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Abstract—Wireless Sensor Networks (WSNs) have gained
rapid popularity due to their deployment for critical applica-
tions such as defense, health care, agriculture, weather and
tsunami monitoring etc. However, such sensor networks are
fundamentally constrained by the data errors arising due to the
harsh power constrained sensing environment. In this paper, we
propose a novel multi-sensor vector prediction history tree (V-
PHT) decision algorithm for error correction in a wireless sensor
network (WSN). This scheme is based on the recently proposed
prediction history tree (PHT) algorithm for model based error
correction in WSNs. However, unlike the existing PHT model,
which exclusively exploits the temporal correlation inherent in the
narrowband sensor data, the proposed V-PHT model for sensor
data correction exploits the joint spatial and temporal correlation
in sensor data arising out of geographical proximity of the sensor
nodes. Towards this end, an optimal multi-sensor spatio-temporal
AR model is developed for predictive modeling of the sensor data.
Further, employing the spatio-temporal correlation structure
amongst the sensors, we develop a robust framework for optimal
estimation of the multi-sensor AR predictor model. Simulation
results obtained employing sensor data models available in
literature demonstrate that the proposed spatio-temporal V-PHT
model for error correction in a WSN results in a significant
reduction in mean-squared error (MSE) compared to the existing
PHT scheme which exploits only temporal correlation.

I. INTRODUCTION

Wireless sensor networks (WSNs) [1], [2], [3] are attracting
significant research interest due to their employability in a
wide spectrum of applications such as environment protection,
monitoring, health care, defense applications, disaster warning
systems etc. This has been possible to a large extent due to
the recent breakthroughs in semiconductor technology com-
bined with the rapid development of sophisticated wireless
technologies such as OFDM and MIMO [4], [5], which can
combat the adverse fading radio environment. WSNs are often
employed in harsh environments, which lack the infrastructure
for regular power supply. Hence, the limited battery power
of these sensor nodes makes them vulnerable to noise and
interference over the fading wireless communication channel,
resulting in erroneous reception of the sensor data at the cluster
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heads. Applying inefficient error correction techniques results
in an increase in the processing overheads, in turn increasing
the complexity of the system.

In previous related works such as [6] and [7], a data
imputation method which uses both spatial and temporal
prediction has been described. However, these propositions
only consider disruption of data collection due to packet losses
and not erroneous data detection, which is the critical adversity
in communication over fading wireless channels. The other
drawback of the previous approaches is the design of ad-
hoc predictors, which choose between the spatial or temporal
values rather than building an optimal predictor based on the
spatio-temporal correlation of the multi-sensor data. Hence,
in this context, we propose a robust vector prediction history
tree (V-PHT) scheme for sensor data correction at the cluster
heads, based on the prediction history tree (PHT) architec-
ture proposed in [8]. However, while the algorithm proposed
therein exclusively employs temporal sensor data correlation,
the proposed V-PHT model employs both spatial and temporal
correlation, resulting in a significant decrease in the net error
of the sensor data. Further, as will be clear from the later
sections, the performance of the V-PHT is directly related to
the accuracy of the multi-dimensional sensor data prediction
model. Hence, we present the associated optimal spatio-
temporal auto-regressive (AR) [9] model for multi-sensor data
prediction. Subsequently, we derive closed form expressions
for estimation of the optimal multi-dimensional AR coef-
ficients, thus comprehensively illustrating the procedure for
sensor data correction. The proposed V-PHT approach, which
employs the combined spatio-temporal redundancy inherent
in the sensor data for error correction, thus results in a
significant enhancement over existing schemes that exclusively
employ the temporal redundancy. The performance of the
presented framework is evaluated in a MATLAB based sim-
ulation environment employing realistic sensor data models.
Our simulation results clearly demonstrate that employment of
the V-PHT model for error correction results in a significant
reduction in the mean-squared error (MSE) of the aggregated
sensor data at the cluster head compared to the PHT scheme.



The rest of the paper is structured as follows. In the next
section we describe the optimal spatio-temporal WSN data
prediction model, followed by the procedure for optimal model
estimation. The V-PHT for multi-sensor error correction and
the associated decision algorithm is presented in III. The
decision algorithm proposed therein is a modified version
of the peer algorithm presented in [8]. Section IV describes
our experimental setup and simulation results for V-PHT
performance validation.

II. MULTISENSOR DATA MODEL

In this section we describe the model employed for multi-
sensor measurement prediction. We employ a multi-sensor
vector AR model for data prediction [9]. Such a model
accurately captures the spatio-temporal correlation amongst
the sensor nodes. Further, the accuracy of the AR model can
be readily enhanced by increasing the model order. Thus, one
can flexibly trade-off computational complexity for increased
prediction accuracy. The proposed multi-sensor AR model,
employed to characterize the spatio-temporal data character-
istics, integrates naturally the temporal correlation and spatial
cross-correlation of the sensed data and can be expressed
analytically as,

y (𝑛+ 1) =
𝑀∑
𝑘=0

A𝑘y (𝑛− 𝑘) , (1)

where y (𝑛) ∈ ℝ𝑠×1 is the multi-dimensional sensed data
vector at time 𝑡 = 𝑛, corresponding to the 𝑠 sensors of the
given cluster head. The AR coefficient matrices A𝑘 ∈ ℝ𝑠×𝑠

contain the coefficient values (estimated from the spatio-
temporal correlation structure). This model is characterized
by the model order 𝑀 , which can be adapted to achieve
the desired prediction accuracy. A higher value of 𝑀 results
in accurate modeling and a corresponding increase in the
modeling complexity. Hence, one needs to carefully choose
an appropriate value for the parameter 𝑀 . Below we describe
the procedure for estimation of the matrices A𝑘.

A. Vector AR Model Estimation

The coefficient matrices A𝑘, 0 ≤ 𝑘 ≤ 𝑀 can be evaluated
by adapting the standard Yule-Walker procedure for the above
multi-dimensional data prediction scenario. For simplicity of
illustration, consider the vector AR model of order 𝑀 = 2 for
𝑠 = 2 sensors. This model can be extended to the general case
of 𝑀 ≥ 2 and 𝑠 ≥ 2 in a straight forward fashion employing
the development below. From the expression (1), it can be
readily seen that resulting simplified AR model is given as,

y (𝑛+ 1) = A0y (𝑛) +A1y (𝑛− 1) .

Computing the inner product of the prediction error with
y𝑇 (𝑛) and y𝑇 (𝑛− 1) employing the principle of orthogonal-
ity, the equation to compute the optimal coefficient matrices
can be readily derived as,

E
{
(y (𝑛+ 1)−A0y (𝑛) +A1y (𝑛− 1))

𝑇
y (𝑛)

}
= 0,

C(0)A𝑇
0 +C(1)A𝑇

1 = C(1).

where the spatio-temporal correlation coefficient matrix
C(𝑝) ∈ ℝ𝑠×𝑠 of the sensor data vectors y (𝑛) ,y (𝑛+ 𝑝)
defined as C (𝑝) ≜ E

{
y𝑇 (𝑛)y (𝑛+ 𝑝)

}
is given as,

C (𝑝) =

⎡⎢⎢⎢⎣
𝑐11(𝑝) 𝑐12(𝑝) . . . 𝑐1𝑠(𝑝)
𝑐21(𝑝) 𝑐22(𝑝) . . . 𝑐2𝑠(𝑝)

...
...

. . .
...

𝑐𝑠1(𝑝) 𝑐𝑠2(𝑝) . . . 𝑐𝑠𝑠(𝑝)

⎤⎥⎥⎥⎦
The correlation coefficients 𝑐𝑖𝑗(𝑝) are defined as 𝑐𝑖𝑗(𝑝) =
𝐸(𝑦𝑖(𝑛)𝑦𝑗(𝑛 + 𝑝)). For 𝑖 = 𝑗, the coefficient 𝑐𝑖𝑖(𝑝) is
simply the temporal correlation coefficient of the the 𝑖𝑡ℎ

sensor corresponding to a lag of 𝑝 samples. For 𝑖 ∕= 𝑗,
𝑐𝑖𝑗(𝑝) characterizes the spatial cross-correlation between the
𝑖𝑡ℎ and 𝑗𝑡ℎ sensors, for a lag of 𝑝. Thus, the matrix C (𝑝)
comprehensively characterizes the spatio-temporal correlation
properties of the WSN. Hence, repeating the procedure above,
the complete set of Yule-Walker equations for estimation of
the coefficient matrices A𝑘, 0 ≤ 𝑘 ≤ 1 is given as,

C(1) = C(0)A𝑇
0 +C(1)A𝑇

1 ,

C(2) = C(1)A𝑇
0 +C(0)A𝑇

1 .

These equations above can be readily recast employing matrix
notation as,[

C(1)
C(2)

]
=

[
C(0) C(1)
C(1) C(0)

] [
A𝑇

0

A𝑇
1

]
(2)

Similarly, generalizing the above for 𝑠 sensors and model
Order 𝑀 , the resulting Yule-Walker equations to com-
pute the optimal 𝑠 (𝑀 + 1) × 𝑠 AR coefficient matrix
[A0,A1, . . . ,A𝑀 ]

𝑇 , which minimize the mean-squared pre-
diction error are given as,⎡⎢⎢⎢⎣

C(1)
C(2)

...
C(𝑀)

⎤⎥⎥⎥⎦ = 𝒯𝑀 (C)

⎡⎢⎢⎣
A𝑇

0

A𝑇
1

. . .
A𝑇

𝑀

⎤⎥⎥⎦ ,

where the block Toeplitz matrix 𝒯𝑀 (C) is defined in
terms of the spatio-temporal correlation coefficient matrices
C(0),C(1), . . . ,C(𝑀) as,

𝒯𝑀 (C) ≜

⎡⎢⎢⎢⎢⎣
C(0) C(1) ⋅ C(𝑀 − 1)
C(1) C(0) ⋅ C(𝑀 − 2)
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

C(𝑀 − 1) C(𝑀 − 2) ⋅ C(0)

⎤⎥⎥⎥⎥⎦ .

Hence, the AR coefficient matrices A0,A1, . . . ,A𝑀 can be
computed from the above equations as,⎡⎢⎢⎢⎣

A𝑇
0

A𝑇
1
...

A𝑇
𝑀

⎤⎥⎥⎥⎦ = 𝒯𝑀 (C)
−1

⎡⎢⎢⎣
C(1)
C(2)
. . .

C(𝑀)

⎤⎥⎥⎦ .

The computed coefficients above can be employed for predic-
tion of the multi-dimensional sensor data sample y (𝑛+ 1)



from the past samples y (𝑛) ,y (𝑛− 1) , ...,y (𝑛−𝑀) as
given by the AR model in (1). In the section below, we
describe the multi-sensor algorithm for sensor data correction.

III. MULTISENSOR ESTIMATION

In this section we describe the vector prediction history tree
(V-PHT) algorithm for spatio-temporal WSN data correction.
This is adapted from the PHT algorithm proposed for temporal
correlation based error correction in [8]. At any time 𝑡 = 𝑛,
every sensor 𝑖, 1 ≤ 𝑖 ≤ 𝑠 can be associated with two values,
viz. the observed value 𝑦𝑜𝑖 (𝑛) and the predicted value 𝑦𝑝𝑖 (𝑛).
When multiple sensors are sensing the same phenomenon, one
has to choose the correct value from amongst 𝑦𝑜𝑖 (𝑛) and 𝑦𝑝𝑖 (𝑛)
for each sensor. Ideally, the observed value 𝑦𝑜𝑖 (𝑛) is the most
accurate level in the absence of errors. However, in the event
of erroneous reception of the sensor data, the value 𝑦𝑝𝑖 (𝑛),
which is predicted from the past multi-dimensional sensor
data samples, employing the spatio-temporal AR model in
(1), is potentially closer to the true value. Hence, the V-PHT
procedure is aimed at decisively choosing the observed or
predicted value for each sensor so as to minimize the error
between the chosen and true values. A sub-optimal solution
in such a scenario is to choose independently for each sensor
from amongst (𝑦𝑜𝑖 (𝑛)) or (𝑦𝑝𝑖 (𝑛)). However, such a procedure
does not exploit the valuable information embedded in the
spatial correlation amongst the sensors, since a typical sensing
process is a narrowband spatial process. Thus, it results in a
much higher mean-squared estimation error for the corrected
sensor data.

Each V-PHT is characterized with its depth, defined as no.
of levels 𝐿 in the tree, which is also the decision delay. The
structure and update rules of a multi-sensor prediction history
tree can be illustrated with the help of the simplified example
for the 𝐿 = 3 level V-PHT corresponding to the 𝑠 = 2 sensor
case shown in Fig.1. At the current time instant 𝑛, The V-PHT
contains the observed and the predicted sensor values for time
instants 𝑛 through 𝑛−𝐿+2. The single node at level 𝑛−𝐿+1
corresponds to the chosen values (observed or predicted) at the
previous decision epoch. The total number of nodes 𝑇 in the
tree are is given as,

𝑇 =
2𝑠𝐿 − 1

2𝑠 − 1
.

Hence, the total number of nodes of the tree in Fig.1 is 𝑁 =
21, corresponding to 𝑠 = 2, 𝐿 = 3. Each level 𝑙 ∈ {1, 2, 3}
corresponds to the time instant 𝑡 = 𝑛− 𝐿+ 𝑙 and each node
splits into 2𝑠 = 4 possible outcomes listed below:

∙ OO: Both sensors 𝑆1, 𝑆2 assigned the sensed (observed)
values i.e. (𝑦𝑜1 (𝑙) , 𝑦

𝑜
2 (𝑙)).

∙ OP: Sensor 𝑆1 assigned the sensed (observed) value and
sensor 𝑆2 assigned the predicted value i.e. (𝑦𝑜1 (𝑙) , 𝑦

𝑝
2 (𝑙)).

∙ PO: Similar to OP, with 𝑆1 assigned the predicted value
and 𝑆2 assigned the sensed value i.e. (𝑦𝑝1 (𝑙) , 𝑦

𝑜
2 (𝑙)).

∙ PP: Both the sensors assigned the predicted values i.e.
(𝑦𝑝1 (𝑙) , 𝑦

𝑝
2 (𝑙)).

Fig. 1. Vector Prediction History Tree (s=2)

Hence, for the 𝑖𝑡ℎ node in the V-PHT above, the corresponding
child nodes can be labeled as 4𝑖+𝑘, 1 ≤ 𝑘 ≤ 4. The 0𝑡ℎ or the
root node contains the most recent corrected sensor data vector
i.e. y𝑐 (𝑛− 2) = (210, 205) in the above example. At the time
instance 𝑛, when the V-PHT encounters a sensor data sample
y (𝑛), the V-PHT is populated by computing all the values at
the predicted nodes i.e. the child nodes 4𝑖+𝑘, 2 ≤ 𝑘 ≤ 4 (The
node 4𝑖+1 corresponds to replicating the observed sensor data
values at each node 𝑖). The decision algorithm described below
is run on this V-PHT to choose the correct value y𝑐 (𝑛− 1)
amongst the nodes 1 ≤ 𝑖 ≤ 4.

Several algorithms can be employed for the selection of the
appropriate node as mentioned in [8], and we adapt the Peer
algorithm proposed therein to frame a modified Peer algorithm

Peer Set min Subtree of min
Error Node Error Node

{6, 10, 14, 18} 14 PO
{7, 11, 15, 19} 7 OO
{8, 12, 16, 20} 8 OO

TABLE I
TABLE LISTING MPA COMPARISONS FOR V-PHT IN FIG.1
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Fig. 2. Multisensor Model: Original Data for first sensor

i.e. multi-sensor Peer algorithm (MPA). MPA compares peer
sets of nodes in each subtree originating from the OO,OP,PO
and PP nodes at level 𝑛 − 𝐿 + 2 as the root nodes. For
instance, nodes 6, 10, 14, 18 in the V-PHT in Fig.1 form a
peer set. The comparisons are made in terms of the prediction
error, indicated next to each node. Consider node 10 in the
V-PHT example being considered. This corresponds to the
OP node at level 𝑛 belonging to the subtree originating from
the OP node at level 𝑛 − 1. Hence, the multi-dimensional
value assigned to this node is (205, 196), corresponding to
the observed value for 𝑆1 and predicted value for 𝑆2. Hence,
the associated error 𝑒10 is 210.0− 196.0 = 14.0 with respect
to the reported sensor data (205, 210) at level 𝑛. Similarly,
since the node 12 corresponds to both sensors assigned pre-
dicted values (209, 196), the associated error 𝑒12 is given
as, 𝑒12 =

√
1
2 (4

2 + 142) = 10.3. After comparisons of all
the peer sets, the root node of the subtree comprising of the
maximum peers with the lowest estimation error is chosen as
the decision node y𝑐 (𝑛− 𝐿+ 2) (y𝑐 (𝑛− 1) in the example)
at level 𝑛 − 𝐿 + 2. The results of MPA for each peer set
in the V-PHT shown are listed in table I from which it is
clear that the OO subtree has a greater number of peers with
lower prediction error. This is in turn made the root node at
level 𝑛−1 and the procedure above is repeated for successive
observations y (𝑛+ 1) and so on.

IV. SIMULATION RESULTS

Our WSN simulation setup for spatio-temporal error cor-
rection was implemented in MATLAB. We considered an
𝑠 = 2 sensor WSN and a three stage sensing phenomenon
corresponding to the time intervals 𝑛 <= 300, 301 ≤ 𝑛 ≤
700, 𝑛 > 700 (𝑁 = 1000 sensed samples), shown in Fig.2.
The sensor data for each state is generated by the AR model,

y (𝑛+ 1) = A𝑢
0y (𝑛)+A𝑢

1y (𝑛− 1)+ 𝑔1+w (𝑛+ 1) , (3)

where 𝑢 ∈ {1, 2, 3} denotes the stage and A𝑢
0 ,A

𝑢
1 are the

corresponding spatio-temporal AR coefficient matrices. The
vector 1 ∈ ℝ𝑠×1 ≜ [1, 1, ..., 1]

𝑇 and serves as the bias vector.
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Fig. 3. Multisensor Model: Observed Data for first sensor
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Fig. 4. Multisensor Model:Corrected data for first sensor

The noise w (𝑛+ 1) is additive spatio-temporally white Gaus-
sian noise with covariance matrix 𝜎2

𝑛I𝑠. The noise variance
𝜎2
𝑛 = 1. The matrices corresponding to the 3 stage generation

model are given in table II. The erroneous observed data
sets for both the sensors are simulated by randomly adding
errors at intervals of Δ𝑛 = 1

BER to the sensor data. The error
magnitudes are distributed uniform randomly in the interval
[−100, 100]. Fig.3 shows the observed data for BER = 10−1.
This erroneous observed data is shown in Fig.3. The prediction
coefficients are computed using the procedure described in
section II-A. The AR channel coefficient matrices for each
stage are calculated employing a training window consisting
of 𝑛𝑡 = 70 samples. It is assumed that we receive error free
data during the training period. This is possible by allocating
a larger power budget to the critical training phase to ensure
accuracy of data detection. The computed AR coefficient
matrices for the 3 stage model described above are given
in table II. Following the estimation of the AR coefficient
matrices, the MPA algorithm described in section III is applied
to the V-PHT and the corrected values of the sensor data are



Stage A𝑢
0 A𝑢

1 g Â𝑢
0 Â𝑢

1

Stage I
[

0.7 0.125
0.125 0.7

] [
0.1 0.075

0.075 0.1

]
0

[
0.69 0.24
0.06 0.62

] [
0.11 −0.05
0.18 0.14

]
Stage II

[
0.7 0.125

0.125 0.7

] [
0.1 0.075

0.075 0.1

]
-0.441

[
0.66 0.10
0.04 0.69

] [
0.09 0.14
0.16 0.09

]
Stage III

[
0.7 0.125

0.125 0.7

] [
0.1 0.075

0.075 0.1

]
0

[
0.53 0.35
0.32 0.36

] [
0.10 0.02
0.09 0.21

]
TABLE II

TABLE LISTING ACTUAL AND COMPUTED AR COEFFICIENT MATRICES
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Fig. 5. Multi-Sensor RMSE vs. No.of errors
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Fig. 6. RMSE comparison between MPA and Scalar Peer Algorithm

plotted in Fig.4. From a visual comparison of this plot with
the erroneous observed data in Fig.3, it can be readily seen
that application of the V-PHT based MPA algorithm results in
a significant decrease in the MSE of the corrected sensor data.
We plot the root mean-squared error (RMSE) vs number of
errors for each of the 𝑠 = 2 sensors in Fig. 5. The number of
errors is related to the BER as BER × 𝑁 . The plot therein
shows that the output MSE decreases as the frequency of
transient errors or essentially the BER decreases. In Fig.6 we
plot the RMSE vs number of errors for the existing temporal

correlation based Peer algorithm in [8] and the average sensor
RMSE for MPA. We clearly observe from the plot that RMSE
values are lower in the case of the MPA algorithm as compared
to the scalar PEER algorithm for PHT. Thus, the V-PHT, which
employs the spatio-temporal correlation, results in a significant
reduction in sensor error compared to the existing PHT.

V. CONCLUSION

In this work we have proposed a novel approach for multi-
sensor error correction in WSNs based on the rich spatio-
temporal correlation structure inherent in such a setup. We
developed the optimal multi-dimensional sensor data AR pre-
diction model, which naturally captures the spatio-temporal
structure of the sensor data. The procedure for the estimation
of the optimal vector AR model coefficient matrices has been
derived. Further, we described a novel vector prediction history
tree (V-PHT) algorithm and the associated MPA decision algo-
rithm for correction of erroneous reported multi-dimensional
sensor values. Simulation results demonstrate the superior
performance of the proposed multi-sensor error correction
scheme compared to the single sensor temporal correlation
based scheme existing in literature.
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