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Attenuation of waves in ground with fading memory
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ABSTRACT: The fading memory theory is introduced to investigate the mechanism of wave attenuation due to viscosity by
considering the ground to be a viscoelastic continuum. In addition, various other dynamic characteristics of ground are
discussed based on this concept. The constitutive equation, the wave equation and the corresponding relationship for the
frequency dependent wave attenuation index Q{w) are presented. The memory functions of the general spring—dashpot model,
the creep function model, and the hysteretic model are shown to be special cases of fading memory theory. The method of
developing the memory function based on realistic ((w) is also discussed. It is concluded that unlike the dashpot model, the
fading memory theory can explain wider range of attenuation properties. To achieve realistic representation of the dynamic
characteristics of ground, justifiably pertinent memory function can be selected. The memory function may also be suitably

derived from observed data.

1 INTRODUCTION

Viscoelastic material is often represented by spring—
dashpot model. Such representation results in an
exponential type of attenuation function. However, the
wave attenuation characteristics Q~, which is the
dimensionless measure of the internal friction or the
anelasticity (e.g. Aki and Richards 1980), is found to
be nearly constant for a certain frequency range. Such
wave attenuation characteristics cannot be adequately
represented by various types of spring-dashpot models
widely used in earthquake engineering. For example,
the viscoelastic solid of Kelvin—Voigt type can not
explain the result obtained from experiment as
discussed subsequently. Other types of spring-dashpot
systems can offer special Q for soil (Qaisar 1989), but
again they are found to be inadequate. Thus there is a
need to develop suitable viscoelastic constitutive model
that can explain wider range of attenuation
characteristics. Such characteristics of Q are necessary
for theoretical investigations, such as causality of wave
propagation (e.g. Aki and Richards 1980).

The fading memory. theory has been well developed
in the continuum mechanics. But its application in
wave propagation and attenuation has not been
attempted. This paper is concerned with the study of
wave propagation and attenuation in infinitesimal linear
viscoelastic material with fading memory. In fading
memory theory, viscoclastic part in the constitutive
cquation is given by functional form of all the past
trace of strain rate, which makes it possible to
represent various dynamic characteristics.
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2 FADING MEMORY THEORY FOR
LINEAR VISCOELASTIC CONTINUUM

The constitutive equation for linear, isotropic material
with fading memory is described in functional form
using tensor expressions as follows (Eringen 1975,
Truesdell 1973, Fillipov 1983, Izumi et al. 1989):
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where the material body is assumed to be initially
strain—free. Here, t is the time, 0y, is the stress tensor,
¢y is the infinitesimal strain tensor, A, and g, are the
Lame's elastic constants. A(f) and x,(f) are the memory
functions which satisfy the following two conditions:
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The former condition indicates the causality and the
latter is concerned with the axiom of memory. The
relation between infinitesimal strain tensor and
displacement vector is: '
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where u,; = du,/dx, . The balance law of body is:
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where p is the density, f, is the body force and a, is the
acceleration. Considering the body force f,=0, the wave
equation is obtained by substituting Eqs.1 and 3 into

Eq.4.
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Considering one dimensional case, the constitutive
equation and the wave equation are rewritten as
follows:
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for normal direction (P-wave )
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for shear direction ( S-wave)
A=p, » m(t) = p,(0)

The memory function m(r) satisfies conditions similar

to Eq.2.

m@) =0, fortr<0
lim m(¢) = 0 @

3 MEMORY FUNCTION FOR DASHPOT MODELS

Until now, some viscoelastic models have been
developed and have found their applications in
earthquake engineering with the concept of "spring”
and "dashpot". Memory functions are derived for such
models and it is understood that such models are the
special cases of fading memory theory. The general
constitutive law for spring-dashpot system can be
written as follows (Fligge 1973):
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where p, and g, are constants of "spring” and
*dashpot". As the special cases of this equation, the
Kelvin—-Voigt type (m=0, n=1), the Maxwell type (m=1,
n=0) and the 3-element type (m=n=1) viscoelastic

models are derived. After applying Fourier transform to
Eq.9, the following equation is obtained.

E(w) (10)

where Z(w) and E(w) are functions of frequency, , and
they are obtained by Fourier transform of o(f) and £(f),
respectively. In the following discussions, we assume
that the minuscules with (f) have meaning in time
domain while majuscules with (w) are Fourier
transformed functions in frequency domain. Fourier
transform of Eq.6 yields:
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Then the memory function in frequency domain is:
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Using Egs. 10 and 12, the memory function for spring-
dashpot model in time domain is obtained by inverse
Fourier transform:
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For the purpose of comparison, the memory functions
of some of the common models are presented in the
following. The constitutive equation for the 3-element
model is:
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where my is a constant. Using A=mj,, the memory
function is obtained as follows:
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If p=0 then Eq.16 yields for the memory function of
the 3-clement type clastic model:
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where U(t) is the step function. If p=0 (for Kelvin-



Voigt type) then
m(t) = g &(t) a”n

where 0(f) is the delta (impulse) function. If p=0 and
mg=0 (for Maxwell type) then

me) =Le ? UG (18)
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4 MATERIAL CHARACTERISTICS BY
MEMORY FUNCTION

Complex modulus of a material is given by a ratio
of stress and strain as follows (Fung 1984):
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where M(w) and M(w) are real and imaginary parts of
M(w) respectively. Thus the Q™7 is obtained as follows:
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Q™! for the Kelvin-Voigt model is clearly unsuitable to
explain relatively constant Q.

The following viscoelastic constitutive equation using
creep function (e.g. Aki and Richards 1980) is
frequently used:

my @) = ofr) + f_‘_o(f)i‘ig;—’)dr (24)

where my, is a constant relative to Lamé's constants and
¢() is a creep function which satisfies:
) =0, fort<0 (25)

Comparing eq.11 and Fourier transform of ¢q.24, and
using A=my, following relations between the memory
function and the creep function are obtained.
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5 SOLUTION TO WAVE EQUATION
One dimensional wave equation is:
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where  Cg? = A/p, myt-s) = m(t-s)/p. Considering
vibration term in displacement as u = u exp(iwt), Eq.28
yields
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then the displacement solution is
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The phase velocity is
v =cl- M, (o) (32)

If Q7! « 1 then the solution is approximated as:
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It is important to note that B(w) and W(w) are
dependent on the characteristics of material, and are to
be determined by memory function.

In continuum mechanics (e.g. Eringen 1975,
Truesdell 1973), following two types of memory
functions are suggested:

exp(~t7) type
m(t) = Mye O uy, pro @9
1/t7 type
M
me) = —=2—U@), p>0  (3)
@+’ +b

where M, a, b and p arc all constants. It is noted that
the memory function of the 3-element type elastic
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Fig.1 Parameter dependency of memory function
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m(t) =ae—( b )’, a=0, p=0.9.

model is a special case of Eq.34. Examples are
presented for the exp(~¢”) type memory function with
various parameters in Figs. 1 and 2. In each figure, (a)
represents the memory function, (b) represents the 9~
according to the memory function in (a), (c) represents
the dispersive characteristics of wave velocity and (d)
is the transfer function of the 2-layer soil model. 1t is
seen that the viscoelastic model with fading memory
can explain various attenuation effects.
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6 CALCULATION OF MEMORY FUNCTION
FROM Q™

The relation between Q7 and memory function is
obtained by rewriting ¢q.20 as follows:
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Considering Hilbert relation of M(w) and M (w) which
derived from causal condition of memory function in
time domain (Eq.8), Eq.36 yields:
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This is a type of the Fredholm's integral equation and
is solved by numerical calculation. If the integral space
of €q.37 is approximated as finite [-w, , 0],
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where j = 1-N, o, =jAn. Applying suitable numerical
integration mcthoc( to Eq.38, following linear equations
are obtained: :
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where [B] and B are determined by numerical
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integration method. After solving these equations,
M{w) is calculated from Mg(w).

Figs. 3 and 4 present examples of calculation of
memory function from Q, for exp(-t *) type and 1/t ”
type. The solid line in (b)~(d) of each ﬁ%urc presents
the memory function calculated from Q™ of (a). The
dotted line represents the original memory function
m(t). They are seen to have nearly same values.

Fig. 5 shows memory function for hysteretic model.
Such characteristics are often obtained from the soil
data. The Q! for this model is not fully realized by
real and causal memory function, but is approximately
calculated numerically in limited frequency range of 0
to 30 Hz in Fig. 5.

7 CONCLUSION

To study wave attenuation in soil, the theory of
material with fading memory is introduced. It is shown
that the various forms of spring—dashpot model and the
creep function model are all special cases of material
with fading memory. Some important qualities of
attenuation of earthquake wave propagation in
viscoelastic material have been investigated by
application of memory function. The method of
developing the memory function from observed Q is
also discussed, for which the solution to the Fredholm's
integral equation becomes important. Compared to
constitutive models widely used in earthquake
engineering, fading memory theory explains wider
range of wave attenuation characteristics. If the wave
attenuation Q of actual soil is measured, then the actual
dynamic behavior of ground can be understood using
the memory function based on observed Q.
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