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A new algorithm for simulating strong motion records

Mircea Grigoriu & Stavroula Balopoulou
Cornell University, Ithaca, NY., USA

ABSTRACT: A method is developed for generating samples of zero-mean stationary Gaussian vector processes. The
method is based on a generalization of the sampling theorem for real-valued random processes with band-limited spec-
ra. The simulation method can be applied to generate all components of the ground motion at one or more sites.

1 INTRODUCTION

The generation of samples of a stationary Gaussian
vector process is currently based on continuous time
models consisting of a finite sum of harmonics with
random phase and deterministic or random amplitude
(Shinozuka 1971). They can be obtained by approxi—
mating the power spectral density of the process by a
discrete spectrum with power at a finite number of
frequencies. The models are conceptually simple but
can be inefficient because of the excessive storage
required for simulation.

This paper develops a new model for generating sam-
ples of stationary Gaussian vector processes. The
model is based on a generalization of the sampling
theorem for real-valued band-limited stationary process-
es (Wong and Hajek 1985). The model is conceptually
less simple but can be used to develop an efficient simu-
lation algorithm. The storage requirement of the algo-
rithm is minimal because the sample generation can be
performed on-line.

2 THE MODEL

Let X(t) be a zero-mean stationary Gaussian vector
process with real-valued components X (t),

r=1,..,p. Itis assumed that the Gaussian processes
X,(t) have mean zero, bandwidth (-f, f,), 0 < f, < oo,
covariance functions ¢,(t) = E X (t+1) X (), and mean

power spectral densities s, (f) = Jc'izm () d1, in
_\_vhich r,u=1, .., p. o
Let
X1,

XN0=] . (1)

XP'NP(I)

be a vector of parametric random processes, in which
N =(Ny, ..., Np)’,

N,
Xen @ = D, Xey o4(t; T, )
k=-N,
oy(t; T) = ﬂ%{%}m 3)

Xk =X, (kT,), and T, = 1/(2f)). It can be shown that
(1) X, (t) has the samc first two moments as X (t)
asymptotlcally as N, = oo, r=1, .., p; (i) X (t)
approaches X(t) in the mean square sense as lg'
r=1,.., p; and (iii) Xy(t) is a version of X(t) asymp-
toncally as N, = oo, r=1, ..., p, because X(t) and
Xn(t) are Gaussian proccsscs

3 SIMULATION ALGORITHM

The use of the parametnc model Xy(t) in simulation can
be inefficient because it depends on a large number of
sample values (X, ] of the process for large values of
t. An alternative model based on a local representation
is considered.

Let

(Ylvnl(t)

Y@o= . 4)

[ Yony(® ]

be a local model of X(t), in which
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ngng+]

Yon®= DO Xy o T)

k=n,;~n,

(5)

r=1,..,p
n, T, €t<(n+1) T,

n,, = the largest integer smaller than /T;, n= specified
positive integers, and n = (ny, ..., n,)". Any compon-
ent of the model depends on 2(n,+lyvalues of X,(t) that
are located symmetrically about the cell

[n, T, (n, +1)T,] containing the current time t. The
proccsse:s“‘Y,_n (1) have the same asymptotic properties
as X,y (1) asn, — oo, r=1, ..., p. Therefore, Y (1)
can be Gised to approximate X(t).

To simplify the illustration of the simulation algorithm
based on Eq. 5 consider that T, = T and n, = n so that
n,=n,r=1,.,p Lette [‘an, (ng+1) T] and y,(t)
be a realization of Y (t) in this cell depending on
i((n['{"n'*‘l) T) =Xps e _X_((nl"n)T) = X9 n+l1) The
extension of y (t) in the next cell [(n+1) (1" (n+2)T]
involves a sample of random vector X((n+n+2)T) that
depends on the previously generated nodal values of the
process. This condition has to be accounted for in sim-
ulation and can be dealt with efficiently. This brief
description of the algorithm shows that one single ran-
dom vector has to be generated as t enters a new cell.
The generation of this random vector can be performed
on-line.

4 APPLICATIONS

Exact and approximate covariance functions are pre-
sented for two processes X(t) with dimension p = 1 and
2. Results show that the proposed model is efficient
and accurate even for small values of parameters n,,
r=1, ..., p, defining the size of the window about the
current cell.

4.1 Example |

Consider a band—limited white—noise process X(t) with
spectrum s(f) = sq for f € (—f, f) and zero otherwise.
Figure 1 shows exact and approximate covariances of
X(v) for YT =k, k + V4, k + 2, and k + ¥4, in which k
is an integer. The approximate covariances are based on
Eq. 5 and approach rapidly E X(t+t) X(t) as the win—
dow size increases.

4.2 Example 2

Let X(1) be a zero—mean bivariate Gaussian process
with components

X0 =vV1-p Z(M)+Vp Z(t), O<p<l,r=1,2
(6)

in which Z,(t), r =1, 2, and Z(1) are independent
zero—mean, unit-variance stationary Gaussian pro—
cesses. The power spectral densities szr(f), r=1,2,
and sz(f) of these processes are constant and equal to
s;=1/(4n f),r=1,2,and s = /(4n ') in (£, f])
and (—f , f'), respectively, and zero outside these
frequency bands. Figures 2 and 3 show exact and
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approximate covariance functions of the vect?r process
(X, (1), X5(v) for p = 0.5 and VT, = k., k + (2, in
which k; are integers. The approximate covariances can
be obtained from Eq. 5 and approach rapidly the exact
values with increasing window size.

5. CONCLUSIONS

A new method was developed for generating samples of
stationary Gaussian vector processes. The method is
based on a generalization of the sampling theorem for
real-valued processes with finite bandwidth. The pro-
posed algorithm is efficient and requires little storage.
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Figure 1. Exact and approximate covariance functions for a band-limited white-noise process X(t).
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Exact and approximate covariance functions for the bivariate Gaussian process X(t) in Eq. 6.
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Figure 3. Exact and approximate cross-covariance functions for the bivariate Gaussian process X(t) in Eq. 6.

827



