A SIMPLIFIED PROCEDURE TO MEASURE AVERAGE SHEAR-WAVE VELOCITY TO A DEPTH OF 30 METERS (VS30)

Leo T BROWN¹, John G DIEHL² And Robert L NIGBOR³

SUMMARY

This paper introduces a preliminary, simplified procedure for estimating the average shear-wave velocity in the upper 30 m (Vs30). Vs30 is used in the NEHRP Provisions and the new 1997 Uniform Building Code to separate sites into different classes for engineering design. Unlike traditional shear-wave velocity measurements made in boreholes, the new method is based on Rayleigh wave propagation and is performed on the ground surface.

Rayleigh waves are dispersive when propagating through a layered medium. The Rayleigh-wave phase velocity varies with frequency or wavelength, depending mainly on the shear-wave velocity over a depth of approximately one wavelength. It is shown that Rayleigh-wave phase velocity at a wavelength of 36 m, VR36, is highly correlated with Vs30. Fundamental-mode Rayleigh-wave dispersion curves were calculated for 40 seismic velocity profiles and simple linear regression was done to obtain a predictive equation for Vs30. The most practical equation is Vs30 = 1.076 VR36 (r²=0.99), with a 95% confidence interval of approximately +/-10%.

Several tests were carried out to evaluate this new Vs30 method. Vs30 was estimated using VR36 for ten velocity profiles not used in the regression analysis. The differences between actual and predicted values of Vs30 are within the +/-10% error bounds, with all site classes correctly predicted. In addition, surface-wave dispersion data were measured at two sites using a simplified version of the spectral-analysis-of-surface-waves (SASW) method and the estimated Vs30 compared with previously measured Vs30. Generally, the agreement is good, with differences due in part to lateral variability and the inherent differences between downhole and surface wave testing. Although further refinement is necessary, this method promises to be an accurate and cost-efficient way of determining Vs30.

INTRODUCTION

Shear-wave velocity (Vs) has long been known to be an essential parameter for evaluating the dynamic properties of soils. The average shear-wave velocity in the top 30 m, based on travel time from the surface to a depth of 30 m, is known as Vs30. Vs30 is used in the NEHRP Provisions [BSSC, 1994] and the new 1997 Uniform Building Code to separate sites into different classes. The classifications are then used to determine the seismic coefficients for earthquake-resistant design. The expectation is that sites in the same class will respond similarly to a given earthquake. Other applications include seismic risk or PML studies, strength evaluation of existing structures, and characterization of seismic instrument sites.

Traditionally, Vs30 is determined by seismic measurements in boreholes, using the downhole, crosshole, or suspension logging methods. Faster and more cost-effective methods are needed to accurately measure Vs30. Techniques based on the inversion of surface-wave dispersion data offer the advantage of not requiring boreholes.

¹ GEOVision, Division of Blackhawk Geometrics, 1785 Pomona Road, Suite B, Corona, CA 92880 Email: lbrown@geovision.com
² GEOVision, Division of Blackhawk Geometrics, 1785 Pomona Road, Suite B, Corona, CA 92880
³ GEOVision, Division of Blackhawk Geometrics, 1785 Pomona Road, Suite B, Corona, CA 92880
Spectral-analysis-of-surface-waves (SASW) testing is a proven, non-destructive seismic method that is used to determine the variation of shear-wave velocity (V_s) with depth [Stokoe et al., 1994; Stokoe et al., 1989; Brown 1998]. The basis of the SASW method is the dispersive characteristic of Rayleigh waves when propagating in a layered medium. The Rayleigh-wave phase velocity primarily depends on the material properties (shear-wave velocity, compression-wave velocity or Poisson’s ratio, and mass density) to a depth of one wavelength, as shown in Figure 1. The variation of phase velocity with frequency or wavelength is called the dispersion curve. See Figure 2. SASW testing consists of collecting surface-wave phase data in the field, generating the dispersion curve, and then using iterative modeling to back-calculate the corresponding V_s profile. From the V_s profile, V_{s30} can be calculated.

![Amplitude of Depth vs. Amplitude of Surface](image)

Figure 1. Variation of Rayleigh-wave particle motion with depth for a halfspace with different values of Poisson’s ratio, ν, (modified from Woods [1968]).

![Material Profile and Measured Surface Wave Velocity](image)

Figure 2. A) The theoretical basis of SASW testing is that Rayleigh waves of different wavelength penetrate to different depths and sample different material. B) The measured Rayleigh-wave dispersion curve is characteristic of the material properties at the site.

BASIS OF V_{s30} METHOD

The V_{s30} number alone contains much less information about the site than the complete V_s profile or dispersion curve. Therefore, it is probable that V_{s30} can be obtained from less dispersion data and computational modeling. Several observations support this. Like V_s, Rayleigh-wave phase velocities depend on the material
properties averaged over depth. Average V_s profiles obtained from theoretical and simplified empirical analysis of dispersion curves both compare well with borehole V_s profiles, although there may be differences in the interval velocities in the different profiles [Brown, 1998].

The new method presented herein is a simplification of the SASW method, providing only a single number corresponding to the average shear-wave velocity in the top 30 m. Data acquisition is less extensive and faster, and the analysis is also simpler, so that a preliminary interpretation can be done on site. The method is based on the correlation between Rayleigh-wave phase velocity and V_{S30}, as described below. The field procedure consists of measuring only those phase velocities necessary to accurately estimate V_{S30} using an empirical predictive equation.

The predictive equation was developed using linear regression on a set of Rayleigh-wave dispersion curves and V_{S30} values that were calculated from seismic velocity profiles. Profiles were selected that contained shear- and compression-wave velocity (V_p) data from the surface to a depth of approximately 80 m or more. The requirement for V_s profiles with measured V_p profiles is necessary because the dispersion curve is affected by the V_p profile and V_{S30} is not.

Of the 50 profiles selected, 26 are from downhole seismic testing, 20 are layered models interpreted from OYO suspension logging profiles, and 4 are of unknown method. The V_s, V_p profiles were selected from three main sources: the Pacific Engineering and Analysis database, USGS Open-file Report 99-xxx [Gibbs et al., 1999], and the ROSRINE data set [ROSRINE]. Twenty-eight sites are in Southern California, twenty are in Northern California, and two are located outside of California. Thirty profiles are site class D, and ten each belong to site classes E and C. The classification system is shown in Table 1. Since this new V_{S30} method is intended for use at soil sites, rock sites were not included in the data set. The cumulative frequency plot of V_{S30} for the data set is shown in Figure 3.

Table 1. Site classifications from the *NEHRP Provisions* [BSSC, 1994].

<table>
<thead>
<tr>
<th>Soil Profile Type</th>
<th>Description</th>
<th>Geotechnical Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Hard rock</td>
<td>$V_{S30} > 1500$ m/s</td>
</tr>
<tr>
<td>B</td>
<td>Rock</td>
<td>760 m/s $< V_{S30} \leq 1500$ m/s</td>
</tr>
<tr>
<td>C</td>
<td>Very dense soil and soft rock</td>
<td>360 m/s $< V_{S30} \leq 760$ m/s or $N > 50$ or $s_u \geq 100$ kPa</td>
</tr>
<tr>
<td>D</td>
<td>Stiff soil</td>
<td>180 m/s $< V_{S30} \leq 360$ m/s or $15 \leq N \leq 50$, or 50 kPa $\leq s_u \leq 100$ kPa</td>
</tr>
<tr>
<td>E</td>
<td>Soil</td>
<td>$V_{S30} < 180$ m/s or any profile with more than 3 m of soft clay with PI>20, w $\geq 40%$, and $s_u < 25$ kPa</td>
</tr>
</tbody>
</table>

For each V_s, V_p profile, the fundamental-mode Rayleigh-wave dispersion curve was calculated using WinSASW, a surface-wave modeling program developed at the University of Texas at Austin [Joh, 1992; Roesset et al., 1991]. Modeling was done in the wavelength rather than frequency domain, because wavelength is related more closely to depth of penetration. Phase velocities were calculated for wavelengths from 1 to 90 m. A constant mass density of 1.92 g/cc for each profile was assumed. This is reasonable because the effect of changes in mass density on phase velocity within the normal density range encountered in geotechnical engineering is small (1-2%), and density data were not available.

From the 50 profiles, data from 10 profiles were randomly selected (2 each from site classes E and C, 6 from site class D) and removed from the data set. Simple linear regression was done on the data from the remaining 40 profiles. V_{S30} is most highly correlated with the Rayleigh-wave phase velocity at a wavelength of 36 m (V_{R36}). The regression plot and residuals are shown in Figures 4a and 4b respectively. The degree of correlation is high ($r^2 = 0.9879$) and the standard error is 13.7 m/s. The constant (y-intercept) was fixed at 0 because the effect on the regression was minimal. Based on the regression, the predictive equation for V_{S30} is:

$$V_{S30} = 1.076 \times V_{R36}. \quad (1)$$
Figure 3. Cumulative frequency plot of V_{S30} for the profiles in the data set, with NEHRP site classes shown.

The error bounds are approximately +/-10% of the estimate for a 95% confidence interval. Multiple linear regression does not improve the correlation appreciably. For two variables, the standard error is only reduced to 13 m/s. With sixteen variables (wavelengths from 2 to 80 m), the standard error is 12.4 m/s. Considering the possible sources or error in measuring Rayleigh-wave phase velocities, using only one variable, V_{R36}, is most practical.

![Cumulative Frequency Plot](image)

Figure 4. A) Comparison of V_{S30} versus V_{R36}, with regression line and equations given. B) Residuals.

PROCEDURE OF V_{S30} METHOD

Because only one point in the dispersion curve, V_{R36}, is needed to estimate V_{S30}, the standard SASW testing procedures were modified. The general SASW testing setup is shown in Figure 5 and summarized below [Joh; 1997; Brown, 1998; Brown et al., 1999]. A vertical dynamic load at the surface generates mainly Rayleigh waves, which are monitored by two receivers. A dynamic signal analyzer or PC-based data acquisition system records the ground motions, transforms the time-domain records into the frequency domain, and calculates the cross power spectrum and coherence. After the wrapped phase angle of the cross power spectrum is unwrapped through an interactive process called masking, the dispersion curve is calculated by:

$$V_{R} = f * d_{f} / (\Delta f / 360^\circ),$$

(2)
where f is frequency, d_2 is the distance between receivers, and ∆φ is the phase difference in degrees.

Vertical dynamic source: forward configuration

Dynamic signal analyzer with disk drive

Horizontal dynamic source: reverse configuration

Figure 5. Basic configuration of SASW measurements (Modified from Joh, 1997).

To acquire phase data to generate a dispersion curve over a wide range of wavelengths, practical and theoretical considerations require the use of many receiver spacings. For this new V_{S30} method, one or two source-receiver spacings are used. Theoretical studies (and field testing) have shown that the most favorable dispersion curve is obtained when the distance from the source to the first receiver, d_1, is around one to two wavelengths and the distance between receivers, d_2, is equal to d_1 [Sanchez-Salinero 1987; Roesset et al, 1990]. To avoid near-field effects associated with surface waves and body waves, wavelengths are included in the dispersion curve if they are shorter than 2*d_1. For sites at which the shear-wave velocity profile increases gradually with depth, the measured dispersion curve with this source-receiver geometry is a good approximation of the fundamental-mode Rayleigh-wave dispersion curve [Foinquinos, 1991; Brown, 1998].

Based on these considerations, d_1 and d_2 both equal to 72 m or more would be optimal for measuring V_{S36}, but site access and signal attenuation make d_1 and d_2 of 36 m more practical. To minimize phase shifts due to differences in receiver coupling and lateral variability, the source location is also reversed (Figure 5). V_{S36} is calculated from the phase of the cross power spectrum using Equation 2 (with ∆φ = 360° for d_2 = 36 m). If spectral calculations are done in real time, a preliminary estimate can be made on site. However, because of noise in the data, the phase data are masked (unwrapped) for a range of wavelengths. The forward- and reverse-source dispersion data are combined and then smoothed through curve fitting before V_{S36} is determined. Equation 1 is then used to estimate V_{S30}.

EVALUATION OF V_{S30} METHOD

To evaluate the reliability of the regression equation, it was applied to the dispersion curves from the ten profiles not included in the regression. The predicted values of V_{S30} are compared with the actual values in Table 2. Values of V_{S30} are predicted within 10% and the site classifications are correct.

The 10% error bounds represent ideal conditions, because further uncertainty may be introduced in the field measurements, as discussed in the next section. For this reason, the V_{S30} method was tested at two sites at which previous V_{S} and surface-wave dispersion measurements have been done. The test sites, Sherman Oaks Park (SOP) and Jensen Filtration Plant (JMB), are shown in Figures 6a and 6b, respectively. To minimize the effects of lateral variability in the subsurface, the arrays were located as close as practical to the existing boreholes. A vacuum-assisted 100-lb weight drop was used as the seismic source, and the signals were recorded using Kinematics Ranger 1-Hz geophones and a dynamic signal analyzer. The results from the new V_{S30} method and existing V_{S} profiles are summarized in Table 3. The estimation of V_{S30} from Equation 1 using V_{S36} from previous SASW measurements and the calculated dispersion curve from the downhole profile are also shown for comparison.
Table 2. Comparisons of actual versus predicted values of V_{s30}, using Equation 1. Error and site classifications are also shown.

<table>
<thead>
<tr>
<th>Site Name</th>
<th>V_{s30}</th>
<th>Predicted V_{s30}</th>
<th>% Error</th>
<th>Actual Site Class</th>
<th>Predicted Site Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>192</td>
<td>172</td>
<td>176</td>
<td>2.0%</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>757</td>
<td>155</td>
<td>162</td>
<td>4.2%</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>PR2</td>
<td>240</td>
<td>246</td>
<td>2.6%</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>191</td>
<td>225</td>
<td>240</td>
<td>6.4%</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>695</td>
<td>272</td>
<td>268</td>
<td>-1.3%</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>1745</td>
<td>352</td>
<td>334</td>
<td>-5.5%</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>269</td>
<td>271</td>
<td>272</td>
<td>0.2%</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>PC3</td>
<td>204</td>
<td>218</td>
<td>6.4%</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>WVAS</td>
<td>397</td>
<td>397</td>
<td>-0.1%</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>JGB</td>
<td>526</td>
<td>501</td>
<td>-5.0%</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Figure 6. V_{s30} testing locations at A) Sherman Oaks Park and B) Jensen Filtration Plant.

At Sherman Oaks Park, there is little lateral variability in the subsurface, as shown by the consistency between the SASW results for the three arrays and the V_{s30} array, as shown in columns 1, 3, and 6 of Table 3. The results are most similar between SASW array 2 (270 m/s) and the V_{s30} array, which are also the closest spatially (Figure 6a). The V_{s30} prediction equation works fairly well here, as shown by the consistency between columns 2 and 5, and between columns 3 and 6 in Table 3. The ~10% difference between V_{s30} from the V_{s30} method and downhole testing is likely due to the different nature of downhole and surface wave measurements, as discussed in the next section. The results from both methods place Sherman Oaks Park in NEHRP site class D.

Previous borehole and SASW measurements have shown that there is considerable lateral variability at the Jensen Filtration Plant site [Brown, 1998]. As expected from the location of the V_{s30} array (Figure 6b), the results for the V_{s30} method (column 1 of Table 3) are in between those from the SASW array (column 3) and the downhole measurements (column 2). V_{s30} from suspension logging (column 4) is higher than that from the V_{s30} method and lower than V_{s30} from the USGS downhole V_s profile. A range is given for V_{s30} from suspension logging because of the uncertainty in the data in the top 9 m. For the velocity profiles at this site, the V_{s30} predictive equation imparts an error of approximately -5% to -10%, as shown by the comparison between columns 2 and 5, and columns 3 and 6. The difference between the V_{s30} method and downhole results at Jensen Filtration Plant is due to a combination of lateral variability, error in the predictive equation, and the inherent
differences between downhole and surface wave testing. Based on suspension logging, SASW testing, and the \(V_{S30} \) method, the site belongs to NEHRP site class D, whereas the downhole results classify it in site class C.

Table 3. Comparison of results from the new \(V_{S30} \) method (1) and previous \(V_S, V_R \) measurements. The downhole data (2) are from Gibbs et al. [1999], the SASW data (3) are from Brown [1998], and the OYO suspension logging data (4) are from ROSRINE [1996]. Equation 1 is applied to the calculated dispersion curve for the downhole profile (5) and the measured dispersion curve from previous SASW testing (6).

<table>
<thead>
<tr>
<th>Data Source/ (V_{S30}) (m/s)</th>
<th>New (V_{S30}) Method (1)</th>
<th>Downhole (V_S) Profile (2)</th>
<th>SASW Testing (V_S) Profile(s) (3)</th>
<th>OYO Suspension Logging (V_S) Profile (4)</th>
<th>Calculated (V_{R36}) from Downhole (V_S, V_P) Profiles * 1.076 (5)</th>
<th>(V_{R36}) from SASW Testing * 1.076 (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site SOP</td>
<td>272</td>
<td>302</td>
<td>275, 270, 291</td>
<td>-</td>
<td>304</td>
<td>281, 268, 296</td>
</tr>
<tr>
<td>JMB</td>
<td>323</td>
<td>373</td>
<td>300</td>
<td>345-353</td>
<td>340</td>
<td>284</td>
</tr>
</tbody>
</table>

DISCUSSION

Because the predictive equation was developed using theoretical fundamental-mode Rayleigh-wave dispersion curves and values of \(V_{S30} \), there is more uncertainty in the \(V_{S30} \) prediction than in the error bounds for Equation 1. There is uncertainty in measuring Rayleigh-wave phase velocities in the field. Theoretically, a vertical impact on a halfspace generates both body waves and Rayleigh waves, with 67% of the impact energy imparted to the Rayleigh waves, 26% to shear waves, and 7% to compression waves [Miller and Pursey, 1955]. The recorded phase data in the \(V_{S30} \) method is affected by refracted and reflected body wave energy, and possible higher modes of surface wave propagation.

At many sites, shear wave velocity increases gradually with depth due to sediment age, cementation, overburden pressure, etc., and the effect of non-fundamental-mode Rayleigh wave energy on the dispersion curve is minimal. Common exceptions to this situation include engineered fill over soft sediments, asphalt/concrete and compacted base material over softer sediments, and soft soil on shallow bedrock. The existing models used to calculate the dispersion curves assume that the subsurface is horizontally layered, laterally invariant, and isotropic. At sites that are in gross violation of these assumptions in the \(V_{S30} \) method, traditional SASW testing or another method should be used to calculate \(V_{S30} \).

Downhole seismic testing is a direct measure of \(V_{S30} \). However, the first wave arrivals in the seismic record represent the fastest travel path for seismic energy from the surface to a depth in the borehole. If the subsurface is non-homogeneous, the material sampled by downhole testing may have a higher velocity than the much larger volume of soil sampled by surface-wave measurements. Lateral variability in the subsurface may contribute further to the difference between the results of surface wave and borehole methods. However, the results from the \(V_{S30} \) method may represent the properties of the entire site better than a single borehole measurement. Because the \(V_{S30} \) field procedure is relatively fast, data can also be collected at several locations on site to assess the lateral variability.

The boundaries for the NEHRP/UBC site classifications are differences in \(V_{S30} \) of a factor of two (Table 1). Although the relative error between predicted and actual \(V_{S30} \) was not larger than 12% for any of the 40 sites in the regression, 5 sites were misclassified. If the +/-10% estimate range overlaps several classes, further testing may be necessary to determine site class with certainty. It is anticipated, however, that the \(V_{S30} \) method will be applied at sites where there are no shear-wave velocity data, and borehole seismic testing would be cost-prohibitive.

CONCLUSIONS AND RECOMMENDATIONS

The new \(V_{S30} \) method is a promising, cost-efficient alternative to traditional borehole methods used to measure \(V_{S30} \). For purposes of site classification, the accuracy of the \(V_{S30} \) method is more than adequate in most situations. The correlation of Rayleigh-wave phase velocities with \(V_{S30} \) is robust, although improvements to the preliminary \(V_{S30} \) method should be made before its general use.

Several options exist to overcome many of the assumptions in the preliminary \(V_{S30} \) method. Data processing and filtering techniques could be used to isolate the fundamental-mode Rayleigh-dispersion curve from the data [Park et al., 1999]. Such techniques require multiple-receiver arrays. Alternatively, the source and receiver...
locations could be incorporated into a model used to generate the “dispersion curves” based on full stress-wave propagation [Roesset et al., 1991], which could then be correlated with V_{S30}. Practical field testing using different receiver spacings would also be needed to validate this more sophisticated model.

Additional field testing is necessary to gauge the reliability of the V_{S30} method in its present form. More V_S, V_p profiles should be incorporated into the database to make sure that it is representative of site conditions likely to be encountered. Profiles should be included that fill in the data range in site class C, although the linear relationship appears to hold over site classes E, D, and C. The geographic distribution of profiles should also be more diverse if the method is to be applied generally.

REFERENCES

Joh, S.-H., 1992, User’s guide to WinSASW, a program for data reduction and analysis of SASW measurements, University of Texas at Austin.

ROSRINE Web site: http://rccg03.usc.edu/rosrine.

