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Constitutive relations for dynamic soil behaviour
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ABSTRACT : After a general presentation of constitutive relations which are able to describe
dynamic/cyclic soil behaviour, we discuss a key point in modelling plastic strains for cyclic or
non-proportional loading : that is the so-called “incremental constitutive non-linearity”, i.e. the
fact that the relation between incremental non-viscous strain and incremental stress is non-linear.
With respect to this basic question we will give an overview of all the existing models. Finally
by using a briefly presented constitutive relation we consider three kinds of typical applications

related to dynamic problems :

- cyclic liquefaction of sands,

- non-proportional loading with closed loops,

- non-proportional loading with multiple sharp bends.

1- INTRODUCTION

The constitutive relation is now generally considered as
a key point in a finite elements computation, developed
to model the response of a structure or an engineering
work submitted to certain loading. This constitutive
relation allows to describe the mechanical behaviour of
the various materials or media. It is usually recognized
that the linear visco-elasticity - even if it has been used
for many analytical developments - is not a convenient
framework to describe quantitatively the response of
soils to dynamic or cyclic loading as soon as the strain
levels are more than, let’s say, 10-4 (or 10-2 %) (Hicher
1985).

The purpose of this paper is therefore to focuse on
constitutive models, which are of elasto-visco-plastic
type and able to describe the mechanical response of
soils outside their linear visco-elastic domain. In such
situations we observe experimentally instantaneous rate-
independent irreversible strains, that means plastic
strains. We will see farther how we can describe these
plastic strains.

The constitutive aspects which characterized dynamic
problems are both :
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1 - Dynamic loading implies generally a high loading
rate. Therefore viscous materials will exhibit rate
dependent effects as, for example, an increase of their
strength. In order to describe such effects it is necessary
to define a viscous constitutive term in the constitutive
model.

2 - Generally the soil domain is submitted to a high
number of repeated loading, what implies that multiple
changes in the local incremental loading direction are
appearing. In order to describe the soils response to
such changes we need to define a rate-independent
constitutive tensor which must vary in a convenient
manner with the incremental loading direction.

Both these points will be taken into account in the next

paragraph.

2 - FORMULATION OF CONSTITUTIVE
RELATIONS

Constitutive relations are based on the principle of
determinism. This principle, in the field of rheology,
can have two different formulations : “in the large” and
“in the small”.



2.1 - Principle of determinism in the large

Considering a mechanically homogeneous sample, this
principle implies that a given loading path induces a
determined and unique response path. It is important to
notice that any relation doesn’t exist between the current
stress state and strain state but rather between stress
path and strain path.

Indeed it is obvious from an experimental point of view
that, as soon as there are some viscous or plastic
strains, an infinite number of strain states can be put in
relation with a given stress state.

Mathematically such a relation implies the existence of a
tensorial functional between strain history and current
stress state.

In small strains we can write :

ol =%F [g(7) (1)

~o < TSt

In relation (1) the functional ¥ has two main

properties :

1. That is a non-linear functional. If not, we obtain the
limited framework of the linear visco-elasticity.

2. That is a non-differentiable functional. If not, Owen
and Williams (1969) have demonstrated that for non-
viscous materials the assumption of differentiability
implies the absence of any internal dissipation.

As it is difficult to manage a non-linear and non-
differentiable functional, that is more efficient to
consider an other expression of the principle of
determinism.

2.2 - Principle of determinism in the small
Letus call :
incremental strain : de = D dt, where D is the strain rate

ensor,

. v v, s
incremental stress : dg = g dt, where g is an objective
derivative of the Cauchy stress tensor.
The principle of determinism implies that a “small”
loading applied during time increment dt induces a
determined and unique “small” response.
Mathematically we obtain a tensorial function between
de, doanddt:

E(de, do, dt)=Q (2)
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The function defined by relation (2) has also two
noticeable properties :

1. That is a non-linear function. If not, we are not able
to describe any plastic deformations, because Plasticity
needs a non-linear relation between de and dg (see
further paragraph 3).

2. That is an anisotropic function, since F depends on
some state variables (for example, the stress tensor) and
memory parameters which characterize the previoys
strain history. For that reason if we rotate the
incremental stress, the incremental strain will not rotate
in the same way.

Now we assume that it is possible to decompose the
incremental strain into an instantaneous part and a
deferred one :

de = (d&)instantancous + (€ Meerrea (3)

The instantaneous strain has an elasto-plastic nature by
definition and is rate-independent. Thus it depends only
on the incremental stress :

(d€Ninstantancous = G (4G) {4)
The differed part is viscous, rate-dependent and is a
linear function of dt :

(€ Jaeferrea = C dt (5)
Finally we obtain the general formulation :
de=G (dg)+Cdt (6)

In paragraph 3 we will consider successively the
viscous tensor C and the elasto-plastic function G.

3 - VISCO-ELASTO-PLASTIC RELATIONS
3.1 - The viscous tensor

The interpretation of the viscous tensor C in relation (6)
can be obained by considering creep loading, for which
the stress tensor keep a constant value. Thus, in small
deformations, for creep loading :

dg=0
As G(do) is rate-independent, we have :
G®=0
Therefore :

c=[&

de )9; = constant

)

In small deformations, the viscous tensor g is exactly
the creep rate of the material.



3.2 - The elasto-plastic tensor

In relation (6) the elasto-plastic part of the deformation
is given by : G(do).

In order to state more precisely the form of the tensorial
function G, we will consider first of all its three basic
properties :

1. G is an homogeneous function of degree one,
because of the rate-independency condition. Indeed the

behaviour of an elasto-plastic material is independent of
the loading rate. That means that if we multiply the

stress rate by any positive scalar A, the strain rate is
multiplied by the same scalar.
Thus :

YieR*:Lde=G(Adg) (8)

It comes :
Vie R*:GAde)=rGde) )
Identity (9) demonstrates that G is an homogeneous
function of degree one (in a restricted sense to the

positive values of A).

2. G is an anisotropic function of do.

As G depends on other arguments as state variables and
memory parameters, it is not an isowopic function of
do. This anisotropy describes the mechaniéal
anisotropy, which is generally observed for deformed
geomaterials.

3. G is a non-linear function of dg, because of plastic
irreversibilities. In such cases we know that, if dg

induces dg, - dg will not induce - de.

Thus :

G(-do) is not equal to : - G (do), what proves the non-
linearity of G.

Now we come back to the homogeneity property of G
and use the Euler’s Identity for homogeneous functions.
It comes :

where the partial derivatives 0G/d(dg) are

homogeneous functions of degree zero. Thus they

depend only on the direction of dg and not on its
intensity (i.e. its norm).
Finally the general expression of all elasto-plastic (rate-
independent) constitutive relations is given by :

' de=M (u)dg (10)
where :
u = do/ldgll characterizes the direction of do, with
kol = d5;do;
and the elasto-plastic tensor M is the gradient tensor of
the function G.
The fact that G is a non-linear function of dg - or in few
words the incremental non-linearity - implies the
directional dependency of the gradient tensor M with .
The incremental non-linearity is directly linked to the
existence of plastic irreversibilities. In dynamic loading,
where we have a high number of changes in the
incremental loading direction, it is particularly important
to use a convenient and quantitatively realistic
description of M with respect to u or, in other words, of
the incremental non-linearity.

4 - THE INCREMENTAL CONSTITUTIVE NON-
LINEARITY

Considering general relation (10) it is possible to
distinguish four different groups of rate-independent
constitutive relations with respect to the kind of chosen
directional dependency.

1. M is independent on the incremental stress direction.
Thus :
Vv do : M(u)=M (11)

Relation (11) characterises all the elastic laws. No
irreversible strains can be described. This elasticity can
be linear or non-linear (with a dependency of M with
the stress tensor), isotropic or anisotropic. In
“hyperelasticity” no internal dissipation can appear,
while in “hypoelasticity” some can occur.

2. M can take two values

The “simplest” way to describe plastic irreversibilities is
to consider two different determinations for M with
respect to a loading-unloading criterion.

Thus :
[ Alg).do<0:M(y)=M° .
| Alg). do>0: M (w=M*
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where Me is the elastic tensor associated to the
unloading domain and M¢P the elasto-plastic one
associated to the loading domain.

In the six-dimensional d¢ space, both these domains are

separated by an hyper-plane whose equation is given by :

Afg).dg=0.

We obtain here all the elasto-plastic relations with one
unique yield surface.

This yield surface or elastic limit can be confounded
with the flow rule or plastic potential (“associated
elasto-plasticity”) or not (“non-associated elasto-
plasticity”). Yield surface and flow rule are varying with
the previous strain history by means of hardening
parameters. If these surfaces varies homothetically, we
have an isotropic hardening ; if they can translate, that is
a kinematic hardening.

3. M can take four or more different values.
The general writing is given by :

J
\

We have here incrementally piece-wise linear

>

1(g)

)

g).do<0 "
: M., M2

~

M (u)

: (13)
.do>0

o g

n(Q

constitutive relations. All the elasto-plastic relations
with several yield surfaces and plastic potentials are of
this type. Following the different loading unloading
conditions which are verified or not by the current
incremental stress direction, M takes different
determinations (for n loading - unloading criterions, we
obtain 2™ different constitutive tensors M). All these
determinations are not independent but linked by a
continuity condition which must be verified at each
border between two adjacent domains. In elasto-plastic
theory this continuity condition comes from the
“consistency equation”.

These notions can be generalised without introducing
neither yield surface nor flow rule by the concept of
“tensorial zone” (Darve and Labanieh 1982), defined as
any domain in dg space where the constitutive relation
is tensorially linear.

4. M varies continuously with the incremental stress
direction
That can be considered as a generalization of the
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previous incrementally piece-wise linear relations. The
so-called “endochronic” models (Valanis 1971) are of
this type with an incremental non-linearity characterizeq

by the scalar lldgll (orin a dual form, lIdell)

dEi)' = Cijkl dO’k] + Dij |d\(_):| (14)
An other model has been proposed by Kolymbas
(1984), and more recently by Desrues and Chambon
(1991). The hypoplasticity developed by Dafalias
(1986) and issued from the elasto-plastic bounding
surface theory has an incrementally non-linear nature,
All the examples which will be presented in the next
paragraphs are all issued from two constitutive relations ;

1. The incremental “octo-linear” relation (Darve 1974)
which is piece-wise linear with eight different
determinations for the constitutive tensor.

[ts expression in stress-strain principal axes (unique
case considered for the applications in this paper) is
given by :

dey doy ldoy|
de; |= 1NN doy [+L(N*-NY)| ldoyl [(15)
d€3 d03 - |d0'3|

where N* and N- are two (3 x 3) matrices depending on

state variables and memory parameters.

2. The incremental non-linear relation of second order
whose general form is the following :

1 p
Idal
In stress-strain principal axes the previous form
degenerates with some added assumptions into the

dejj = Cija doy) + ikipq A0 dopq  (16)

following expression :

deg do,
[ de2 =-§~(N*+N,’) doa }
des dos (17)
(doy )
+51— (N*-N)| (doz
5 N
H (dos)?

ldol = V(do1}? + (doa)? + (dos)?

with

As it is not the purpose of this paper to detail any
particular constitutive relation, the reader will find
exhaustive presentations of this model in Darve and
Dendani (1989) and Darve (1990).



In conclusion the interest to use incrementally non-
linear relations lays on two different aspects. A practical
interest is the fact that it is not necessary to define
neither elastic domain nor plastic potential. It is well
known how it is difficult to characterize experimentally
both these surfaces, which vary in a complex manner
with the strain history.

More fundamentally we need incrementally non-linear
models in all the situations where the dependency of the
constitutive tensor with the incremental stress direction
is excited. That occurs in two kinds of problems :

1. Instabilities as :

- shear bands formation by bifurcation of the strain
mode from a diffuse one to a strictly localized one
(Darve 1984) ;

- loss of constitutive unicity by nullity of the jacobian
determinant of G function (Darve and Chau 1986)

- nullity of the work of second order.

2. Severely non-proportional paths as such encountered
in dynamic or cyclic situations.

Now we will concentrate on this second point by
considering three classes of such loading.

5 - LIQUEFACTION OF SANDS

The liquefaction is a phenomenon of constitutive type
defined by annuling the effective (intergranular) stresses
for a certain class of monotonous or cyclic loading
paths. Usually the liquefaction is studied both from
experimental and theoretical points of view for
“undrained” paths. In such a case the volume of the soil
sample is kept constant by preventing the water of a
saturated sample to go out or into the sample. With
strain controlled testing machines, which allow to
respect the no-volume condition, that is possible to
obtain liquefaction on dry samples. That is also possible
to reach a liquefied state by other loading, for example
with a dense sand by a dilatant proportional strain path
or with a very loose sand by a contractant proportional
strain path (Meghachou 1992).

For a given sand and a given class of loading (for
example, undrained path), it was showed
experimentally that monotonous liquefaction could be
reached at low initial density and cyclic liquefaction at

higher initial densities (the number of needed cycles for
liquefying increases as this initial density). The
liquefaction potential of a given sand is directly linked
to its contractancy potential for drained (monotonous or
cyclic) shear.

These now generally accepted results are illustrated on
fig. 1, where the liquefaction of Monterey loose sand is
modelled by the incremental octo-linear relation (eq.
(15)). At the left of this figure we see a continuous
plastic deformation without rupture in case 1, a classical
plastic failure in case 2 for a higher value of the initial
void ratio and finally a monotonous liquefaction in case
3 for the highest value of this void ratio. At the right of
fig. 1 a cyclic liquefaction is modelled for a value of the
initial void ratio equal to that in case 2.

6 - CIRCULAR LOADING PATHS

To study such paths is interesting for basic reasons in
relation with dynamic problems. Indeed let us consider
any kind of repeated loading for which the same level of
stress is reached successively many times. At a given
point inside the geomaterial domain the stress (but not
necessarily the strain !) will also go through the same
value many times. That means that if we plot the stress
path inside the six-dimensional stress space we will
obtain a closed loop.

For such closed loops the direction of the incremental
stress (tangent to the loop) is constantly changing. Thus
a circular loading path will exhibit the same kind of
difficulty in order to model quantitatively the strain
response than any closed loop.

Such a circular path in a deviatoric stress plane (the
mean pressure is therefore kept constant and the three
principal stresses are varying in such a way that the
stress state follows a circle in the three-dimensional
principal stress space) was used as a benchmark test at
the International Workshop on Constitutive Equations
for Granular Non Cohesive Soils, held at Cleveland in
July 1987 (Saada and Bianchini 1989). The results of
the predictions, which have been obtained with our
incremental non-linear model (eq. (17)), are compared
with the experimental measures on fig. 2. The
agreement can be noticed taking into account the fact
that it is predictions class A without knowing
previously the experimental results. At the top of the
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figure the principal strains variations and volume
variations are plotted, at the bottom that is the response
projected on a strain deviatoric plane.

The same kind of circular stress path was investigated,
in order to compare octo-linear and non-linear models.
Fig. 3 shows an appreciable difference between both
these models. Let us recall here that both these relations
have exactly the same constitutive constants with same
values. They differ only by their structure in the sense
that the octo-linear model is piece-wise linear with eight
determinations for the constitutive tensor while the non-
linear model is incrementally non-linear with a
continuous variation of the constitutive tensor with the
incremental stress direction. That illustrates the fact that
for such circular path the kind of dependency of M with
u has a drastic influence on the response.

7 - LOADING PATHS WITH MULTIPLE SHARP
BENDS

The objectives in studying such paths are both :

1. to verify a sort of consistency condition by
comparing responses obtained for a rectilinear
proportional loading and for a path close to it and
formed by a high number of small cycles surrounding
the proportional path,

2. to discuss the validity of the principle of
superposition for incremental loading.

This principle is not generally valid, since the
incremental non-linearity implies that :

G(do! + dgz) is not equal to : g(dgl) + 9((132).

However we know that stress or strain controlled
testing machines allow to follow in an approximated
manner only a prescribed path practically with
successive “small” steps. Based on the fact that the
principle of superposition is not verified a question
arouses : is a systematic error induced by such a
procedure or not ?

Using the incremental non-linear relation E. Flavigny
and M. Meghachou have compared responses obtained
for both these kinds on paths : the direct proportional
one and some near ones with sharp bends (Darve,
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Flavigny and Meghachou, 1992).

Figures 4 and 5 show such results for a drained triaxia]
path compared with a path decomposed into isotropic
loading and constant mean pressure loading. Fig, 4 i
concerned by a dense sand and fig. 5 by a loose one,
The influence of the length of the bends is visible on the
figures. Two main results can be exhibited :

1. When the length of bends tends to zero value, the
response curves are converging,

2. This converged response does not coincide with the
response given by the direct rectilinear path, but both
are very near.

g,

)

a o,
non-linéaire

9,

~4.

~-3.

.

~10. =-7. -4. -1. 2. 5. 8.

Figure 3 : Comparison between results given by the
octo-linear model (black points) and the non-linear
one (white points) for a circular stress path in a
deviatoric stress plane, followed twice in opposite
sense.

(Chau 1989).



500

400

(kPa)

300

200

01—03

100

prn e b b by by

0;=100 kPa

o

I
100 200 300

500

400

(kPa)

300

200

01—03

100

o

cad v b

|

.......

5.0 10.0 15.0 20.0

crr e e b by

0.0

5.0 10.0 15.0 20.0
Eq%

Figure 4 : Comparison between results given by the incremental non-linear model for a
rectilinear drained triaxial path and step paths with different lengths of the step. Case of a

dense sand.
(Meghachou 1992).

6569



300 _
b 0;=100 kPa
? -
& 200+
n ] o
o) = 3‘5\
| _ '
100 o O
@) . IS
0 T T T T T — L B— T T
0 50 100 150 200
P (kPa)
2000
S 1500
Q.‘ -
) -
~ -
o 1000
o N
| i
- —
O 500
: ***vrm‘ﬂw*""“"’** s
0 e I SRS SEEe o B S S S S m——
0.0 5.0 10.0 156.0 20.0
€1 %
0.0
2.0 Sv
3 Y
—1 =~ —~ oy G|
8&> 4.0 - — e
w ]
7 *¥*x¥ experience
6.0 —
7
B
8.0 T T T T T T T T r T o e e
0.0 5.0 10.9 15.0 20.0
Eq4 %

Figure 5 : Comparison between results given by the incremental non-linear model for a
rectilinear drained triaxial path and step paths with different lengths of the step. Case of a

loose sand.
(Meghachou 1992).

6570



{000
= 70 7
& ] A v
S— b /// :'?27' |
: e
w500 - - v
o i o~ Z
| ] e 4
@ %
_ o 7
O 250 o s Z
0 T T T T T T = T T T T ; T T —
0 200 400 600 800
P (kPa)
1000
= 750 - R P N
=5 — ke F¥m T T
= .
o 500 —
- ] o gonooo & D!'——B___a_'__g___u_._—ﬂ—-——-
| ; dove
5 . oo
S 250 — I
7 N e i - *
s L N T T T T T T T T
0.0 5.0 10.0 15.0 20.0
0.0 —a
2.0
4
2 - experience = I =
P40 i, = 160 kPa T LY
W | ooooog; = 350 kPa
| ##xxxg; = 600 kPa
6.0
8.0 b g e e T T SN T P SR
0.0 5.0 10.0 15.0 20.0

& 1 %
Figure 6 : Comparison between results given by the incremental non-linear model for rectilinear
constant mean pressure (160 kPa, 350 kPa, 600 kPa) paths (diagrams represented by dashed
lines) and for sharp bends paths (diagrams represented by continuous lines). Points are

experimental results.
(Meghachou 1992).

8571



Fig. 6 considers an other case with a rectilinear constant
mean pressure path compared with sharp bends paths
constituted by drained triaxial loading and isotropic
unloading.

Here also the figure shows that the responses are
different but near.

In conclusion an incremental non-linear relation can
model a high number of small cycles without obtaining
unrealistic results. The principle of superposition for
incremental loading, even if it is not verified strictly
speaking, remains usable in order to confirm
experimental results obtained by certain testing
machines.

8 - CONCLUSION

The linear visco-elasticity, which is conventionally
utilised in dynamics, has a domain of validity restricted
to the very small deformations (less than 10-2%). For
larger strains we need to take into account plastic
irreversibilities inside the framework of a visco-elasto-
plastic model. The basic difficulty lays on the fact that
for describing plastic deformations the incremental
constitutive relation must be non-linear : that is the
essential question of incremental non-linearity. We have
discussed the various ways available to describe this
non-linearity.

Moreover plastic strains are largely dependent on the
previous strain history. Some memory parameters are
needed. This memory is not so rapidly erased as in
viscosity. Indeed two kinds of memory parameters must
be defined : discrete ones and continuous ones (Darve
and Dendani 1989, Darve 1990). The question of the
description of the memory has not been considered in
this paper.

Considering the most advanced constitutive models we
have showed how they can describe monotonous and
cyclic liquefaction of sands. Circular loading is an
interesting approximation of closed paths, as they are
encountered in dynamic problems. Conventional elasto-
plastic relations are usually not able to describe such
paths (Saada and Bianchini 1989) essentially because of
the very large variation of the incremental stress
direction. Incrementally non-linear relations with

6572

adequate memory parameters seem to be more powerfy]
as we have seen on an example.

Usually in dynamic loading we are confronted to a very
high number of changes of the incremental stress
direction. Thus it is important to validate models with
respect to their stability for a high number of smal
perturbations. We have considered such cases ang
discussed in the same framework the validity of the
experimental results issued from testing machines
utilizing a feed-back loop device, by confirming them
largely.

While utilizing linear visco-elasticity analytical
developments are possible for conventional boundary
conditions, the incremental non-linear models as the
more classical elasto-plastic ones need to be
incorporated into a finite elements code in order to be
applied to practical boundary problems. Such codes
which can solve cyclic and dynamic problems in
engineering practice (Pastor Zienkiewicz and Chan
1990, Aubry and Modaressi 1990, Meimon,
Lassoudiére and Kodaissi 1987, Prevost 1981,...) are
now available even if many questions in relation with
dynamic modelling stay still open : some of them have
been approached in this paper !
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