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Abstract—In this paper, we propose a semi-definite program-
ming (SDP) relaxation based semi-blind (SRSB) channel esti-
mation scheme for frequency-selective multiple-input multiple-
output (MIMO) multi-carrier code division for multiple access
(MC-CDMA) systems. The SRSB scheme is derived from the
multi-path multi-carrier decorrelator (MMD) based robust chan-
nel estimation framework developed for MIMO MC-CDMA. We
formulate the semi-blind channel estimation scenario for MIMO
MC-CDMA systems as a convex quadratic programming (QP)
problem. Subsequently with an approximate rank relaxation this
is recast as an equivalent SDP problem. Hence, the SDP solvers
utilized in maximum likelihood MIMO symbol detection can
be utilized to obtain the semi-blind channel estimate, thereby
potentially enhancing the estimation performance without the
need for additional computational resources. Simulation results
demonstrate that the mean-squared error (MSE) performance of
the SDP relaxation based semi-blind estimation is significantly
superior compared to that of the conventional training based
least-squares estimator.

I. INTRODUCTION

The accelerated pace of demand for high-speed data ac-

cess over wireless channels has garnered significant research

interest in multiple-input multiple-output (MIMO) technology

and spread-spectrum systems such as multi-carrier code divi-

sion for multiple access (MC-CDMA) communications. MC-

CDMA synergistically harnesses the advantages of CDMA,

which combats wireless channel fading through multi-path

diversity combining and orthogonal frequency division multi-

plexing (OFDM), which converts the frequency-selective wire-

less communication channel into multiple parallel narrowband

flat-fading channels [1]. MIMO technology can be employed

in MC-CDMA systems to further increase the data rate through

spatial multiplexing. However, these performance gains of

MIMO MC-CDMA systems are critically dependent on the

accuracy of the channel estimates. This entails for channel

estimation paradigms that estimate the wireless channel co-

efficients accurately with reasonable computational complex-

ity. Although, traditional training based channel estimation

schemes have a low computational complexity, they result in a
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high communication overhead [2] as training symbols do not

convey information. Recently, several techniques based on the

principles of robust Capon beamforming have been proposed

to obtain superior channel estimates. A robust approach to

channel estimation and multi-user detection (MUD) for MC-

CDMA is presented in [3]. However, the work is restricted

to single-input single-output (SISO) systems and cannot be

readily extended to the MIMO scenario. The multi-path multi-

carrier decorrelator (MMD) based framework developed for

semi-blind MIMO MC-CDMA in [4] can be employed to

widen the scope of robust channel estimation to frequency

selective MIMO MC-CDMA systems. Several works on low

complexity algorithms for MIMO maximum likelihood detec-

tion based on the semi-definite programming (SDP) relaxation

have been proposed [5]–[7].

In this paper, we propose a SDP relaxation based semi-blind

(SRSB) channel estimation scheme for frequency-selective

MIMO MC-CDMA systems. We formulate the robust channel

estimation (RCB) for MIMO as a convex quadratic program-

ming problem using the MMD framework. We then recast

it as an equivalent SDP through an appropriate relaxation.

This SDP relaxation based channel estimation scheme offers a

significant reduction of the computational resources required

in systems which employ SDP solvers for maximum likelihood

detection. Hence, the SDP solvers utilized in symbol detection

can also be used to obtain a robust semi-blind channel esti-

mate, thereby enhancing the accuracy of estimation without the

need for additional computational resources. Simulation results

demonstrate that the proposed SRSB estimation scheme has

superior performance over the conventional schemes. The rest

of the paper is organized as follows. In section II, we describe

the frequency-selective MIMO MC-CDMA system model.

Section III describes the proposed SRSB channel estimation

scheme for MIMO MC-CDMA system. Simulation results

are given in section IV and we present our conclusions with

section V.



Fig. 1. Schematic of MC-CDMA wireless transmission

II. SYSTEM MODEL

Consider a downlink (DL) MIMO MC-CDMA system with

Nr receive antennas and Nt transmit antennas. The base-band

model of the frequency-selective MIMO MC-CDMA system

is given as,

y(n) =

Lh−1∑

i=0

H(i)s(n− i) + v(n) (1)

where y(n) ∈ CNr×1 is the received signal at time instant n,

s(n) ∈ CNt×1 is the composite DL transmit vector at time

instant n, v(n) ∈ CNr×1 is additive spatio-temporally white

Gaussian noise with covariance E
{
v(n)v(n)H

}
= σ2

nINr
.

Each H(i) ∈ CNr×Nt , 0 ≤ i ≤ Lh − 1, is the channel matrix

corresponding to the ith lag and Lh is the length of the MIMO

frequency-selective finite impulse response (FIR) channel.

Each complex element hr,t(i) of the matrix H(i) denotes the
channel coefficient between transmit antenna t and receive an-

tenna r corresponding to the ith delay. Let K denote the total

number of DL users of the MIMO MC-CDMA system. Let the

symbol vector of kth user, transmitted in the pth MC block, be

denoted by ak(p) = [ak,1(p), ak,2(p), . . . , ak,Nt
(p)]T , where

ak,t(p) is the symbol corresponding the tth transmit antenna.

Let the covariance of the transmit symbol vector ak(p) be

given as E
{
ak(p)a

H
k (p)

}
= PdINt

where Pd is the trans-

mit power corresponding to each transmit antenna. The DL

transmit symbol vector loaded onto the mth subcarrier in this

multi-carrier system is given by Xm(p) =
∑K−1

k=0 ck,mak(p),

where Xm(p) ∈ CNt×1, {ck,m}N−1
m=0 is the spreading code

of the kth user and the spreading length N is equal to the

number of subcarriers. The composite DL signal s(n) is given
by the N -point IFFT of the spread data symbol vectorsXm(p)
followed by the addition of the cyclic prefix. Hence, after

serial-to-parallel conversion, removal of cyclic prefix, and N -

point FFT at the receiver, Ym(p) ∈ CNr×1, the received data

at subcarrier m is given as [8],

Ym(p) = ZmXm(p) +Vm(p), (2)

where Zm ∈ CNr×Nt , the flat-fading channel coefficient

matrix corresponding to the mth subcarrier, is given by the

N -point FFT of the MIMO frequency-selective channel H(i),
0 ≤ i ≤ Lh − 1 as,

Zm =

Lh−1∑

i=0

H(i)e−j2πim
N . (3)

The quantity Vm(p) is the FFT of the receiver noise vectors

v(n). We employ the optimal multi-path multi-carrier decorre-

lation (MMD) receiver presented in [4] which reduces the Lh

lag frequency-selective MIMO MC-CDMA channel to that of

an equivalentNrLh×Nt flat-fading MIMO channel. Consider

the signal detection at the 0th user, with the remaining K − 1
(1 ≤ k ≤ K− 1) users considered as interferers. The received

data Yr,m(p) at user 0 can be decorrelated with the spreading

code {c0,m}
N−1
m=0 to obtain the optimal MMD statistic dr,l(p)

corresponding to receive antenna r and delay l, which is given

as,

dr,l(p) =
1

N

N−1∑

m=0

Yr,m(p)c∗0,mej2πl
m
N . (4)

Stacking the decision statistics for the Lh lags, 0 ≤ l ≤ Lh −
1, the NrLh dimensional decision statistic for the frequency-

selective MIMO MC-CDMA system model is given as,

d(p) ,
[
dT
0 (p),d

T
1 (p), . . . ,d

T
Lh−1(p)

]T
= Ha0(p) + ṽ(p),

(5)

where the block matrix H ∈ CNrLh×Nt is defined as

H ,
[
HT (0),HT (1), . . . ,HT (Lh − 1)

]T
. (6)

The noise vector ṽ(p) ∈ CNrLh×1 is Gaussian with covariance

E{ṽ(p)ṽH(p)} =
σ2

n

N
INrLh

.

A. Training based Least-Squares (LS) Channel Estimation

Let the matrix Ap ∈ CNt×Lp , the pilot symbol ma-

trix corresponding to the Lp pilot transmissions Ap =
[a(1), a(2), ..., a(Lp)], be such that ApA

H
p = LpPtI, where

Pt is training power. The MMD output matrix Dp =
[d(1),d(2), ...,d(Lp)], where Dp ∈ CNr×Lp , corresponding

to the transmission of the LP pilot symbols is given from (5)

as,

Dp = HAp + Ṽp, (7)



where the matrix Ṽp ∈ C
Nr×Lp corresponds to the noise at

the receiver. From the expression for the pilot symbol output

matrix Dp given in (7) it can be seen that the maximum-

likelihood (ML) training estimate ĤT of the frequency-

selective MIMO MC-CDMA channel matrix H is given by

the standard LS estimator [9],

ĤT = DpA
†
p = H+ ṼA†

p = H+
1

LpPt

ṼAH
p , (8)

where the last equality follows from the fact that A†
p, the

pseudo-inverse of pilot symbol matrix Ap is given as A†
p =

AH
p

(
ApA

H
p

)−1
andApA

H
p = LpPtI. Hence, the CRB on the

MSE, which is achieved by the optimal LS estimator above,

is given by,

MSET = E{‖ĤT −H‖2F } =
NtNrLhσ

2
ṽ

LpPt

. (9)

Next, we derive the SDP relaxation based semi-blind esti-

mation scheme for frequency-selective MIMO MC-CDMA

systems.

III. SEMI-DEFINITE RELAXATION BASED SEMI-BLIND

CHANNEL ESTIMATION SCHEME

The robust Capon beamforming scheme proposed in [10]

considers the array steering vector to lie in an uncertainty

set that is modeled as an ellipsoid. The array output signal

power is maximized such that the beamformer belongs to an

appropriate ellipsoidal uncertainty set. From the discussion in

[10], ĤR, the uncertainty set based robust estimate of the

channel matrix H at the output of the MMD MIMO MC-

CDMA receiver, is given as the solution of the optimization

problem,

min.
HR

tr
(
H

H
RR−1

d HR

)

s.t. ‖ĤT −HR‖
2
F ≤ ǫ,

(10)

where the Rd ∈ CNrLh×NrLh is the covariance matrix of the

MMD output vectors d(p) and tr(·) is the trace of a matrix.

Further, the covariance matrix Rd is estimated from the blind

output symbols as,

R̂d =
1

Nb

Nb∑

p=1

db(p)(db(p))H , (11)

and ĤT is the least squares estimate of H, as derived in

section II-A. Hence, in principle, this scheme is semi-blind

in nature as it employs the initial channel estimate obtained

through training based estimation and the statistical informa-

tion of the received data. It can be seen that the above objective

function tr
(
H

H
RR−1

d HR

)
can be analogously expressed as,

tr(CX) = tr(R−1
d HRH

H
R + INt

) = tr(HH
RR−1

d HR + INt
),

where the matrices C ∈ C(NrLh+Nt)×(NrLh+Nt) and X ∈
C(NrLh+Nt)×(NrLh+Nt) are given as,

C =

[
R−1

d 0NrLh×Nt

0Nt×NrLh
INt

]
, X =

[
HRH

H
R HR

H
H
R INt

]
.

(12)
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Fig. 2. MSE comparison of SRSB, robust and training based SIMO and
MIMO MC-CDMA channel estimators.

Further, the constraint can be readily expressed as,

tr
(
HRH

H
R − ĤTH

H
R −HRĤ

H

T + ĤT Ĥ
H

T

)
≤ ǫ.

Rearranging the terms above, it can be readily seen that

the constraint takes the form tr(FX) ≤ δ, where F ∈
C(NrLh+Nt)×(NrLh+Nt) and δ are given as,

F =

[
INrLh

−ĤT

−Ĥ
H

T INt

]
, δ , ǫ− tr(ĤT Ĥ

H

T ) +Nt. (13)

Therefore, the QP problem in (10) can be equivalently recast

[11] in SDP form as,

min.
X

tr(CX)

s.t. tr(FX) ≤ δ

X < 0,

(14)

where X < 0 indicates that X is constrained to lie in the

convex set of positive semi-definite matrices. The solution,

X∗, of the optimization problem in (14), which is a block

matrix as given in (12), is utilized to extract the SRSB channel

estimate, ĤS . The proposed approach can be summarized as

follows

SRSB Scheme:

Step 1) Estimate the block channel matrix H using training

symbols (8) and compute the matrix F as shown in

(13).

Step 2) Compute the covariance matrix Rd using the blind

information symbols (11) and compute the matrix C

as shown in (12).

Step 3) Compute the radius of the uncertainty set, δ, from (9)

and (13).

Step 4) Solve the SDP problem (14) with matrices F and C

and radius of the uncertainty set, δ, obtained in Step

1 - Step 3.
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Fig. 3. BER performance comparison of the SRSB, robust and training based
SIMO MC-CDMA channel estimation schemes.

Step 5) SRSB channel estimate, ĤS , is obtained by decom-

posing (12), X∗, the solution of the SDP problem.

A. Uncertainty based Robust Channel Estimation

The robust channel estimation scheme for a SISO MC-

CDMA system based on the spherical uncertainty set is

given in [3]. However, the framework presented therein is

restrictive and cannot be extended to the frequency-selective

MIMO MC-CDMA scenario under consideration. Employing

the MMD framework [4], the RCB scheme for MIMO MC-

CDMA can formulated as given in (10). The expression for

the radius of the uncertainty set ǫ for the robust estimator

(10) is ǫ =
NtNrLhσ

2

ṽ

LpPt
. It should be observed that ǫ is

related to MSE of the LS estimator (9). The optimal robust

estimate ĤR can be obtained through the standard KKT

framework for convex optimization problems [11]. Let f(λ)
be the Lagrangian associated with (10) and λ be the Lagrange

multiplier. The Lagrangian is given as,

f(λ) = tr(HH
RR−1

d HR) + λ
(
||ĤT −HR||

2
F − ǫ

)
. (15)

Differentiating f(λ) with respect to HR and equating to zero,

∂f(λ)

∂HR

= 2R−1
d Hopt + λ(−2ĤT + 2Hopt) = 0, (16)

the optimal robust estimate is obtained as,

Hopt =

(
I+

R−1
d

λ

)−1

ĤT . (17)

Employing the Woodbury matrix identity [12], the expression

(17) can be expressed as,

ĤR =
(
I− (I+ λRd)

−1
)
ĤT , (18)
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Fig. 4. BER performance comparison of the SRSB, robust and training based
MIMO MC-CDMA channel estimation schemes.

where λ is derived as the solution of ‖ (I+ λRd)
−1

ĤT ‖
2
F =

ǫ, similar to the estimate of the robust Capon beamformer [10].

Simulation results are presented in the next section to compare

the performance of the proposed channel estimation schemes.

IV. SIMULATION RESULTS

We simulated frequency-selective 4 × 1 SIMO and 4 × 2
MIMO MC-CDMA downlink scenarios, i.e. with Nr = 4
receive antennas and Nt = 1, 2 transmit antennas respectively,

with a delay spread of Lh = 4 . The system comprised of

K = 12 active users with spreading sequences of length

N = 256. The covariance matrix Rd is estimated from

Nb = 1000 blind data symbols. We compare the performance

of the proposed SDP based semi-blind estimation scheme

(SRSB) and the robust channel estimation scheme (RCB) with

that of the conventional training based estimator with pilot

length Lp = 4 and Lp = 8 for the MIMO and SIMO channels

respectively. In Fig.2, the mean-squared error (MSE) of the

SRSB, RCB, and LS estimators is plotted against the signal-

to-noise power ratio (SNR). It can be seen that the MSE

performance of the SRSB scheme and the RCB scheme is

significantly superior compared to that of the training based

LS estimator. The MSE of the robust semi-blind MIMO MC-

CDMA channel estimation schemes is lower by approximately

6 dB for the MIMO and 3 dB for the SIMO system relative

to the LS estimator. However in case of the MIMO system,

the SRSB scheme has a slight performance loss in compar-

ison to the RCB scheme since the QP problem in (10) is

approximated by SDP (14) by relaxing the rank constraint.

In Fig.3 and Fig.4, we consider the probability of error (BER)

performance for the channel estimates obtained through the

competing schemes that are employed for the detection of

the transmit symbol vectors. In the SIMO system, with a

nominal increase in pilot symbols, the BER is close to that



of perfect knowledge of channel impulse response. Hence,

the SRSB estimation scheme and the robust estimator yield

superior channel estimates compared to the exclusive training

based LS estimator.

V. CONCLUSION

A novel semi-definite relaxation based robust estimation

scheme has been proposed for frequency-selectiveMIMOMC-

CDMA channel estimation. The SDP relaxation semi-blind

channel estimation yields superior channel estimates without

the need for additional computational resources in systems

which employ SDP solvers for maximum likelihood decoding

of the transmit symbol vectors. The proposed techniques

have significantly superior performance in comparison to the

conventional training based channel estimation scheme.
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