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Abstract—In this paper we consider a paradigm for sum
perceptual quality maximization in the context of unicast and
multicast video transmission to heterogeneous multimedia wire-
less clients. The multimedia server is constrained by the pro-
cessing overheads required for tasks such as video encoding,
bit-stream extraction, packetisation etc. We demonstrate that
the above problem of perceptual quality maximization is well
represented by a constrained optimization framework. Further,
this model can be readily extended to include QoS considerations
in multicast transmission. Based on the system model, we present
a closed form solution for frame rate allocation and a compre-
hensive algorithm for sum quality maximization. We compare the
results obtained using the above mentioned frame rate allocation
with the results obtained using a content agnostic equal frame
rate allocation scheme and demonstrate the superiority of the
proposed algorithm in both unicast and multicast scenarios.

I. INTRODUCTION

Next generation rich mobile applications target vast services
based on multimedia content with utilization in diverse fields
of interest. There is a significant demand for applications such
as High Definition (HD) video streaming, online 3-D gaming,
multiparty video conferencing, surveillance, etc. 4G wire-
less communication technologies such as LTE, WiMAX and
UMTS are characterized by applications involving high quality
and reliable delivery of multimedia content, real time video
streaming, virtual reality experiences and high definition mo-
bile television. Thus, wireless video communications is insep-
arable from the context of 4 G wireless technologies [1], [2].
The emerging trend towards progressive miniaturization has
motivated system designers to work towards offloading the
computational complexity of end users and embedding more
intelligence/ processing power in centralized servers/ cluster
heads owned by the service provider [3]. This enables thin
wireless clients to support powerful multimedia applications.
Consider, for instance a cellular telephony network as shown
in Fig.1.

The media server stores, processes and streams the multi-
media content to the clients. This server is housed together
with the Base Transceiver Station (BTS) which transmits to
the clients on wireless links[4]. The media server is assumed
to be connected on extremely high speed dedicated fiber optic
links with its backhaul network which provides the server with
the required media content for diverse areas of interest. Thus,

Fig. 1. Example Wireless Communication Scenario

the server is constrained to satisfy the variegated demands
for multimedia services originating from a plethora of devices
belonging either to the unicast or multicast category. Further,
this central access server is fundamentally constrained by its
processing capacity for tasks such as multimedia coding and
compression, packetisation, HARQ based retransmission etc.
Hence, it is essential to optimally allocate the available com-
puting resources so as to maximize the end-user multimedia
service experience while also adhering to potentially graded
QoS criteria for different services.

In this context, we consider a novel paradigm for resource
allocation based on perceptual quality maximization. Recently
there has been a significant amount of research relating to para-
metric characterization of perceptual quality [5]. Perceptual
quality based utility function has the advantage that it directly
relates to the end user experience for video quality. Several
other measures employed in conventional works such as MSE,
and other distortion functions are not directly related to percep-
tual quality. Hence maximization of perceptual quality directly
relates to the end user experience. The perceptual quality
metric for video sequences has been modeled as a function
of its frame rate. We employ this function to maximize sum
of perceptual qualities of the video sequences requested by
heterogeneous clients in the vicinity of a media server subject
to overall processing constraints of the server using the robust
framework of optimization [6]. The optimal solution thus leads



us to a set of frame rates at which the scalable video streams
corresponding to the required video sequences can be coded
and transmitted to the clients.

The proposed optimal resource allocation scheme has a
superior performance compared to equal frame rate allocation.
We demonstrate that this framework can naturally be extended
to a Multicast scenario where the media server is required to
serve video sequences to various multicast groups [7]. Here
again the optimal frame rate allocation scheme comes out to
be better than equal frame rate allocation. We also verify the
results of the optimal frame rate allocation scheme with a
Matlab based convex solver CVX [8]. Further, as is shown
in the paper, this framework can also be extended to include
graded priority of the different streams pertaining to Quality
of Service constraints and address issues related to admission
control.

The rest of this paper is organized as follows. In Section
II we formulate the optimal frame rate allocation problem.
Section III contains a closed form solution of the problem.
In Section IV, we compare the performance of the optimal
frame rate allocation scheme with that of equal frame rate
allocation for various unicast and multicast scenarios. Finally
we conclude in Section V.

II. WIRELESS VIDEO SYSTEM MODEL

In this section we begin with an analytical characterization
of the unicast multicast framework for video transmission to
multimedia clients. Consider a video sequence of maximum
frame rate 𝑓𝑚𝑎𝑥. The normalized perceptual quality of a video
sequence has been accurately modeled in [5] by the following
function of the variable frame rate 𝑓 ,

𝑆𝑄(𝑓) ≜
(
1− 𝑒−𝑐 𝑓

𝑓𝑚𝑎𝑥

1− 𝑒−𝑐

)
, (1)

where 𝑓𝑚𝑎𝑥 is the highest frame rate at which the video
sequence is encoded using scalable video coding. The model
parameter 𝑐 is dependent on the video sequence. It determines
the degradation of perceptual quality as the frame rate de-
creases in (1). This model parameter 𝑐 has been determined
for known test sequences by conducting subjective tests and
using a least squares fitting method. Further, a relationship of
this exponential parameter with various features of the video
sequence has been explored. Thus, the authors in [5] have
determined that the value of the model parameter 𝑐 is high
for slow moving video sequences and it decreases linearly as
motion and contrast contents in a video sequence increase with
a high Pearson correlation coefficient of −0.93. Therefore,
given a video sequence, the value of 𝑐 can be objectively
determined. Hence, one can compute the model parameter 𝑐
for the diverse range of 𝑁 video sequences present with the
media server, each sequence characterized by the parameter
𝑐𝑖, 1 ≤ 𝑖 ≤ 𝑁 . We set our extreme references to standard
test sequences obtained from [9] Akiyo (Fig.2) with value of
𝑐 = 9.82 and Football (Fig.3) with value of 𝑐 = 5.79.

Processing of these video sequences while serving them to
the clients results in increasing the load on the server. It was

Fig. 2. Akiyo test sequence, CIF resolution (352x288) at 30 frames/sec

Fig. 3. Football test sequence, CIF resolution (352x288) at 30 frames/sec

shown in [3] that processing load incurred by a video sequence
can be modelled as piecewise affine function of the frame rate
with positive slopes. It was also shown that processing load
is greater for video sequence with high motion content when
compared with slow moving sequences at equal frame rates.
We set the minimum frame rate (𝑓𝑚𝑖𝑛) to be served as 17 𝑓𝑝𝑠
due to perceptual continuity of Human Visual System [10]
and maximum frame rate (𝑓𝑚𝑎𝑥) as 30 𝑓𝑝𝑠. We thus assign
processing load for each video sequence 𝑐𝑖, 1 ≤ 𝑖 ≤ 𝑁 at
frame rates 15, 20 and 25 𝑓𝑝𝑠 as 𝑝𝑖1 and 𝑝𝑖2 and 𝑝𝑖3, 1 ≤ 𝑖 ≤
𝑁 respectively in terms of percentage of processing capacity
of media server. Employing processing loads at 15, 20 and 25
𝑓𝑝𝑠, these can be converted to piecewise linear functions of
frame rate as,

(𝑎𝑖1𝑓 + 𝑏𝑖1) , 𝑓𝑚𝑖𝑛 ≤ 𝑓 ≤ 20

(𝑎𝑖2𝑓 + 𝑏𝑖2) , 20 ≤ 𝑓 ≤ 𝑓𝑚𝑎𝑥

The above mentioned piece-wise linear function can be refor-
mulated as,

𝑃 (𝑓) = max{𝑎𝑖1𝑓 + 𝑏𝑖1, 𝑎𝑖2𝑓 + 𝑏𝑖2}, 1 ≤ 𝑖 ≤ 𝑁 (2)

Thus, (2) corresponds to the piecewise affine function 𝑃 (𝑓)
which determines the processing load incurred by the 𝑖𝑡ℎ



video sequence in terms of percentage of the total processing
capacity of the media server.

A. Unicast System Model

We now formulate a Unicast scenario where video se-
quences are streamed to various users over dedicated wireless
channels. The total normalized perceptual quality of all the
video sequences being serviced at any instant is the objective
function which we aim to maximize, subject to being con-
strained by the overall processing capacity 𝐹 of the media
server and keeping the frame rate for all sequences bounded
between 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥. This problem can be expressed as,

min . −
𝑁∑
𝑖=1

(
1− 𝑒−𝑐𝑖

𝑓𝑖
𝑓𝑚𝑎𝑥

)
(1− 𝑒−𝑐𝑖)

subject to
𝑁∑
𝑖=1

max{𝑎𝑖1𝑓 + 𝑏𝑖1, 𝑎𝑖2𝑓 + 𝑏𝑖2} ≤ 𝐹

𝑓𝑖 ≤ 𝑓𝑚𝑖𝑛 , 1 ≤ 𝑖 ≤ 𝑁

𝑓𝑖 ≥ 𝑓𝑚𝑎𝑥 , 1 ≤ 𝑖 ≤ 𝑁

Utilizing the convexity properties of the piecewise linear
constraint, we convert it into a finite set of linear inequalities.
The above optimization problem can thus be equivalently
expressed as,

min . −
𝑁∑
𝑖=1

(
1− 𝑒−𝑐𝑖

𝑓𝑖
𝑓𝑚𝑎𝑥

)
(1− 𝑒−𝑐𝑖)

subject to
𝑁∑
𝑖=1

𝑡𝑖 ≤ 𝐹

(𝑎𝑖1𝑓 + 𝑏𝑖1) ≤ 𝑡𝑖 , 1 ≤ 𝑖 ≤ 𝑁, 𝑓𝑚𝑖𝑛 ≤ 𝑓 ≤ 20

(𝑎𝑖2𝑓 + 𝑏𝑖2) ≤ 𝑡𝑖 , 1 ≤ 𝑖 ≤ 𝑁, 20 < 𝑓 ≤ 𝑓𝑚𝑎𝑥

𝑓𝑖 ≤ 𝑓𝑚𝑖𝑛 , 1 ≤ 𝑖 ≤ 𝑁

𝑓𝑖 ≥ 𝑓𝑚𝑎𝑥 , 1 ≤ 𝑖 ≤ 𝑁

The above problem can be readily solved by an interior
point method. However, to make the problem tractable and
to illustrate a closed form solution in this work, we assume
the processing load to be a single affine function of the frame
rate restricted within the bounds [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥]. It can be noted
that both the simplified problem and the problem stated above
are optimization problems with convex objective function
and linear inequality constraints, with identical computational
complexities. The convex optimization problem for the unicast
scenario can thus be reformulated as,

min . −
𝑁∑
𝑖=1

(
1− 𝑒−𝑐𝑖

𝑓𝑖
𝑓𝑚𝑎𝑥

)
(1− 𝑒−𝑐𝑖)

(3)

subject to
𝑁∑
𝑖=1

(𝑎𝑖𝑓 + 𝑏𝑖) ≤ 𝐹

𝑓𝑖 ≤ 𝑓𝑚𝑖𝑛 , 1 ≤ 𝑖 ≤ 𝑁

𝑓𝑖 ≥ 𝑓𝑚𝑎𝑥 , 1 ≤ 𝑖 ≤ 𝑁

B. Multicast System Model

The framework described in previous sub-section can be
naturally extended to a Multicast scenario where each video
sequence can be requested by 𝑛𝑖 users, 1 ≤ 𝑖 ≤ 𝑁 . we also
incorporate an additional parameter, weight (𝑤𝑖, 1 ≤ 𝑖 ≤ 𝑁 )
for each Multicast Group. The weight assigned to a multi-
cast group signifies the QoS priority assured by the service
provider to that multicast group. It is apparent that only the
objective function of the optimization problem changes in this
scenario where as the constraint functions continue to remain
unchanged from the unicast scenario. The objective function
for the multicast scenario can be expressed as

min . −
𝑁∑
𝑖=1

𝑛𝑖𝑤𝑖

(
1− 𝑒−𝑐𝑖

𝑓𝑖
𝑓𝑚𝑎𝑥

)
(1− 𝑒−𝑐𝑖)

(4)

III. OPTIMAL FRAME RATE ALLOCATION SCHEME

The function 𝑒−𝑥 is a convex function and ∀𝑥 ≥
0 it is bounded between [1, 0). Therefore, the function
− (1− 𝑒−𝑥) , ∀𝑥 ≥ 0 is a convex function bounded between
[0,−1). Using the fact that sum of convex functions preserves
convexity of the objective, it can be shown that the objective
functions in (3) and (4) are convex functions. All (2𝑁 + 1)
inequality constraints are affine (convex) functions of frame
rate. Therefore the optimization problems stated in previous
section are convex optimization problems and can be solved
by fast convex solvers. As demonstrated above, even by con-
sidering the processing capacity constraint as piecewise linear,
the problems will continue to remain convex with additional
linear constraints. Therefore, a globally unique solution to
both the problems can be determined using the robust convex
optimization framework. We now derive a closed form solution
for the multicast system model using a procedure involving the
Lagrangian below.

A. Addmission Control

Naturally, in a broadband wireless network, it is essential to
implement a policy of admission control so as to satisfy all the
users at a minimum QoS level. Hence, we propose a criterion
that the media server prior to accepting a service request from
a new multicast group will confirm that,

𝐾∑
𝑖=1

(𝑎𝑖𝑓𝑚𝑖𝑛 + 𝑏𝑖) + (𝑎𝑗𝑓𝑚𝑖𝑛 + 𝑏𝑗) ≤ 𝐹 (5)

where there are 𝐾 multicast groups being currently served
and the 𝑗𝑡ℎ multicast group is requesting for a different video
sequence. If (5) is not met, then the new multicast group is
denied addmission. It can be readily seen that a feasible point
exists if the admission control condition in (5) is satisfied.

B. Optimal Solution using Lagrangian Multipliers

In this section we derive expressions for the optimal frame
rate allocation based on the above convex optimization prob-
lem. The Lagrangian for the optimization problem mentioned



in (4) can be formulated as,

𝐿(f , 𝜆, 𝜇, 𝛾) =−
𝑁∑
𝑖=1

𝑛𝑖𝑤𝑖

(
1− 𝑒−𝑐𝑖

𝑓𝑖
𝑓𝑚𝑎𝑥

)
(1− 𝑒−𝑐𝑖)

+ 𝜆

(
𝑁∑
𝑖=1

(𝑎𝑖𝑓𝑖 + 𝑏𝑖)− 𝐹

)

+

𝑁∑
𝑖=1

𝜇𝑖 (𝑓𝑖 − 𝑓𝑚𝑎𝑥) +

𝑁∑
𝑖=1

𝛾𝑖 (𝑓𝑚𝑖𝑛 − 𝑓𝑖)

The KKT conditions, which can be readily derived as,

− 𝑛𝑖𝑤𝑖
𝑐𝑖

𝑓𝑚𝑎𝑥

(
𝑒−𝑐𝑖

𝑓𝑖
𝑓𝑚𝑎𝑥

1− 𝑒−𝑐𝑖

)
+ 𝑎𝑖𝜆+ 𝜇𝑖 − 𝛾𝑖 = 0

𝜆 ≥ 0,
𝑁∑
𝑖=1

(𝑎𝑖𝑓𝑖 + 𝑏𝑖) ≤ 𝐹, 𝜆

(
𝑁∑
𝑖=1

(𝑎𝑖𝑓𝑖 + 𝑏𝑖)− 𝐹

)
= 0

𝜇𝑖 ≥ 0, 𝑓𝑖 ≤ 𝑓𝑚𝑎𝑥, 𝜇𝑖 (𝑓𝑖 − 𝑓𝑚𝑎𝑥) = 0

𝛾𝑖 ≥ 0, 𝑓𝑖 ≥ 𝑓𝑚𝑖𝑛, 𝛾𝑖 (𝑓𝑚𝑖𝑛 − 𝑓𝑖) = 0

can be employed to compute the optimal solution. If 𝜇𝑖, 𝛾𝑖 =
0, the optimal solution can be derived as below (else, one can
employ the algorithm that follows next).

𝑎𝑖𝜆 = 𝑛𝑖𝑤𝑖
𝑐𝑖

𝑓𝑚𝑎𝑥

(
𝑒−𝑐𝑖

𝑓𝑖
𝑓𝑚𝑎𝑥

1− 𝑒−𝑐𝑖

)

𝑓∗
𝑖 = −𝑓𝑚𝑎𝑥

𝑐𝑖
log

(
𝑎𝑖𝜆𝑓𝑚𝑎𝑥 (1− 𝑒−𝑐𝑖)

𝑛𝑖𝑤𝑖𝑐𝑖

)
(6)

Using the sum constraint
∑𝑁

𝑖=1 𝑎𝑖𝑓𝑖 + 𝑏𝑖 = 𝐹 , the parameter
𝜆 can be derived as,

𝐹 = −
𝑁∑
𝑖=1

(
𝑎𝑖
𝑓𝑚𝑎𝑥

𝑐𝑖
log

(
𝜆𝑎𝑖𝑓𝑚𝑎𝑥 (1− 𝑒−𝑐𝑖)

𝑛𝑖𝑤𝑖𝑐𝑖

)
+ 𝑏𝑖

)

𝐹 −
𝑁∑
𝑖=1

𝑏𝑖 = −
𝑁∑
𝑖=1

𝑎𝑖
𝑓𝑚𝑎𝑥

𝑐𝑖
log 𝜆

−
𝑁∑
𝑖=1

𝑎𝑖
𝑓𝑚𝑎𝑥

𝑐𝑖
log

(
𝑎𝑖𝑓𝑚𝑎𝑥 (1− 𝑒−𝑐𝑖)

𝑛𝑖𝑤𝑖𝑐𝑖

)
Hence, the final expression for the Lagrangian dual variable
𝜆∗ can be derived as,

exp

⎛⎜⎜⎝𝐹 −∑𝑁
𝑖=1 𝑏𝑖 +

∑𝑁
𝑖=1 𝑎𝑖

𝑓𝑚𝑎𝑥

𝑐𝑖
log

(
𝑎𝑖𝑓𝑚𝑎𝑥(1−𝑒−𝑐𝑖)

𝑛𝑖𝑤𝑖𝑐𝑖

)
−∑𝑁

𝑖=1 𝑎𝑖
𝑓𝑚𝑎𝑥

𝑐𝑖

⎞⎟⎟⎠
(7)

Substitution of the above value for 𝜆∗ in (6) gives the desired
optimal frame rate for the 𝑖𝑡ℎ multicast group.

C. Algorithm for Computing Optimal Frame Rate

In this section, we present an algorithm to determine
the optimal frame rate as a solution to the above convex
optimization problem. We initialize a multicast scenario with

(𝑁 − 1) multicast groups, presently being serviced by the
media server and an 𝑁 𝑡ℎ multicast group places a request
for a video sequence. The media server determines optimal
frame rate using the procedure described in Algorithm 1

Algorithm 1 Computation of optimal frame rate
begin
if Admission control condition (5) is satisfied

Compute frame rates 𝑓𝑖, 1 ≤ 𝑖 ≤ 𝑁 for each
multicast group using (6);

for (𝑖 = 1 : 1 : 𝑁 )
{ if 𝑓𝑖 > 𝑓𝑚𝑎𝑥

fix the frame rate for 𝑖𝑡ℎ multicast group as 𝑓𝑚𝑎𝑥;
compute 𝐹 = 𝐹 − (𝑎𝑖𝑓𝑚𝑎𝑥 + 𝑏𝑖);
compute 𝜆 using 𝐹 in (7) and compute frame
rates for (𝑁 − 𝑖𝑡ℎ) multicast groups using (6);
repeat for loop for (𝑁 − 𝑖𝑡ℎ) multicast groups;

else
if 𝑓𝑖 < 𝑓𝑚𝑖𝑛

fix the frame rate for 𝑖𝑡ℎ multicast group as 𝑓𝑚𝑖𝑛;
compute 𝐹 = 𝐹 − (𝑎𝑖𝑓𝑚𝑖𝑛 + 𝑏𝑖);
compute𝜆 using 𝐹 in (7) and compute frame
rates for (𝑁 − 𝑖𝑡ℎ) multicast groups using (6);
repeat for loop for (𝑁 − 𝑖𝑡ℎ) multicast groups;

end if
end if }

end if
end

Successful termination of the for loop in Algorithm 1 will
yield the optimal frame rates for all multicast groups.

D. Optimal Frame Rate Allocation - Unicast Scenario

Setting the values of 𝑛𝑖 = 𝑤𝑖 = 1 in (4) and proceeding
similarly, a closed form solution for the optimization problem
for the unicast scenario described in (3) can also be obtained.
It can be shown that the value of Lagrangian dual variable 𝜆∗

can be computed using the following expression,

exp

⎛⎜⎜⎝𝐹 −∑𝑁
𝑖=1 𝑏𝑖 +

∑𝑁
𝑖=1 𝑎𝑖

𝑓𝑚𝑎𝑥

𝑐𝑖
log

(
𝑎𝑖𝑓𝑚𝑎𝑥(1−𝑒−𝑐𝑖)

𝑐𝑖

)
−∑𝑁

𝑖=1 𝑎𝑖
𝑓𝑚𝑎𝑥

𝑐𝑖

⎞⎟⎟⎠
Substitution of the above value for 𝜆∗ in the equation given
below yields the desired optimal frame rate for the 𝑖𝑡ℎ user.

𝑓∗
𝑖 = −𝑓𝑚𝑎𝑥

𝑐𝑖
log

(
𝑎𝑖𝜆𝑓𝑚𝑎𝑥 (1− 𝑒−𝑐𝑖)

𝑐𝑖

)
All the rest of the steps including the algorithm are similar to
that of the multicast scenario.

IV. SIMULATION AND COMPARISON OF RESULTS

We compare the performance of our optimal allocation with
that of equal frame rate allocation in which all users/multicast
groups requesting for video sequences are alloted equal frame
rate which is calculated based on the sequence with the worst
case processing load on the media server. Further, to verify the



optimality of our algorithm, we compare the allocation with
that of CVX solver [8] in our simulations. We test the unicast
scenario in simulation 1 where the media server contains
sequences of diverse video content. The results are plotted
in Fig.4 and Fig.5.
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Fig. 4. Unicast Scenario - Diverse Sequence Collection

Analyzing the results of simulation 1, we observe that the total
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Fig. 5. Unicast Scenario - Diverse Sequence Collection (Close Up)

normalized perceptual quality calculated through the convex
optimization solver confirms our optimal frame rate allocation
scheme over the complete range.

The total normalized perceptual quality calculated through
equal frame rate allocation scheme is at par with the same
calculated using optimal frame rate allocation up till 14 users
beyond which the load on the server increases and optimal
frame rate allocation scheme proves to be better than equal
frame rate allocation scheme. It is also observed that the
total normalized perceptual quality calculated through optimal
frame rate allocation scheme tends to become equal to the
same calculated using equal frame rate allocation beyond 28
users. This is due to high load on the server, almost all

the frame rates obtained using optimal frame rate allocation
scheme approach 𝑓𝑚𝑖𝑛. The admission control check condition
does not permit more than a specific number of users to load
the server.

Fig.5 brings out clearly that optimal frame rate allocation
scheme is better than equal frame rate allocation. The sep-
aration between two total normalized perceptual qualities is
maximum when the users utilizing the system are in the range
of 21 to 24. This can be deduced as the optimal load on the
server.

We simulate the unicast scenario in simulation 2 once again
where the media server contains sequences of specific video
content (only very high motion e.g. sports footages and only
very low motion e.g. News sequences). The results obtained
using both allocation schemes and by the convex optimization
solver are plotted in Fig.6.

20 20.5 21 21.5 22 22.5 23 23.5 24
19.5

20

20.5

21

21.5

22

22.5

23

23.5

Sum Perceptual Quality Vs No. of Users : Unicast Scenario

No. of Users

S
um

 P
er

ce
pt

ua
l Q

ua
lit

y

 

 
Optimal FR Alloc
CVX Solver FR Alloc
Equal FR Alloc

Fig. 6. Unicast Scenario - Specific Sequence Collection(Close Up)

It can be clearly observed that the gap between total
normalized perceptual quality obtained via optimal frame rate
allocation scheme and the same obtained via equal frame rate
allocation scheme is better in simulation 2 than in simulation
1. Therefore we can claim that optimal frame rate allocation
scheme maximizes the total normalized perceptual quality
even better when the media server is being utilized for tasks
such as a news server.

We test the multicast scenario in simulation 3 where the
media server contains sequences of diverse video content.
We utilize the input gained in simulation 1 that the server
is optimally loaded when 21-24 sequences are being served.
We keep the number of multicast groups constant at 22 where
as increase the number of users subscribing these groups in
10 iterations. The results obtained are as shown in Fig.7.

It is observed from Fig.7 that the solution obtained through
the Convex Solver completely verifies the same produced by
our optical frame rate allocation scheme. The gap between
total normalized perceptual quality obtained via optimal frame
rate allocation scheme and the same obtained via equal frame
rate allocation scheme widens as number of users increase.
This proves that optimal frame rate allocation scheme fairs
better for multicast scenarios.
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Fig. 7. Multicast Scenarios - 22 multicast groups with increasing users

We conduct another test in the multicast scenario in simu-
lation 4 where we fix the number of users in each multicast
group as 1000 and similar to simulation 1 plot the total
normalized perceptual quality as the media server is loaded
progressively with a multicast group requesting a unique video
sequence joins iteratively. The results obtained using both
allocation schemes and by the convex solver are plotted in
Fig.8 and Fig.9.
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Fig. 8. Multicast Scenarios - increasing multicast groups

The results obtained are similar to that obtained through
simulation 1. The gap between the total normalized perceptual
quality is maximum when the active multicast groups are 21-
24. The zigzag nature of the curve is due to the random weight
function which makes the sum perceptual quality shoot up
when a multicast group having a significant priority joins,
where as the rise is not very substantial when a multicast
group with less priority is added to be serviced by the media
server.

V. CONCLUSION

In this paper we proposed a frame rate allocation problem
for video streaming services to multiple wireless clients. We
motivated the relevance of this problem in the context of
4G wireless communications and beyond. Employing the sum
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Fig. 9. Multicast Scenarios - increasing multicast groups (Close Up)

perceptual quality metric as a function of the frame rate vector,
we demonstrated that this scenario can be well captured by
an optimization framework with a convex objective function.
Further, this framework can be readily extended to multicast
scenarios with graded priority. A closed form solution was
obtained for the above problem. We conducted simulations in
unicast and multicast scenarios and compared the results of the
optimal frame rate allocation scheme with those of equal frame
rate allocation. We confirmed our theoretical solution with the
solution obtained using a convex solver. We deduced that over
all the simulations being conducted the optimal frame rate
allocation scheme comes out to be superior than equal frame
rate allocation. The optimal frame rate allocation scheme
performs even better in a multicast scenario as compared to a
unicast scenario.
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