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Nonstationary models of earthquake accelerograms

ECarli
Department of Structural Mechanics, University of Pavia, [taly

ABSTRACT: Two frequency nonstationary stochastic models of earthquake excitation are compared in this
paper. The guidelines of the theoretical foundation of these recent models are introduced and commented.
The first approach is based on the definition of a frequency modulated random process by means of an
istantaneous power spcctral density function in time and frequency. The second model is of seismological

derivation and includes the source mechanism and the

propagation of the waves to the site. It leads to the

definition of an evolutionary power spectral density function allowing a complete description of the time-
variant characteristics of strong ground motions. In the numerical example, the two stochastic models are
characterized on the basis of significative Italian accelerograms. The comparison of time-frequency spectral
funcions with the original spectra points out analogies and discrepancies between the two earthquake models.

1. INTRODUCTION

The use of the theory of stochastic models has been
of common use for the simulation of strong ground
motion time histories since long ago and is contin-
uously updating. In literature one can find many
different points of view for approaching the problem,
see for example the works by Sargoni & Hart (1974),
Priestley (1981), Lin (1986), Mark (1986), Kameda
(1987), Kozin (1988), Yeh & Wen (1989), Faravelli
(1988). Among them the most reliable are of pure
nonstationary type, because able to follow the energy
distribution in time and the contemporary variation
of the frequency content with the accuracy required
by the modern methods of nonlinear dynamics anal-
ysis. The energy release and the frequency content
can strongly affect the response of a structural sys-
tem expecially in the post-elastic range, Carli (1988)
and Carli et al. (1989).

Two different nonstationary stochastic models of
particular interest for practical engineering applica-
tions are considered in this work. The first approach,
described in the works by Grigoriu et al. (1988) and
by Yeh & Wen (1989), is based essentially on sig-
nal theory procedures. In particular it refers to the
definition of the istantaneous spectrum of a nonsta-
tionary time process according the definition given
by Mark (1986). The second model herein consid-
ered takes into account seismological interpretations
of the local seismic condition and of the wave prop-
agation from the source to the site by means of a
simplified geomechanical formulation explicitly given
in Carli & Faravelli (1990 b). The seismological
approach is then coupled with the classical meth-
ods for the treatement of time processes Bendat &
Piersol (1971) to account for a more precise time-
frequency characterization. A short description of
the two models will be followed by a numerical ex-
ample taylored to give a visual comparison of the
computational implications and to suggest comments

about similarities, discrepances and capabilities of
the described theoretical nonstationary methods.The
numerical application is referred to two of the most
significant records of the Italian data bank. One
was recorded in the Friuli region during the North-
Italian sequence in 1976, while the other one refers
to the South-Italian event in 1980. The records have
been selected with particular regard to the very dif-
ferent predominant frequency evolution in time that
is developped in the two accelerograms. In this work
particular attention is devoted to find out the main
features znd the implications underlaying the two
different theoretical foundations for the approximate
description of real seimological records. The compar-
ison is performed on the basis of the estimated ampli-
tude spectra for both the models and the real ones,
as functions of time and frequency. In particular the
spectrograms of the theoretical approaces and of the
recorded signals allow a comfortable and clear rep-
resentation of the cstimated and the expected evolu-
tion of the predominant frequency content.

2. AN ISTANTANEOUS SPECTRUM MODEL

Let us introduce a stationary stochastic process y(u)
to be defined by the following spectral representa-
tion: ~

+o0

y(u) = /_

where w is the angular frequency and z(w) is a ran-
dom process having orthogonals increments :

Eldz(w1) dz(w2)]=0 Yw; # wp (2)

The autocorrelation function Ry() of the station-
ary process can be written as:

1)

e dz(w)
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Ry(r) = / 6T S, (@) dw  (3)
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being Sy (w) the power spectral density function.
If one performs a scaling of the u axis according
a nonlinear expression u = u(t) with respect to the
new variable ¢ , the just obtained process z(t) =
y(u(t)) will not be frequency stationary. Following
the approach given in Yeh & Wen (1989) with regard
to the definition of the istantaneous spectrum of a
;toléhastic process, it can be proved that the following
olds:

Si(t,w)= — § (%

u'(t) y ) (4)

whith S, (¢,w) the istantaneous power spectral den-
sity function of z(¢), being the ' symbol the first
derivative of the function with respect to the time
variable . Equation (4) relates the power spectral
density of the nonstationary process z(t) with the
one of a stationary process y(u) ‘associated’ to z(t).
Infact y(u) can be derived form z(t) when the non-
linear scale function u(t) is given. Moreover u'(t)
can be proved to be responsible of only a frequency
modulation effect over the random process z(t). The
condition of nonstationarity for this frequency mod-
ulated process does not imply an evolutionary spec-
tral representation for z(t). The stationary spectrum
Sy(w) can be assumed to have different analytical
representations such as the I{-T model, the Clough-
Penzien (1975), or the Boore (1986) model, obtain-
ing in all the cases a nonstationary approach by fre-
quency modulation in time of the selected spectral
model.

It must be noticed that the integral frequency re-
lation given in equation (4) leaves the variance of the
process y(u) unchanged. This means that when y(u)
is a filtered white noise the superposition of an in-
tensity function #(t) has the same effect of an ampli-
tude modulation of the resulting nonstationary pro-
cess z(t) by means of the same time function i(t).
The modelling of a seismic excitation ar(t) by both
frequency and amplitude modulation can be written
as:

ar(t) = it) y(u(t)) (%)

The characterization procedure of the above de-
scribed model is necessarely based on the availabil-
ity of at least one record r(t) to be assumed having
most of the characteristics of the considered site. Un-
der this condition r(t) can be analysed to obtain the
amplitude modulation function i(t) , the time scal-
ing law u(t) and the shape of the power spectrum
Sy(w) of the associated stationary process. The scal-
ing function u(t) is commonly assumed to obey the
following relation:

ut) = ot) / v'(t) (6)

where vu(t) is a relation giving the mean value of
the points with zero ordinates in the accelerogram
as function of time ¢ . The parameter t; is the start-
ing time for the most significant part (strong ground

motion part) of the accelerogram. It can be esti-
mated by visual inspection on the plot of the time
history. The required conditions on v(¢) are to be
differentiable and a not decreasing function in time.
A polynomial function is usua%lv msgmed:
v(t) = c1t + cat” +cat (7)

where the three parameters c1,¢2,¢3 are calculated
by numerical approximation of v(?) to the cumulate
of the zero passages in the considered record r(t).
Let us now consider the possiblity of decomposing
the original record in a number n of signals such that:

n

r(t) = Z ri(t)

i=1

where each r;(t) is obtained by filtering the Fourier
amplitude spectum of r(¢) in specified frequency ran-
ges and coming back to the time axis.

Given the described decomEosxtron the described
identification procedure can be easily repeated on
the different r;(¢). This allow a stepwise and more
accurate time-frequency characterization of the ac-
celerometric signal while requiring a proportionally
increasing numerical effort. Usually, the desired ac-
curacy can be reached by the application of a two
terms series for equation (8).

(8)

3. AN EVOLUTIONARY MODEL

Among the many different models of seismological
derivation that can be found in literature, the ap-
proach proposed by Boore (1986) is considered one
of the most interesting for the wide possibilities of ap-
plication in structural engineering. The Boore model
relates the Fourier amplitude spectrum A.(v) of a
strong ground motion record with different physical
quantities of seismological and geomecanical deriva-
tion according the following formulation:

Aa(v) = CoeAs(V)Ac(V)Am(v)As(v)  (9)

In the previous equation v = w/27 is the frequency
variable while C,. is a scale factor relating different
seismological quantities. The other factors on the left
side of equation (9) can be espressed by the follow-
ing analytical funictions , Boore (1986) and Faravelli
(1987) :

As(v) = Mo(2mv)? (1 + (vs/v)?)  (10)
4:0) = o/ (VTF T (11)
Am(v) =2/(14 (Vm/V)?), v > Vm (1'2)
As(v) = Cyyf1+ (v/vy)® (13)

A,s(v) gives the source spectum at the fault with A
the seismic moment and v, the corner frequency at
the source. Ac(v) is a correcting factor for the source
spectrum A,(v) where v, is a frequency parameter
of sismological derivation, Faccioli et al. (1984), and
« is a normalization coefficient. A, (v) acts as an
amplification factor having the relative reference fre-
quency vpm , Faravelli (1987). The last factor 4 (v)
takes account, in simplified manner, of the wave at-
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tenuation, Boore (1986), where vy is the character-
istic frequency of the filter and Cy is an attenuation
parameter, Rovelli (1983).

The above defined spectral function 'A,(v) can be
retated to the power spectral density function S,(v)
of a stationary random process a(t) by means of the
general relationship, Bendat & Piersol (1971):

Sa(v) =| Aa(v) |* /(v D)

in which D is the duration of a(t).

This stationary approach has been recently ex-
panded (Carli&Faravelli(1990 b)) with the capabil-
ity of a nonstationary description of both the fre-
quency content and the energy in time. The result-
ing stochastic process n(t) is associated to an evo-
lutionary Fourier amplitude spectrum A4,(¢,v) by a
frequency modulation procedure:

[ An(t,v) P=i(t) | Aa(v [ ws(2)) P (15)

where i(t) is the usual intensity function, Eq.(5), and
Aa(v | vs(t)) has the analytical formulation given in
equation (9) with the assumption of a time depen-
dent characteristic frequency v,:

(14)

As(v [ vs()) = Coe B(vs(2)) A, (v | v(t)) (16)

Ac(v) Am(v) Af(V)

In this equation appears the new frequency func-
tion ¢(v,) responsible of mantaining constant in time
the energy released by the process. This condition is
needed since the variation in shape of the amplitude
spectrum, due to v,(t), reflects in significant varia-
tions of the energy for each instant t. By ¢(v,) the
variance of the process can be controlled by the am-
plitude modulation function i(t), in agreement with
the istantaneous spectrum approach previously de-
scribed. ¢(v,) is given in term of the single frequency
parameter v, and can be evaluated only once for a
predefined wide frequency range. In previous numer-
ical investigations by Carli & Faravelli (1989-1991),
a compound analytical form with two constant seg-
ments connected by a negative exponential has been
suggested:

vy = const. ,0<t<t,
va(t) = { vrexp(=lnZ&(5=)4] ¢, <t <tg (17)
Vg = const. e <t<D

In this equation the parameter % rules the decay
rate of the exponential segment, ¢, represents the
starting time of the strong ground motion part of the
accelerogram while ty give the starting time of the
decay part i.e. the tail of the record and Dy = t4—t,
can be seen as the equivalent stationary duration of
the strong ground motion as reported in Vanmarke
& Lai (1980) and Carli(1988).

The last two parameters to be defined v, and vy
correspond to the corner frequencies v,, evaluated
by a numerical approximation procedure (Carli et
al. (1989) and Carli & Faravelli (1990 a)). The pro-
cedure is applied in terms of the Boore amplitude
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spectra related to the two parts [0,¢,] and [t4, D] ex-
tracted from the record r(t) by time window.

4. NUMERICAL EXAMPLE

In the numerical application of the discussed non-
stationary stochastic models, a first part is devoted
to the characterization of the two approaches. The
values of all the parameters that take part in the
description of the derived algorithms are identified
on the basis of the selected record. Particular at-
tention is paid to the adopted numerical procedures
and to the effects on the most significant parame-
ters. In the second part a comparison is given in
terms of the density plots of the nonstationary spec-
tra for both the two models and the recorded ac-
celerogram. The identification of the needed param-
eters is based on one of the most significant record
(r(t) in the derivation of the equations) of the North
Italian (Friuli) earthquake in 1976: N.38 (Tolmezzo
recording station, N-S component) according the sys-
tem of numbering in the national seismic catalog by
ENEA-ENEL (1983).

The modulating function i(t) is evaluated by means
of a convolution procedure (Carli & Faravelli (1990
b)). The polynomium v(t), mean value of the zero
crossings In time, is estimated by nonlinear least
squares procedure over the cumulate of the zero cros-
sings v,.{zf) counted in the record. The other param-
eter tg that comletes the definition of the scale func-
tion u(t) for the time axis is evaluated to be equal
to the t, parameter used in the definition of v,(t),
Eq.(17), as initial value of the strong ground motion
part of the accelerogram. It is obtained jointly with
the other parameter Dy (equivalent stationary dura-
tion) used in v,(t), by trilinear approximation of the
cumulate energy function (Carli (1988)). The sta-
tionary process y(u), Eq.(5), associated to a.(t) is
obtained by amplitude demodulation and hence the
power spectrum Sy(v) can be derived. The spectrum
is approximated by the analytical function, Eq.(9), of
the Boore’ stationary model. With the previous as-
sumptions, the calculated frequency parameters are:
ve=2. Hz, v,,=.32 Hz, vy=10. Hz, while the corner
frequency of the source spectrum is v,=.64 Hz.

While mantaining valid some of the previously de-
fined parametcrs, the characterization of the second
model is strongly dependent on the definition of the
frequency modulaiing function v4(t). In particular
the following values are obtained for the other two
frequency parameters: v.=4.44 Hz , vy= .68 Hz .
The k exponent assumes a value (k=.34) that is very
close to the ones obtained for records from different
seismic events (Carli et al. (1989)) giving the con-
firmation of its low variability to relevant changes
of the other parameters involved in the definition of
v,(1).

Given the complete characterization of the models,
the evolutionary amplitude spectrum (not smoothed,
Aq(t,v)) of the demodulated record, can be com-
pared with the parallel spectral functions of the seis-
mological model A,(t, v), Eq.(16), and with the am-
plitude spectrum A.(t,v) derived from the istan-
taneous power spectrum S;(t,w) of Eq.(4). This
three spectra, in terms of density plots, appear in



Fig.la/1c with the just mentioned order. The rep-
resentation emphasizes the meaning of the evolution
of the predominant frequency content in time : it
points out the influence of the frequency modulation
procedures of the two models only, while the rate of
energy release in time remains constant.

The results obtained when applying the modulat-
ing function i(t) are shown in Fig.2a/2c where are
plotted, in the order, the evolutionary spectrum of
the recorded accelerogram A,(%, v), of the seismologi-
cal model A,(¢,v), Eq.(15), and of the istantaneous
spectral model A;(t,v) obtained by modulation of
Ag(t,v).

For the demodulated spectra, Fig.la/lc, the re-
sults point out the high scatter in the non-smoothed
spectrum of the record when compared to the parallel
spectra of analytical formulations. With this limita-
tion A,(¢,v) shows a better agreement with respect
to A;(t,v) in approaching the rate of change of the
predominant frequency content of the record from
the initial high central frequency to the lower values
reached within the first few seconds.

Similar considerations, with higher approximation,
are valid for the modulated spectra. Infact An(t,v)
confirms its better fit to the central frequency of the
record in time during the strong ground motion part,
while showing a smoother shape with lower peaks.

5. CONCLUSIONS

In this work two non stationary models of recent for-
mulation for the description of seismic excitations
have been considered. The first model is based on
the definiton of an istantaneous spectrum that in this
paper is associated to a Boore type spectrum. This
approach shows its strict dependence to the refine-
ment level of the signal analysis to be performed on
the reference recordg.

The evolutionary model recently developed by the
author and by Faravelli points out a wider ductility
of use especially when applied in presence of poor
or not completely reliable records at the site. This
result can be reached for the combianation of seis-
mological hints with the classical methods of signal
analysis that are used in the theoretical derivation
of the evolutionary model. The comparison of the
two approaches is performed in terms of the den-
sity plots of the underlaying nonstationary spectra,
both modulated and demodulated in time for an un-
biased evaluation of the performances relevant to the
only frequency evolution. The method of seismologi-
cal derivation proposed by the author shows a wider
settlement in the range of frequency noticed in the
analysis of the reference record, while preserving the
order of magnitude of the numerical effort.
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Fig.1 - Density plots of the demodulated evolutionary spectra: a) Ag(t,v) of the record , b) Aa(2,v) of the
seismological model, ¢) A.(t,v) of the istantaneous spectum model.
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