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Abstract— In this paper, we present robust semi-blind (SB) al-
gorithms for the estimation of beamforming vectors for multiple-
input multiple-output wireless communication. The transmitted
symbol block is assumed to comprise of a known sequence of
training (pilot) symbols followed by information bearing blind
(unknown) data symbols. Analytical expressions are derived for
the robust SB estimators of the MIMO receive and transmit
beamforming vectors. These robust SB estimators employ a
preliminary estimate obtained from the pilot symbol sequence
and leverage the second-order statistical information from the
blind data symbols. We employ the theory of Lagrangian duality
to derive the robust estimate of the receive beamforming vector
by maximizing an inner product, while constraining the channel
estimate to lie in a confidence sphere centered at the initial pilot
estimate. Two different schemes are then proposed for computing
the robust estimate of the MIMO transmit beamforming vector.
Simulation results presented in the end illustrate the superior
performance of the robust SB estimators.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) communication has
received significant attention over the past decade due to
its promise of higher capacity from spatial multiplexing and
resilience to channel fading due to its diversity advantage. Ac-
curate channel estimation is key to realizing many of the gains
in practical MIMO systems. However, previous techniques for
channel estimation in MIMO systems are not optimized for the
underlying transmission scheme. For instance, many schemes
typically estimate the entire MIMO channel matrix H , where
H is the r×t channel transfer matrix, and r / t are the number
of receive / transmit antennas. However, when a scheme such
as maximum-ratio transmission (MRT) is employed at the
transmitter, the receiver channel estimation algorithms only
need to estimate the transmit and receive beamforming vectors
v1 and u1, the right and left dominant singular vectors of H
respectively [1], and not the entire channel matrix H . This is
in contrast to open-loop schemes such as the ones employed
in space-time coding based receivers, where it is necessary
to estimate the entire channel matrix H in order to decode
and detect the data. Thus, feedback based communication
systems may allow greater estimation accuracy for a given
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level of training, as they require estimation of fewer channel
parameters than transmission schemes without feedback.

Further, accurate channel estimation is especially important
for feedback based systems, as the accuracy of the fedback
vector estimate has significant implications on the performance
of such systems. This requirement poses new challenges
in channel estimation for feedback based MIMO transmis-
sion schemes. Conventional estimation schemes rely on the
transmission of a known sequence of training symbols, also
known as pilot symbols, to estimate the channel. Semi-blind
techniques [2], [3] can enhance the accuracy of the channel
estimate by efficiently utilizing not only the known training
symbols but also the unknown data symbols. In [4], [5], [6],
an orthogonal pilot based maximum likelihood (OPML) semi-
blind estimation scheme is proposed, where the channel matrix
H is factored into the product of a whitening matrix W and a
unitary rotation matrix Q. W is estimated from the data using
a blind algorithm, while Q is estimated exclusively from the
training data using the OPML algorithm. A semi-blind scheme
for the estimation of the MIMO beamforming vectors was
introduced in [7]. While this method very frequently yields
estimates with greater estimation accuracy than the conven-
tional (pilots-only) based scheme, its estimation accuracy is
critically dependent on the accuracy of the blind estimate, and
as a result, the semi-blind estimate sometimes has a lower
accuracy than the training-based estimate.

To overcome this problem, in this study, we consider robust
semi-blind estimation algorithms specifically designed for
beamforming-based MIMO communication. In this technique,
we initially compute a rudimentary estimate of the desired
parameter vector from a sequence of training symbols. We then
form a robust estimate by employing the statistical information
available from the blind symbols, thus enhancing the accuracy
of the initial estimate. In spirit, this follows the doubly-
constrained robust Capon beamformers proposed in [8]. The
robust estimate of the receive beamforming vector u1 is
derived as the solution of a Lagrangian dual optimization prob-
lem, which constrains the estimate to lie in a ball centered at
the preliminary estimate. Following this, two different schemes
are proposed for obtaining a robust estimate of the transmit
beamforming vector v1. Simulations results are presented to
illustrate the improved performance achievable by robust semi-
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blind estimation.
The rest of this paper is organized as follows. In Section II,

we introduce the system model and notation. In Sections III
and IV, we derive the robust semi-blind estimation algorithms
for the receive and transmit beamforming vectors, respectively.
Simulation results are presented in V. Finally, we offer our
conclusions in VI.

II. SYSTEM MODEL AND NOTATION

Consider a MIMO channel with input-output equation at
time k given by

yk = Hxk + nk, (1)

where yk ∈ C
r is the channel output, xk ∈ C

t is the channel
input, and nk is additive white Gaussian noise with zero mean
and covariance matrix Ir, the r×r identity matrix. The channel
transfer matrix H ∈ C

r×t is assumed to be quasi-static flat-
fading. Let the singular value decomposition (SVD) of H
be given as H = UΣV H , and Σ ∈ R

r×t contains singular
values σ1 ≥ σ2 ≥ . . . ≥ σm > 0, along the diagonal,
where m = rank(H). The unitary matrices U and V have
the right and left singular vectors of H as their columns,
respectively. Let x1,x2, . . . ,xL be the training symbols trans-
mitted for the purposes of channel estimation, and let the t×L
matrix Xp be defined by stacking the training symbols as
Xp � [x1,x2, . . . ,xL]. To simplify analysis, we assume that
orthogonal training sequences are used, that is, XpX

H
p = γpIt,

where γp � LPT /t. The data symbols xk could either be
spatially-white (i.e., E

{
xkxH

k

}
= (PD/t) It), or could be the

result of using beamforming at the transmitter with a unit-
norm weight vector w ∈ C

t×1
(
i.e., E{xkxH

k } = PDwwH
)
,

where the data transmit power is E
{
xH

k xk

}
= PD. We let

N(> L) denote the number of spatially-white data symbols
transmitted, that is, a total of N + L symbols are transmitted
prior to transmitting beamformed-data. Note that the N white
data symbols carry (unknown) information bits, and hence are
not a waste of available bandwidth.

In this paper, we restrict our attention to the case where
the transmitter employs maximum ratio transmission (MRT)
to send beamformed-data, that is, a single data stream is
transmitted over t transmit antennas after passing through a
beamformer w. Given the channel matrix H , the optimum
choice of w is v1 [1]. Thus, MRT only needs an accurate
estimate of v1 to be fed-back to the transmitter. We assume
that t ≥ 2, since when t = 1, estimation of the beamforming
vector has no relevance. We also assume that the receiver
employs maximum ratio combining (MRC), i.e., the received
vector is filtered by the receive beamforming vector followed
by detection of the transmitted symbols. When the transmitter
employs MRT, the MRC beamforming vector at the receiver
is given by u1. Finally, we will compare the performance
of different estimation techniques using two measures, the
MSE in the estimate of the beamforming vector and the gain
(the power amplification/attenuation) of the one-dimensional
channel resulting from beamforming with the estimated vector.

III. RECEIVE BEAMFORMING ESTIMATION

A. Conventional (Pilots only) Estimation

In this section, we will find the robust estimate of the receive
beamforming vector. We start by describing the conventional
least-squares estimation (CLSE) scheme. When an orthogonal
training sequence Xp is employed, the least-squares estimate
of the channel matrix Ĥc, is first obtained as

Ĥc = YpX
†
p =

1
γp

YpX
H
p , (2)

where X†
p is the pseudo-inverse of Xp, and Yp given by the

relation (HXp + ηp) is the set of received training symbol
vectors. Since the noise is assumed white, Ĥc is also the ML
estimate of H . By the invariance property of ML estimators
[9], the ML estimate of v1 and u1, denoted v̂c and ûc

respectively, is now obtained via a SVD of Ĥc, the ML
estimate of the channel matrix H . These quantities ûc, v̂c

represent the conventional estimates of the receive and transmit
beamforming vectors respectively.

B. Robust Semi-Blind Estimation

We now describe the robust semi-blind beamforming vector
estimation schemes. First, note that a blind estimate of the
receive beamforming vector can be computed as the dominant
eigenvector of the (estimated) received covariance matrix
Ry �

∑N
i=1 yiyH

i , i.e., as the solution to

max
sub.to‖u‖2=1

uHRyu. (3)

The covariance matrix Ry can be estimated from the blind
symbols (without the need for any pilots) and thus represents
the statistical information available from the received data and
pilot symbols. To robustify the training estimate, therefore,
we optimize the above cost function by searching for u in a
confidence sphere of radius εr centered at ûc. This ensures
that the final estimate will not deviate significantly from ûc,
while leveraging on the information obtained from the blind
statistics. Thus, with proper choice of εr, it can yield a better
estimate than the pilots-only based conventional scheme, as
will be shown through simulations. The new optimization
problem is now stated as,

max
sub.to‖u‖2=1,

‖u−ûc‖2≤εr

uHRyu. (4)

The above optimization problem can be solved by employing
a procedure along the lines of [8], and is described below.
Define δr � 2 − εr. Then, the confidence-sphere constraint
implies

δr ≤ uH ûc + ûH
c u. (5)

Thus û, the estimate of the receive beamforming vector u1 is
given as u = arg max g1 (u, λ, µ), where the Lagrangian cost
function g1 (u, λ, µ) is given as,

uHRyu + λ
(
δr −

(
uH ûc + ûH

c u
))

+ µ
(
1 − uHu

)
.
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Computing the complex derivative [9] with respect to uH , we
have (Ry − µI)u − λûc = 0, which can be simplified as,

ur = (Ry − µI)−1
λûc. (6)

Substituting in g1(u, λ, µ), the dual problem reduces to the
objective function given as g2 (λ, µ), which simplifies to,

g2 (λ, µ) = −λ2ûH
c (Ry − µI)−1 ûc + λδr + µ.

Differentiating with respect to λ and equating to 0, the
Lagrange multiplier λ is given as,

λ =
δr

2ûH
c (Ry − µI)−1 ûc

.

Substituting in g2(λ, µ), we derive the dual function for µ-
optimization, g3(µ) as,

g3(µ) =
δ2
r

4ûH
c (Ry − µI)−1 ûc

+ µ.

Differentiating with respect to µ and setting to zero,

∂g3 (µ)
∂µ

= 1 − δ2
r û

H
c (Ry − µI)−2 ûc

4
(
ûH

c (Ry − µI)−1 ûc

)2 = 0, (7)

which after further simplification reduces to,

µûH
c (Ry − µI)−2 ûc − 4

δ2
r

(
ûH

c (Ry − µI)−1 ûc

)2

= 0.

Let the SVD of Ry be given by Ry = URΣRUH
R , where

ΣR is a diagonal matrix with σR,i as the i-th diagonal value.
Defining ũc � UH

R ûc, we have,(
r∑

i=1

|ũc(i)|2
(σR,i − µ)2

)
− 4

δ2
r


 r∑

j=1

|ũc(j)|2
σR,i − µ




2

= 0. (8)

The above equation has to be numerically solved to find the
value of µ. Finally, û is obtained by substituting λ, µ in (6).
Thus, one can compute the robust semi-blind estimate of the
receive beamforming vector ûc.

IV. TRANSMIT BEAMFORMING VECTOR ESTIMATION

We now address the issue of estimating the transmit beam-
forming vector v1. Initially, assume that the receive beam-
forming vector u1 and σ1 (from the SVD of the channel) are
known. Later, we will replace u1 by its robust estimate. We
will also be able to show that the robust estimate of u1 does
not depend on the value of σ1. The received training data is
given by Yp = HXp + Np . Let us define

ỹp �
XpY

H
p u1

γpσ1
. (9)

Note that, in the absence of noise, ỹp = v1. Also, if we replace
u1 by ûc above, we get ỹp = v̂c. We seek to find the estimate
of v1 as the solution to the least squares cost function given
by the expression,

v̂s = arg min
v∈ Ct, ‖v‖=1

‖ỹp − v‖2, (10)

where v̂s denotes the semi-blind estimate of v1. If Xp satisfies
XpX

H
p = γpIt, the least squares estimate of v1 (under ‖v1‖ =

1) given perfect knowledge of u1 is [7],

v̂s =
XpY

H
p u1

‖XpY H
p u1‖ . (11)

Note that the above equation was derived assuming perfect
knowledge of u1 at the receiver. In practice, there are two ways
to compute the robust estimate of the transmit beamforming
vector. First, we could substitute the robust estimate of u1

from (6) to obtain a robust estimate of v as

v̂r,1 =
XpY

H
p ur

‖XpY H
p ur‖ . (12)

Alternatively, one can use the estimate robustification approach
followed in the previous section to derive the robust semi-
blind estimate of the transmit beamforming vector. For this,
we restrict the estimate v̂r,2 to lie within a confidence sphere
of radius εt around v̂c. The Lagrangian optimization problem
we want to solve can now be stated as,

v̂r,2 = arg min
v∈ Ct, ‖v‖=1
‖v−v̂c‖2≤ εt

‖ỹp − v‖2, (13)

where ỹp is obtained by replacing u1 by its robust estimate
ur in (9). To solve this problem, we start with the Lagrangian
objective function minv,λ,µ g1(v, λ, µ) defined as,

‖ỹp − v‖2 + λ
(
δt −

(
vH v̂c + v̂H

c v
))

+ µ
(
1 − vHv

)
,

where δt � 2− εt. It is shown in Appendix A that the robust
estimate of v1 is given by

v̂r,2 =
ỹp + λv̂c

1 − µ
, (14)

where, the Lagrangian multipliers λ and µ are computed as
follows. The quantity λ is given as,

λ =
1
2

(δt (1 − µ) − α) , (15)

where α � v̂H
c ỹp + ỹH

p v̂c. Next, µ is given by

µ = 1 −
√

ỹH
p ỹp − 1

4α2

1 − 1
4δ2

t

. (16)

It is interesting to observe that the expression for v̂r,2 in
(14) is similar in form to the linear combination semi-blind
(LCSB) estimator presented in [7]. Thus, the robust estimator
is indeed a linear combiner of the training-only estimate v̂c and
the semi-blind estimate ỹp, analytically justifying the heuristic
estimator proposed in [7]. This expression can be re-written
in a more insightful form by substituting (16) and (15) in (14)
as,

v̂r,2 =

(√
1 − δ2

t

4

)
ỹp − α

2 v̂c

‖ỹp − α
2 v̂c‖ +

δt

2
v̂c, (17)

which is a weigted sum of two orthogonal vectors v̂c

and ỹp − α
2 v̂c. Thus, the robust estimator can intuitively be
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Fig. 1. MSE in u vs εr , 4 × 4 system.

thought of as correcting for the error in the training estimate
v̂c by scaling and the addition of an orthogonal vector.

It is clear that the estimate v̂r,1 is independent of σ1. It can
be demonstrated that the estimate v̂r,2 is independent of σ1,
thus, we do not need to know (or estimate) σ1 to compute it.
It is also possible to show that the two methods to estimate the
transmit beamforming vector given by (12) and (14) perform
almost exactly the same. This is intuitively satisfying, since
the robust estimate of u1 in (9) can be expected to yield a
robust estimate of v1 that lies inside an ε confidence sphere
centered at v̂c, even though v̂r,1 did not explicitly impose that
constraint. Finally, note that the lower the estimation error in
the training-based estimate, the lower is the estimation error
in the robust estimate.
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Fig. 2. Gain with u vs εr .

V. SIMULATION RESULTS

Our simulation setup consists of a 4 × 4 Rayleigh flat-
fading channel. For the purposes of illustration, we choose
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Fig. 3. MSE in v vs εt. The MSE from the two estimates given by (12) and
(14) (labeled robust and SB, robust u respectively), are on top of each other.

the system parameters as PT = 3dB, L = 64, N = 64. We
use 1000 random channel instantiations for the averaging,
and plot the performance both in terms of the MSE in the
received beamforming vector and in terms of the channel
gain obtained by employing the robust estimates.

Experiment 1: In this experiment, we illustrate the perfor-
mance of the receive beamforming vector estimation algorithm
described in Section III. We compare the performance of
the proposed robust semi-blind algorithm with conventional
(training-based) estimation, exclusively blind estimation and
also with perfect (genie) estimation, in terms of the MSE in the
estimate (in Fig. 1), and in terms of the channel gain (in Fig.
2), which we define as uHHHHu, since u is the dominant
left singular vector of H . The MSE and the gain are plotted
versus the radius of the confidence ball ε. It is clear that the
robust estimator outperforms both the training-based estimate
as well as the exclusively blind estimate for a certain range
of ε. In general, as ε → 0, the performance of the robust
estimator tends to that of the training-based estimate, and as
ε → 1, the performance defaults to that of the blind estimate
given by the dominant eigenvector of Ry.

Experiment 2: Next, we illustrate the performance of the
transmit beamforming vector estimation problem. As before,
we plot the MSE (in Fig. 3) and gain (in Fig. 4) of the
channel versus the radius of the confidence ball ε. We compare
the two robust methods given by (12) and (14), as well as
a simple Semi-Blind (SB) estimator obtained from (11) by
replacing u1 by its blind estimate (the dominant eigenvector
of the covariance matrix Ry). In this experiment, however, the
gain is defined as vHHHHv, since v is the dominant right
singular vector of H . Note that the two methods of forming
the robust estimate of v1 perform almost exactly the same,
as expected. Also note that as ε → 0, the performance of the
robust estimator tends to that of the training-based estimate,
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and as ε → 1, the performance of the robust estimator defaults
to that of the semi-blind estimation scheme given by (11) with
u1 replaced by its blind estimate, again as expected.

VI. CONCLUSIONS

We have investigated robust semi-blind beamforming vector
estimation for MRT based MIMO communication. We have
derived robust semi-blind estimates for both the receive and
transmit beamforming vectors, where the robustness is guar-
anteed by requiring that the estimated beamforming vector lie
within a confidence sphere centered at the preliminary training
based estimate. The robust estimation scheme is shown to
perform as good or better than the training only or previous
semi-blind schemes, thus making it a promising technique for
wireless channel estimation. How to choose the radius of the
confidence sphere is an important topic for future research.

VII. APPENDIX

A. Derivation of (14)

Recall that we want to minimize g1(v, λ, µ) given by

‖ỹp − v‖2 + λ
(
δt −

(
vH v̂c + v̂H

c v
))

+ µ
(
1 − vHv

)
,

where δt � 2 − εt, with respect to v, λ and µ. Taking the
complex partial derivative with respect to vH and setting to
zero, we have

∂g1 (v, λ, µ)
∂vH

∣∣∣∣
v=vr

= − (ỹp − vr) − λv̂c − µvr = 0,

whence

vr =
ỹp + λv̂c

1 − µ
.

Substituting in g1(v, λ, µ) and simplyfying, we get g2(λ, µ),
the objective of the dual maximization problem:

g2(λ, µ) � ỹH
p ỹp− (ỹp + λv̂c)

H (ỹp + λv̂c)
1 − µ

+µ+λδt. (18)

Differentiating with respect to λ and setting to zero, we have

∂g2 (λ, µ)
∂λ

= δt −
v̂H

c ỹp + ỹH
p v̂c + 2λv̂H

c v̂c

1 − µ
= 0, (19)

which yields

λ =
1
2

(
δt (1 − µ) − v̂H

c ỹp − ỹH
p v̂c

)
. (20)

Thus, we have the final maximization over µ as follows. For
notational simplicity, define α � v̂H

c ỹp+ỹH
p v̂c and Γ = 1−µ.

Then, the maximization of the dual of g2(λ, µ) can be rewritten
in terms of maximization of g3(Γ) given by

δt

2
(δtΓ − α) + (1 − Γ) −

[
ỹH

p ỹp + 1
4

(
δ2
t Γ2 − α2

)]
Γ

. (21)

Differentiating with respect to Γ and setting to zero, we get

δ2
t

2
− 1 +

1
Γ2

[
ỹH

p ỹp +
1
4

(
δ2
t Γ2 − α2

)] − 1
Γ

[
1
4
2δ2

t Γ
]

= 0,

which yields

Γ2 =
ỹH

p ỹp − 1
4α2

1 − 1
4δ2

t

. (22)

It can be seen that the second derivative is

∂2g3 (Γ)
∂Γ2

=
−2

(
ỹH

p ỹp − α2

4

)
Γ3

(23)

Thus, when the positive square root is chosen for Γ, ∂2g3(Γ)
∂Γ2 <

0 and g3 is guaranteed to be at a local maximum. From this,
we can determine µ as

µ = 1 −
√

Γ2. (24)

Substituting for λ and µ from (20) and (24) into (18) and
simplifying, we obtain the expression for the robust estimate
in (14) for the transmit beamforming vector.
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