 - w?)” +4¢wiuw? (45)

Cxy(t,wo) =

842
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Figure 5 Piecewise Linear Smoothing with Window Size 4 sec.

and
2 wow’
(w2 - w,)z +4¢Jwlu?

Qxy(t,wo) = C1(2)Ca(2)S . (46)

Examining Figure (3), it is noted that the estimate
of the quad-spectrum matches very well with the an-
alytic solution in equation (46G). For the co-spectrum,
however, a certain discrepancy is observed. This can
be attributed to the numerator in equation (45) being
a function of w?. This leads to an error in approxi-
mating the integrals as given by equations (26)-(30).

4 Smoothing of the Energy Func-
tions

Based on the procedures developed in the previous
sections, good estimates can be obtained for the spec-
tral density functions of nonstationary multivariate
processes. These estimates, however, are not safe-
guarded against violating the inherent positive def-
inite property of auto-spectral densities. This defi-
ciency can be attributed to the limited number of
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records from which spectral density information is
extracted. To remedy this problem, the time rate
of change of the energy function is forced to have
a merely corrective effect on the overall spectrum.
This is achieved by fitting a nondecreasing function
to the data corresponding to the term < E(t)>e%wot,
The smoothing is achieved by assuming the spectral
density to have a linear variation over successive small
time windows. This results in the following approxi-
mation

<B()>e*“*t = (bo(to, wo) + b1 (to,wo)t) €% + ba(to, wo)
t, t,
—_—— < -
-5 Sttt g

In the above equation, t, denotes the time interval.
Standard least squares procedures can be used for
estimating the coefficients of the linear model. The
procedure just described can be the basis for a re-
liable estimation of the spectral density function of
nonstationary processes based on a relatively small
number of observed records. Further details of the
analysis can be found in Tein (1992). Figures (4) and
(5) show the results associated with a simulated non-
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Figure 7 Estimated Spectral Density Function

stationary process with a modulating envelope given
by 100t2e=**, where « is a positive number equal to
0.34. Fifty records are used in obtaining the results
corresponding to this example. Figure (4) shows the
smoothing of the function <E(t)>e¥“ot, while Fig-
ure (5) shows the estimated and the target spectral
density functions. On the same plot is shown the
spectral density function obtained from a multifilter
analysis ignoring the rate of change of the energy.
Figures (6) and (7) show the results associated with
using earthquake records from the 1985 Mexico City
earthquake. Again, Figure (6) shows the result of
fitting a nondecreasing function to the energy term,
while Figure (7) shows the results corresponding to
the estimated spectral density function.

- Bibliography

[1] Priestley, M. B. and Tong, H., “On the Analysis
of Bivariate Non-Stationary Processes,” Royal
Statistical Society, pp. 153-166. 1973.

[2] Sawada, T. and Kameda, H., “Modeling of
Nonstationary Cross Spectrum for Multivariate
Earthquake Motions by Multifilter Technique,”
Proceedings of Ninth World Conference on
Earthquake Engineering, Japan, Vol. II, 795-800,
August, 1988.

[3] Spanos, P.D., Donley, M., and Roesset, J.,
“Evolutionary power spectrum estimation of
September 19, 1985 Mexico earthquake accelero-
grams,” Proceedings of the U.S.-Japan Seminar
on Stochastic Approaches in Earthquake Engi-
neering, , pp. 322-333, Y.K. Lin, and R.M. Mina
Editors, Springer-Verlag, New York, 1987.

(4] Tein, W.Y., An Engineering Approach for Esti-
mating Seismic Power Spectra, Thesis submitted
in partial fulfillment of the PhD degree, Rice

University, Houston, March 1992.

e



