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ABSTRACT

The function approximation properties of scalon and wavelon
neural networks(WNN) are studied from a multi-resolution
analysis(MRA) perspective, It is then checked if a super-
position of these properties applies to an integrated scalon-
wavelon neural network(SWNN). Based on this, a heuristic
alogrithm is suggested for reducing the error of approxima-
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1. INTRODUCTION

Wavelet neural networks were first proposed and studied
for function approximation in {1] and [2]. Wavelet anal-
ysis has proved to be a powerful tool for signal represen-
tation and analysis [3]). The WNN was motivated by an
idea to combine this powerful technique with the neural net-
work approach to approximate functions. Wavelets are well
suited for function approximation because of the inherent
Time-Frequency localization property of the wavelets. The
WNNs were shown in 1] 1o achieve better approximations
compared to the traditional sigmoid based neural networks.
Following this, other WNN based architectures were pro-
posed in [4],[5].

It has been reported in [1] that, given an appropriate
wavelet function ¢ : ® — R there exists a denumerable
family of the form

P = {d’/'2 w(dex — t); tieR, dieRy, keZ} (D)

(where the dy.s are dilations and t.s are translations of the
wavelet),satisfying the frame property. This class @ is dense
in L*(R) implying that given any f : R — R, fel*(R)
there exists an approximation f of the form

N
f@) =" wedy*w(dez - ti) )

k=1

such that || f — f|| can be made arbitrarily small by increas-
ing N. This property naturally extends to the WNN since the
parameter values in a WNN are not constrained to belong to

countable families and can infact take values on the whole
of . This class hence includes the denumerable class ® as
a sub-class.

We define the following as being the ’Resources™ in an
SWNN.

1. The Scalons

2. The Wavelons

3. The Training Time (proportional to the number of it-
erations)

In this work, a study has been made towards formulation
of a neural network architecture and algorithm to optimize-
the use of these resources. By this we mean, making the
best use of resources to reduce the mse error of approxima-
tion. The paper is organised as follows. Section II describes

-l \r
the architecture of the scalon nctwork. I1I-V are aboui e

experiments done and the final sections contain conclusions
and scope for future work.

2. THE SCALON NETWORK STRUCTURE

The WNN is essentially based on the wavelet decomposi-
tion of a signal. Waveiets are constani G fiiiers {descriped
in [6]). The higher the center frequency w,, the greater the
band-width. Wavelets, depending on the scale, occupy dif-
ferent frequency bands. At the low-frequency bands, the
BW of the basis wavelets shrinks considerably. Hence, the
number of wavelets and consequently the number of wavelons
needed to approximate the low frequency components in
a signal increases considerably. Infact the DC component
can never be approximated by wavelons. In the work in[1],
the DC component was subtracted initially from the input-

output relation and added as a constant bias later. A better

solution to this problem can be found by taking recourse 0
MRA.

The MRA synthesis of a function begins with a projec-
tion of the function on a scalon basis at a coarse scale. It
then subsequently adds projections of function on wavelet
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Fig. 1. Scalon Network

subspaces at finer and finer scales. Motivated by this idea,
a scalon neural network (SNN) has been proposed analo-
gous to the WNN, with the idea of approximating the low-
frequency components. Its structure is shown in Fig.1.

The output relation of an SNN is given as

N
F(@) =37 duedackz — ber)

k=1

3

where N is the number of scalons and Ask,agr,bgr are
the weights, translations and dilations respectively. All of
Ihern are adaptable. The scaling function (#) employed was
e~

In the most general case, all the sk s can be made to vary
for different scalons independently. However, in this work,
keeping in consonance with the MRA idea of approximat-
ing the signal by a scalon basis of a given scale, the scale
parameler as, was taken to be equal for all scalons. This

uniform scale parameter is denoted by a,. Hence the actual
output relation is described by

k=N

fl@) = ) Agem(@m—tun)’ @)
k=1

This network architecture is aimed at reducing the num-

ber of wavelons necessary to represent the low-frequency
bands by replacing wavelons with scalons.

3. ADAPTION ALGORITHM

The algorithm analogous to the one desch'bed in (1] was

used in training. Itis similar to the traditional back-propagation

Kl

algorithm for multi-layer perceptrons in an artificial neural
network([7]). Denoting the network output by f(z) and the
image of z by y, the instantancous squared error is given by

e=(y— f(z))?

The algorithm minimizes the error by correcting parame-
ters in the direction of steepest descent. The direction of
the steepest descent is found by evaluating the instantaneous
gradient of the error with respect to the network parameters.
The final parameter updating relations are given by

(W)

Agr = Agr + 27]66‘(‘1s1—bsk): (6)

N
as = a5 — 4nex Z-isk(asz = g Je bt o
k=1
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where 7, the Learning Constant, determines the rate of
training.
The error of approximation E, is given by

(A1)

E=() (y- f(z)? + step_size) 9)
Yz

where step_size is the interval length of training data
fammlias amd tha crrevvon et S ovalivaead Avince ATl slan ol
bmnpuné anu we suimnmaiivii 15 Tvaruaica Over an e G
ing input-output pairs. This measure is an absolute error
measure, in that it is a measure of the total area nnder the
error curve and is not an average error measure like the 171 se.
But it corresponds directly to the mse and is a more strin-

gent error measure.

The scalons and wavelons were distributed uniformly over
the domain of approximation. The initial weight was in
some cases taken to be 1 and in others taken (0 be the im-
age of the training function at 7 = bst/asi. The dila-
tion parameter a for the scalons was set such that the low-
frequency band-width of scaling function was equal to that
of the training function. Anaiogousiy for aii the waveions,
it was set equal to that corresponding to the high-tfrequency
band-width. Following this, the translation parameters. bg.s
for the scalons and wavelons were initialized using the rela-
tion,

(k+0.3)(HIGH — LOT)

P s
bot = a5 | LOW + UNITNO.

(10)
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Fig. 2. Scalon Network Approximation to Sinc Function
with 20 Scalons after 5000 Learning Iterations

where LOW and HIGH are the corresponding bounds of
the domain of approximation and U N IT_N 0. corresponds
to the scalon or wavelon units respectively. This initializa-
tion procedure was formulated with an aim of allocating the
scalon and wavelon units uniformly over the domain of ap-
proximation. The precise initial parameter values and other
data about the experiment are given alongwith the corre-
sponding descriptions of the experiments. The network out-
put 1s also plotted against the training function.

4.1. Experiment |

This was carried out with the aim of testing the hvnothesis
that the scalon network well approximates input-output re-
lations having solely low frequency components. The sinc
function, which is a perfect band-limited function, was used
to train the scalon network. The input-output pairs used for
training were samples of the training function taken at inter-
vals of length 0.005 over (—27, 2m). the domain of approx-
imation.

The scalons were initialized uniformly over the domain.
The initial weights were taken to be 1. Initial scale a was
set equal to 0.71 and the translation parameters, b,.s were
set by the reiation mentioned previously. Scalon number
was 10 or 20. Iterations varied from 2000 to 30000. 7, the
learning constant was 0.001.

The results obtained were in £00d confirmation with the
hypothesis. The approximation was quite good even for a
few scalons and few iterations. In fact, in the plots shown,
the approximation to the function is so good than one can
hardly distinguish between the actual image of z and the

Benvenista Function
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Fig. 3. The Benvensite’ Function

network output. The plot shown (Fig.2.) actually shows
both the function and its approximation, which almost ex-
actly superpose over each other. The error of approximation
is of the order of 10~3.

5. DESCRIPTION OF THE BENVENISTE

FUNCTION

The Benveniste Function (Ben function) is given as
f —2.186x — 12.864 -10<r <=2
J{z) =< 4.246z =2 & r )
10e~9-952=0-85in[(0.03z + 7)z] 0<r<10

Tte plat is shown in Fiz 2 . It is 3 contin

and analytic at all points except for those on the bound-

aries of the intervals of definition. It is verv similar ta tha

function employed in [1] to evaluate the performance of
£.

the WNN. In this work it is referred to as the "Ben’ func-

tion, after Benveniste, who presented the work. The fre-
quency characteristic (shown in Fig 4.)of the Ben function
exhibits a unique feature. It contains 2 distinct parts- A
low-frequency peak and a high-frequency peak. The low-
frequency peak and the high-frequency peak map alnjost ex-
actly onto the initial(—10 < z < 0) and later(0 < r < 10)
parts of the function respectively. Hence the corrasponding
sections in time of the Ben function will be referred to as
the ’LF’ region and the "HF’ region in future sections of
this paper. This clear cut mapping of the low-frequency and
high-frequency regions to distinct regions in time has been
helpful in analysing the experimental results. A systematic
study has been conducted employing this function to train
the networks and is described below.
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S.1. Scalon Network

A scalon network as described previously was trained using
the Ben function. The Gaussian e™*" was used as the scal-
ing function.The scalon number was taken over a range of

510 29. 7, the learning constant was set equal to 0.00001.
Scalons were initialized uniformly over the domain. a, was
set equal to 3.5361 so that the frequency BW of the scaling
function was equal to the low-frequency BW of the training

funcuon bsk was set using the procedure described above

aliotm

=

ient. i welgill Agg was set cqua1
to y(bsk/a ) whcrc y is the Ben function. Around 15000
10 20000 learning iterations were carried out

What was observed was in good confirmation with the
expected result. The approximation to the function (Fig.
5.)is fairly accurate in the LF region, but very poor in the
HF region. In fact, for low scalon numbers, the approxi-
mation in HF is almost nil. From the plot of the frequency
characteristic(Fig. 6.) it can be seen that the approximation
to the function is almost exact in the LF region. The weight
parameters of the scalons assigned to the HF region (5-8 in
table 1.) were almost 0 in the final trained network. So these
‘resources’ are almost 'wasted’ or used inefficiently. This
experiment also strengthens the hypothesis that scalons are
efficient in approximating the LF regions in a function.

The error of approximation was computed and plotted
against the scalon number(Fig. 7.). It can be seen that it first
increased and then decreased as a function of scalon num-
ver. The approximation quality decreases when the number
of scalons is increased beyond a certain optimal number.
Thus the loss is two fold: The scalon resources are wasted
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and the error of approximation in fact increases.

More informative trends can be found by plotting the
error of approximation of the LF and HF regions indepen-
dently against the scalon no.. The piots (piot no.s 8,9) re-
veal that the LF error for 8 scalons is the lowest and in fact
is higher for higher scalons numbers while the HF error de-
creases uniicrmiy as the scalon no. increases. This indicates
of a possible “trade-off " hetween HF and 1 F arrars, The HE
error decreases as the scalon no. increases - but at the cost
of the LF error itself. Moreover. since the scalon approxi-
mation to the HF is too poor to be of anv significance, an
optimai low scalon no. in the LF could lead to improved

accudialy of approxiination.

1. Scalon Parameters of SNN

Ak Qs bk
1.1 8.310821 0.819245 | -7.5652273
2.1 3.737510 | 0.819249 | -6.355804
3.1 -3.657662 | 0.819249 | -2.216021
4. | -7.799890 | 0.819249 | -1.650180
5.1 0.019400 1 0.819249 | 1.925398
6.1 0.999730 | 0.819249 | 8.666220
7.1 0453704 | 0819249 | 14116368
| 8. | 0567481 | 0.819245 | 20.860277

This experiment sheds light on certain very important
aspects of the nature of approximation. Scalons are well
suited for approximation of the LF regions in a function. So
concentrating the scalon resources in the LF regions of the
function improves resource utilization, and could be a first
step towards optimal resource utilization.
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Fig. 10. WNN approximation to 'Ben’ function with 20
wavelons and 10.000 training iterations
5.2. Wavelon Network

The previous experiment was repeated using a wavelon net-

work. The initialization procedure was as described for the -

scalon network. However, the scale parameter q,.; was set
equal to 7.07 for all wavelons, corresponding to the HF
band-width. Weights were initialized to 4.00. The mean
subtracted function was used to train the network. The fi-
nal approximation displayed characteristics parallel to the
scalon case. The network output approximates the function
wellin the HF region, but is poorin the LT region {rig. i0.).
The wavelon weights of those assigned to the LF region set-
ted to very low magnitudes (1-10 in table 2.).

From this and the above results, a pattern can be found
1o emerge. Wavelons are well suited Jor approximating the
HF region and scaions, for ihe iLF regions in a function.
This is in accordance with MRA based analysis where dur-
ing the analysis stage, the HF bands are projected on a wavelet
basis and the LF band is projected on a scaling function ba-
sis. An efficient allocation scheme preferentially allocates
scalons to LF and wavelons to HF regions in a function.

To gather further evidence for such a trend, the follow-
ing experiment was carried out. The approximation to Ben
function of the scalon network was subtracted from the Ben
function. The resultant function is in fact the Ben function
minus the LF components, and hence comprises only the
HF part. This resultant map was used to train the wavelon
network. This map is almost Q in (=10 < z < 0). The
wavlons were initialized uniformly over the domain. Initial
values were same as before.

Now since all the parameters of the wavelons are adapt-

able one would expect the wavelons to shift to the HF re-
gion (0 < z < 10) to minimize the error. However the
results were quite the contrary. The wavelons allotted to the
(=10 < z < 0) region settled to almost 0 final weights.
So these resources are wasted. It was also observed that the
wavelons do not translate significantly in the domain and
only the wavelon weights undergo significant change. This
illustrates that wavelon resources improperly allotted over
the domain are used inefficiently.

2. Wavelon Parameters of WNN

Awk Ak buk
1. | 2.197357 | 15273399 | -65.768867
2. | 2.807608 | 14.080389 | -58.906910
3. | 2587545 | 12.818356 | -51.980099
4. | 1.625462 | 11.511245 | -45.089684
5. | 1.042000 | 13.995013 | -37.030735
6. | 1.178440 | 14.462476 | -29.349096
7. | 2.268684 | 14.045589 | -21.525517
8 13220540 110856640 | 12 ndans |
Y. [ 3059121 | 7.577526 | -9.130875
10. | 2.606002 | 4.128893 | -3.725085
11. | 12973482 | 3790877 | 3.427690
12. | 12.457458 | 3.575250 | 6.369643 .
13. | 11.931827 | 3.793694 | 10.076485
14. | 11.207683 | 4.690423 | 16.660389
15. | 10.088662 | 5.925420 | 6.207863
16. 1 9373395 -1 6.591591 | 34.994374
17. [ 9.007938 | 6.148407 | 43.022805
i8. | 8435363 | 6.463120 | 50.942917
19. | 7.920842 | 6.704997 | 58.51920]
20 | 7453274 | 5.356500 | 65.983299 j

Following the previous initialicaiion scheme. ail the was elons
were alloted to the (0 < z < 10) region. The accuracy of
approximation imoroved and the errar f apnrovimoting A=
creased from 6.50 to 4.02. This strengthens the proposition

that an efficient schemc must prefereniiaily aiiot wavelons

to the HF regions in the function.

5.3. The Scalon-Wavelon Structure

Motivated by the results of the previous sections, the prop-
erties of a combined scalon-wavelon netwark were invess.
gated. It was desired to check how far the results of the pre-
vious sections extend to the integrated network. The SWNN
contains many scalon and wavelon units in parallel, analo-

gous to a WNN.

. . —p2
The scaling function, ¢ considered was e~*" and the

wavelet ¢ employed was the Gaussian re=*"_ The output
error is given by

0
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k=N k=Ml

€= (y - Z -"‘1sk¢(0-337 — B} ~ Z Avr¥(aurz — bwk))
k=1 hk=1

(1)

where N is the scalon no. and M, the wavelon no. The
corresponding parameter updating relations for scalons are
the same as those given in section III, except that the error
€ is now computed as given above. The relations for the
wavelons are given as

Auk = Ak + 206(QurT — byg)e @k —bur)® (103
duk = (1 = 2(@urT — byk)?) (13)

Quk = Qg + 27}6.4,‘,;‘-326—(0“"":_6“‘“)2du-k (14)
buk = buk — nedype™ "m0 q L sy

The network consisted of 20 wavelon and 10 scalon units.
Initial scalon and wavelon scales were set equal to 2.00 and
7.07 respectively. Weight 4., was setequal to y (bwk/awr),
where y is the training function. Initialization was uni-
form over the domain of approximation. Learning iterations
ranged from around 10000 to 25000. This network was then
trained to learn the Ben function. The final approximation

indeed reflected a superposition of both the previous results.
The scalons naturally dominated in magnitude in the LF re-
gion of the function and the wavelons dominated the HF
region. Tables 3.4 give the parameter values and output ig
plotted in Fig. 11. The upper entries in the tables corre-
spond to the LF region and the lower ones correspond to
e HE region. Ii is thus very clearly seen that resources al-
loted improperly i.e. wavelons to LF and scalons to HF, are
wasted.

3. Scalon Parameters of SWNN

—'lu'k Qg bwk
1. | 8361009 | 0.846162 | -8.151902
2, 3.762330 | 0.846162 | -6.527406
3. -3.311086 | 0.846162 | -3.418227
4. | -5.284047 | 0.846162 | -2.015855
5. 1-3.542618 | 0.846162 | -1 268351
6. | 2.624141 | 0.846162 | 3.247147
1. | -1.970824 | 0.846162 | 3.961793
8. 10369626 | 0.846162 | 7.254347
9. 10.752692 | 0.846162 | 13.330645
10. ] 0.657769 | 0.846162 | 17.021389

To complete the experiment, the previously uniformly
initialized scalons and wavelons were now shifted. Scalons

were uniformly initialized over the LF domain and wavelons
sover the HF domain. The initialization procedure was the
same as before. The accuracy of approximation was beter
as compared to the previous one (Fig. 12). This can easily
be seen from a significant decrease in the error from 5.40

10 3.76. This further decreased to 3.16 after 10000 learning
iterations.

4. Wavelon Parameters of SWNN

A Auwk buk

1. | 4.232576 14.932308 | -66.083488
2. | 5.078144 13.638769 | -59.239033
3. 1.979597 12.236225 | -52.129311
4. | 0.747620 10.980485 | -45.189137
5. | -3917887 | 8.822230 | -38.497181
6. | -0.641682 | 8.425750 | -31.635147
7. | -0.558577 | 7.033739 | -24.887068
8. | -0.820315 | 7.954968 | -17.158894
9. | -0.683539 | 9.440727 | -8.809009
10. | -0.384227 6.650891 -4. 75358777 5
11. ] -14.483710 | 3.2650695 | 1.504464 |
12. | -14.204625 | 3.009618 | 4.041593
13. | -13.747286 | 2.925975 | 6.496333
14,1 -13.209433 | 3.498991 10.767590
15. | 12.761871 | 4.034819 17.821144 -
16. | 11.148128 | 4.955145 26.273531
17. | 9.785856 6.166983 | 38.062695
18. | -9.512387 | 6.287778 | 46.8994°9
19. | -8.686493 | 6.679718 | 55.321416

| 20. | 8.358355 | 6.758178 | 64.605838 |

The sbove resull 85enss tho prosions ToSWR v iiile e

tegrated SWNN. This can be used to formulate an approach
for efficient resource utilization in SWNNSs.

6. CONCLUSIONS AND 4 UrURICTIC

AL TUINAS L Ao

OPTIMIZATION SCHEME

Based on the experimental results described in the sections
above, certain conclusions can be derived.

1. Scalons well 'app'r'oximale the LF regions and wavelons.
the HF regions in a function. :

)

Resources can be uiilized effectively by aiiocating scaions
to the LF and wavelons to the HF regions in a func-
tion, if the frequency characteristic of the function is
known apriori. Eise, the final parameter values of the
trained network for a uniformly initialized network
can help identify the HF and LF regions of the func-
tion. This information can then be used for initializa-
tion.
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Fig. 11. Approximation of SWNN with 10 scalons and 20
wavelons after 25,000 iterations

3. Scalon and wavelon resources improperly initialized

on the domain of approximation will be *wasted’, thereby

meaning that they will be used inefficiently.

A heuristic initialization procedure can be suggested based

on the above conclusions. The domain of the function or the
input-output map to be approximated can he initially parti-
tioned. Over each such partition, the frequency character-
istic of the function can be evaluated. Then depending on
the o of

1€ nature of the characteristic, scalons or wavelons can be
allotted to that particular partition during initialization.

In cases where it mignt not be possible to neatly resolve
the characteristic as HF or LF, depending on the magnitude
of the characteristic in the LF and HF FEZIOns & propoi-
tional allotment can be made. This procedure can be crudely
speaking called a "NEED-BASED" allotment scheme, where
resources are alloted depending on the nature of the fre-
quency domain characteristic. This sort of an initialization
scheme also brings to the fore-front, the "Time-Frequency”
nexus in wavelet based analysis.

7. FUTURE WORK

In the future, it is intended to develop an analytical formu-
lation based on the same initialization procedure. Also, a
heuristic algorithm to arrive at optimal scalon and wavelon
numbers is to be developed.
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