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Is Mexico’s long lasting ground motion made of gravity waves?
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ABSTRACT: The influence of gravity in wave propagation at Mexico City is investigated. Our
objective is to elucidate whether gravity perturbations may help to explain the exceedingly
long durations of strong ground motion observed at Mexico City during the September 19, 1985,
earthquake, as suggested by Lomnitz (1990). Two possibilities are investigated: gravity
perturbations on elastic waves in an extremely soft clay and, assuming that the clay behaves
more like a fluid than a solid, gravity waves in an irregular fluid layer overlaying an
elastic half-space. Our results show that gravity is a very unlikely explanation to the
observed long lasting ground motion in Mexico City.

1 INTRODUCTION

Local site effects on seismic ground motion
during the September 1985 earthquakes were at
the origin of significant damage in
structures and the loss of thousands of lives
in Mexico City. The presence at the surface
of a thin clay layer with very low S-wave
velocity amplified ground motion by a factor
as high as 50 in the frequency domain (Singh
et al, 1988). High level amplification
however, was only one side of site effects.
Another one was a very important increase in
the duration of strong motion records in the
lake bed zone, due to conspicuous, long
period and high amplitude late arrivals, that
may have contributed significantly to the
high levels of damage. In spite of
significant research efforts, this duration
increase has not yet received a satisfactory
explanation.

One possibility that has not received much
attention 1is an explanation in terms of
gravity waves. This idea, advanced by Lomnitz
in a series of papers (e.g. 1980), proposes
that non-linear effects are at the origin of
a "fluidification" of the surficial clay
layer, leading to its behaving as a fluid
with the subsequent propagation of gravity
waves. Up to now there are no proofs of this
behaviour, and Lomnitz himself does not
produce observations or modeling of any kind.
In this paper we investigate whether the
influence of gravity may help to explain
strong motion durations in Mexico City. Two

possibilities are envisaged: gravity
perturbed elastic waves in an very soft clay
layer; and, assuming that non linear
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processes bring the rheology of the clay
nearer to a viscous fluid than to a solid,

gravity waves in a viscous fluid layer

overlaying an elastic half-space.

2 GRAVITY PERTURBED WAVES IN AN ELASTIC
SOLID

It has been shown (Bath and Berkhout, 1984)

that gravity cannot affect body wave

propagation in an infinite elastic space. The
case of surface waves was examined by Ewing
et al. (1957) who concluded that, if the
vertical displacement at the surface |is
considered to be small, surface waves even in
a fluid layer are not affected by gravity.
However, Gilbert (1967) studied the problem
of a half-space and a layer over a half-space
and concluded that in incompressible, very
soft sediments there is a gradual transition
between Rayleigh waves and classical gravity
waves. In this section we examine this
possibility.

2.1 Significance of S and P phases

In an elastic half-space ground motion at the
surface due to a buried source results from
the direct arrivals, plus the Rayleigh wave
contribution when horizontal distance to the
source is about 5 times larger than source
depth (Aki and Richards, 1980). The Rayleigh
wave is the contribution of the only real
root (baptized T par Gilbert and Laster,
1962) of Rayleigh’s function. An additional
contribution to the seismogram may come from



the imaginary roots of Rayleigh’s function,
located on the non-physical Riemann sheet,
the P pole in Gilbert’'s notation. This
imaginary pole corresponds to the leaky mode
of the problem. Although it exists in the non
physical Riemann sheet, it may extend through
analytical continuation into the physical
sheet and affect the seismogram for certain
values of the distance/depth ratio of the
source. For incompressible solids, Gilbert
(1967) defines e=g/(2nfB), where g=gravity
acceleration, f=frequency and B=S-wave
velocity, and proposes that as € increases
(i.e. at low frequencies and for soft soil
sites) the significance of Rayleigh’s pole
diminishes, while the P pole becomes
preponderant. He associates the P pole with
prograde elliptic particle orbits and the
corresponding phase velocity with that of
water waves in a half space.

However, when we consider an elastic solid
instead of an incompressible one, we realize
that Poisson’s coefficient, ¢, also affects
the position of pole in the complex
horizontal slowness, p, plane. This is
important because the farther the P pole is
in the non-physical Riemann sheet, the less
it will affect the synthetic seismograms.

2.2 Free surface reflection coefficients
including gravity

Let us investigate gravity effects on ground
motion for a very high Poisson's ratio solid

(such as Mexico City clay, where P-wave
velocity 1is about 1500 m/s while S-wave
velocity can be as low as 40 m/s). If gravity

has an effect it must be at the free surface
where, for non-negligeable vertical
displacements, it contributes a surface force
distribution of wavelength similar to that of
the waves in the solid, proportional to
vertical displacement. This non-1linear
problem may be linearized following a classic
scheme (Lliboutry, 1987). Instead of imposing
free traction on an unknown free surface
(z=¢(x), Figure 1) we impose a distribution
of forces proportional to vertical
displacement given by pgw (where p=density
and w is vertical displacement) on z=0.

Using this modified boundary condition we
have computed free surface reflection
coefficients in the case of non-negligeable
free surface displacements. Following Aki and
Richards (1980) we compute reflection
coefficients as the ratio of amplitudes of
reflected to incident potentials ¢ and y. Our
boundary conditions introduce an additional
term in the denominator (and the numerator

for coefficients PP and §3)
ingz/B' (where v2=(w/a)2-kx2, kx=horizontal

of the form

wave number), proportional to o® (whereas all

other terms are proportional to o'). A non
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Fig. 1 (a) Incident and reflected. waves of
the in-plane problem. The free surface takes
the form 2z=g(x). (b) Linearization of the
boundary condition. We impose conditions on
z=0 instead of z=C(x).

cancelling dependence on w then appears quite
clearly. The form of the additional term
suggests that it will be significant
especially at low frequencies and for small
values of B. This is in fact the case as can
be seen from Figure 2 where we compare the
classical P coefficient, independent of
frequency, with the one obtained modifying
the boundary condition. There are significant
differences at low frequencies. We observe a
shift of Rayleigh’s pole towards high p. The
leaky mode pole, ?, shows a weaker dependence
on frequency. Differences between the two
coefficients disappear for frequencies higher
than 0.2 Hz in the example shown.

2.3 Complete ground motion computations
Gravity does affect free surface reflection

coefficients, but its impact on ground motion
depends strongly on the energy available at

low frequencies and in certain slowness
ranges. To determine gravity effects on
complete synthetic seismograms we have

simulated ground motion on the surface of a
very thin, irregular, extremely soft layer.
This layer is intended to represent that part
of the clay that has undergone non linear
softening. The method we use is that of Aki
and Larner (1970) in the formulation given by
Bard and Gariel (1986).Lacking constraints on
the geometry and properties of a "fluidified"
clay layer we have performed a series of
analysis from which we show results for only
one model. The reader is asked to believe
that different geometries and parameters give
results consistent with those presented here.
More information and details may be found in
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Fig. 2 Module of PP as a function of p for
the classical case (a) and as a function of p
and frequency for the modified boundary
condition case (b). P-wave velocity is 1500

m/s and S-wave velocity is 10 m/s (thus
0=0.49998).

Chavez-Garcia (1991). The model wused is
displayed on Figure 3.A very thin, irregular,

extremely soft layer represents that part of
the clay that has undergone extreme non
linear softening. (We do not adress, in this

paper, the physical plausibility of such an
extreme softening; we Just investigate if it
would lead to strong effects on signal

duration.) Material properties are given on
Table 1. Figure 4 shows the resulting

Table 1. Mechanical properties of the model

Layer @ B P c Qp Qs
m/s m/s gr/cm

1 1500 2 1.2 0.498983 50 10

2 1500 40 1.5 0.4996 50 25

3 1500 500 2.0 0.4375 100 50

a=P-wave velocity, B=S-wave velocity,
p=density, o=Poisson’s ratio, Q=attenuation
factor for P or S waves.
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Fig. 3 Geometry chosen for a complete
simulation of ground motion including
gravity. The irregular layer represents the
softened part of the clay.

transfer functions at 4 points at the
surface. We compare results using the
classical formulation with those including
our modified free surface reflection
coefficients. There are no significant
differences between the two cases neither for
vertical nor for horizontal displacement.
Finally we have computed synthetic
seismograms. The incident signal is a Ricker
pulse with 0.25 Hz central frequency. Results
are shown on Figure 5 for vertical incidence
of SV waves. The most striking difference
between the two sets of synthetics is the
difference in the phase velocity of surface
waves generated by the lateral
irregularities. In the classical coefficients
case it is of 5 m/s whereas in the modified
free boundary case it is 13 m/s. We observe
no fundamental change between the two sets of

results, particle orbits (not shown) are
essentially the same and there are no
significant variations of ground motion
duration.

2.4 Conclusions

We have Incorporated gravity effects in
ground motion computations for an elastic
solid. We have assumed that due to non linear

effects, the S-wave velocity comes down to 2
m/s (0=0.499993, as « remains constant) in
the "fluidified" clay. However, no

significant modification of ground motion was
observed. It appears clearly that there is mo
transition between Rayleigh waves and gravity
waves fior an elastic solid.

The results we have presented so far
however, do not allow to rule out the
possibility that gravity may affect ground
motion. There remains the question whether
the rheology of a "fluidified" clay layer be
nearer to a fluid than to a solid. To answer
this question we have substituted the
irregular thin clay layer by a viscous fluid.
This model is presented in the next section.
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Fig. 4 Transfer functions at 4 points on the
surface of the model shown on Figure 3 for
vertical incidence of SV waves. Left column:

horizontal component. Right column: vertical
component. Continuous line: classical free
surface coefficients. Dotted line: modified

boundary condition coefficients.

3 COUPLING BETWEEN AN ELASTIC SOLID AND A
FLUID LAYER

Gravity waves in fluids have been studied for
a long time. However, when surface gravity
waves are considered, it is generally
accepted to neglect body waves in the fluid,
supposed incompressible (e.g. Lamb, 1945).
If, on the contrary, 'the interest is in body
waves, gravity effects are neglected (e.g.
Fehler, 1882). We have formulated the problem
of an irregular viscous fluid layer
overlaying an elastic half space. Our purpose
is to evaluate the possibility that gravity
waves propagate in Mexico City’'s clay because
its behavior would be, for a reason still to
be established (see Lomnitz, 1990), nearer to
a fluid than to a solid, due to the
postulated non linear effects. For our
computations, based on Aki and Larner’s
method, it will be sufficlent to write the
diffracted field 1in the fluid as a
superposition of plane waves. We follow the
notation and developements of Sommerfeld
(1971).

—_ —
wn » 0w
el Q — cmo - — et C <— —
e~ e e
% o e, % e o —
I e B o e g
» P ——
e ——
" 0

N/

Distance [m]

Depth TIME
Depth TIME

z
H

Distance [m]

e “ —
Teb - _==3= Td _EE=S==]
- “w  I=E====
g4, === o ==
—_—
ST /] X 7
Q. . o
2 8:
Distance [m] Distance [m]
Fig. 5 Amplitude contours of | synthetic

seismograms on the surface of the model shown
on Figure 3. Excitation is a Ricker pulse of
0.25 Hz central frequency. Only positive
values are contoured at intervals of 10%4 of
maximum amplitude. (a) and (b) Horizontal and

vertical component, classical reflection
coefficients. (c) and (d) Horizontal and
vertical component, modified free surface

reflection coefficients.

3.1 Formulation of the problem

Stresses in a viscous fluid can be written as
crlj=-p8U +plJ (1)
where p is the pressure, 811 is Kronecker’s
symbol and p‘j the stress related to strain

rate. For a Newtonian fluid

P, =2u€u (2)
where p is viscosity and i:”

rate tensor. The equation of motion in the
fluid is then given by

is the strain

pV=F-Vp+uVvi+ pV2V (3)

where v =
vector and the point
with respect to time. We have four unknowns
(3 velocity components plus pressure). The
fourth equation is given by mass conservation
which can be written as (Morse and Feshbach,
1953)

velocity vector, F= volume force
indicates derivative

p=-k div § (4)

where k=f1luid compressibility and 3=
displacement vector. The system of equations
is decomposed using Helmhotz potentials and
accepts a solution in terms of plane waves
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Fig. 6 Diagram showing the different waves in
the case of an irregular viscous fluid layer
on an elastic half-space. A and B are the
pressure waves in the fluid. C and D are
shear waves in the fluid. F and G are
diffracted elastic waves in the half-space.
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wz/cz=k2+gf (5)
and

-piw/p=k2+g: (8)

where c2=(x+2uiw)/p and 8, &< vertical wave

numbers.

We need now impose boundary conditions to
the problem. The free surface 1s linearized
in the same way as in the preceding section,

which allows to obtain free surface
reflection coefficients for the waves
propagating in the fluid. Resulting

expressions are too lengthy to be given here.
Continuity conditions along the irregular
boundary between the solid and the fluid are
satisfied numerically using Aki and Larner’s
method.

3.2 Results

We lack again constraints on the geometry or
the mechanical properties that a layer of
“fluidified" clay would have. We can only be
sure that our model must include some amount
of viscosity (for example, glycerine
viscosity is 2.33 Pa s, and clay must be more
viscous than glycerine). We have again
performed a series of tests, from which we
present results for only one geometry and

vertical incidence of SV waves (our model is
almost transparent for P waves). Other
results are consistent with the one

presented. The model we have chosen, shown on
Figure 6, 1is an irregular viscous fluid
layer, whose depth varies from 5 m at the
edges of the model to 15 m at the center of

florizonla) component

Vertical companent

Fig. 7 Displacement transfer functions on the
surface of the model shown on Figure 6 for
vertical incidence of SV waves. The fluid is
non viscous.

the model. The resulting transfer functions
for zero viscosity and vertical incidence of
SV waves are shown on Figure 7. It can be
seen that there 1Is a very significant
amplification of surface motion, but only at
low frequencies (under 0.2 Hz). As there s

no viscosity, all motion at the surface come
from diffraction of elastic waves along the
irregular interface solid/fluid. Synthetics
for this case (not shown) consist
predominantly of surface waves with a phase
velocity of 9 m/s and 50 m wavelength; very
clearly gravity waves. Results in the time
domain are summarized in Figure 7. Synthetic
seismograms are shown for 3 points at the
surface of the model and for the two motion
components, considering 4 different
viscosities. In the case of zero viscosity,
high amplitude, surface wave arrivals give
rise to very long seismograms, but they are
rapidly attenuated in presence of viscosity
and practically disappear for u=300 Pa s.

4 CONCLUSIONS

Concerning gravity effects in an elastic
medium we may conclude that 1if gravity
effects in an elastic solid are related to
the P pole (as supposed by Gilbert, 1967),
the influence of this pole is very small for
the high Poisson ratios we have investigated
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Fig. 8 Synthetic seismograms at 3 points on
the surface of the model shown on Figure 6
for 4 different values of viscosity p.

(and Mexico City clay has a very high o). We
have shown that gravity affects phase and
group velocities of Rayleigh waves but that
there is no change in the nature of ground
motion, nor is the duration of motion at the
surface affected in a significant way.

We have successfully modeled gravity waves
in fluids as the diffraction of elastic waves
on an irregular interface solid/fluid, and
shown that elastic/fluid/gravity coupling
effects in closed basins are extremely
efficient. We believe this model to be of
utility to study hydrodynamic pressures in
dams or other closed fluid reservoirs. As
regards the application of this model to
Mexico City, we have shown that gravity
surface waves in the fluid are strongly
affected by moderate amounts of viscosity.
Thus, If Mexico City's clay behaves as a
fluid, the viscosity it would probably have
inhibits gravity waves and duration of
simulated ground motion falls too short of
observations.

We have gone a long way to introduce the
effect of gravity in wave propagation
phenomena. We believe that we have covered
all reasonable possibilities. According to
our results an explanation of the long period
high amplitude late arrivals in Mexico City
strong motion data in terms of gravity
effects is extremely unlikely.
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