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ABSTRACT

In this paper, we investigate semi-blind channel estimation for
multiple input multiple output (MIMO) quasi-static flat fading chan-
nels when maximum ratio transmission (MRT) is employed. We
propose a closed-form semi-blind solution (CFSB) for estimat-
ing the optimum transmit and receive beamforming vectors of the
channel matrix. Employing matrix perturbation theory, we develop
expressions for the mean squared error (MSE) in the beamforming
vector and average received SNR of both the semi-blind and the
conventional least squares estimation (CLSE) schemes. It is found
that the proposed estimation technique outperforms CLSE for a
wide range of training lengths and training SNRs.

I. INTRODUCTION

Semi-blind techniques can enhance the accuracy of channel esti-
mation by efficiently utilizing not only the known training symbols
but also the unknown data symbols [1, 2]. However, the previous
techniques for channel estimation in MIMO systems are transmis-
sion scheme agnostic, and typically assume that the transmitted
data is spatially white. This requirement poses new challenges
in channel estimation for feedback based schemes, as they do not
posses the spatial whiteness property. Also, accurate channel esti-
mation takes on additional importance for feedback based commu-
nication schemes as the quality of feedback has significant impli-
cations on their performance. On the other hand, feedback based
transmission schemes may allow greater estimation accuracy for a
given level of training, as they require estimation of fewer chan-
nel parameters than transmission schemes without feedback. For
example, channel estimation algorithms when MRT is employed
at the transmitter only need to estimate the transmit and receive
beamforming vectors v1 and u1, the right and left dominant sin-
gular vectors of H respectively [3], where H is the r × t chan-
nel transfer matrix, and r / t are the number of receive / transmit
antennas. In this study, we consider semi-blind estimation algo-
rithms specifically designed for beamforming-based MIMO com-
munication, and look at some of the issues alluded to above. The
contributions of this paper are as follows:

• We describe the training based conventional least squares
estimation (CLSE) algorithm, and analytically compute its
performance in terms of the mean squared error (MSE) in
the estimated beamforming vector v1 and the channel gain.
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• We propose an alternative closed form semi-blind (CFSB)
algorithm that estimates u1 from the data using a blind al-
gorithm, and uses the training symbols exclusively to esti-
mate v1.

• We motivate and introduce a new signal transmission scheme
that enables implementation of the CFSB scheme.

• We derive theoretical expressions for the performance of
the proposed CFSB algorithm and compare it to the CLSE
scheme.

We validate the analytical results on the performance of these two
techniques through simulations.

II. SYSTEM MODEL AND NOTATION

The MIMO channel input-output equation at time k is

yk = Hxk + nk, (1)

where yk ∈ C
r is the channel output, xk ∈ C

t is the channel
input, and nk is additive white Gaussian noise with zero mean
and covariance matrix Ir , the r × r identity matrix. The chan-
nel transfer matrix H ∈ C

r×t is assumed to be quasi-static flat-
fading. Let the singular value decomposition (SVD) of H be given
as H = UΣV H , and Σ ∈ R

r×t contains singular values σ1 ≥
σ2 ≥ . . . ≥ σm > 0, along the diagonal, where m = rank(H).
The training symbols are stacked together to form a training sym-
bol matrix Xp ∈ C

t×L as Xp = [x1,x2, . . . ,xL]. To simplify
analysis, we assume that orthogonal training sequences are used,
that is, XpXH

p = γpIt, where γp � LPT /t. The data symbols xk

could either be spatially-white (i.e., E
{
xkx

H
k

}
= (PD/t) It), or

it could be the result of using beamforming at the transmitter with
unit-norm weight vector w ∈ C

t×1
(
i.e., E{xkx

H
k } = PDwwH

)
,

where the data transmit power is E
{
xH

k xk

}
= PD . We let

N(> L) denote the number of spatially-white data symbols trans-
mitted, that is, a total of N + L symbols are transmitted prior to
transmitting beamformed-data. Note that the N white data sym-
bols carry (unknown) information bits, and hence are not a waste
of available bandwidth.

In this paper, we restrict our attention to the case where the
transmitter employs MRT to send data, that is, a single data stream
is transmitted over t transmit antennas after passing through a
beamformer w. Given the channel matrix H , the optimum choice
of w is v1 [3]. Thus, MRT only needs an accurate estimate of v1

to be fed-back to the transmitter. We assume that t ≥ 2, since
when t = 1, estimation of the beamforming vector has no rel-
evance. Finally, we will compare the performance of different
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Fig. 1. Comparison of the transmission scheme for conventional
least-squares (CLSE) and closed-form semi-blind (CFSB) estima-
tion.

estimation techniques using two measures, the MSE in the esti-
mate of v1 and the gain (the power amplification/attenuation) of
the one-dimensional channel resulting from beamforming with the
estimated vector v̂1.

III. CONVENTIONAL LEAST SQUARES ESTIMATION

For an orthogonal training sequence Xp, the least-squares ML es-
timate of the channel matrix Ĥc, is first obtained as

Ĥc = YpX†
p =

1

γp
YpXH

p , (2)

where X†
p is the pseudo-inverse of Xp, and Yp (= HXp + ηp)

is the set of received training symbol vectors. By the invariance
property of ML estimators, the ML estimate of v1 and u1, denoted
v̂c and ûc respectively, is now obtained via a SVD of Ĥc, the ML
estimate of the channel matrix H .

IV. SEMI-BLIND ESTIMATION (CFSB)

If the transmitted data symbols are spatially-white, the ML esti-
mate of u1 can be obtained from the entire received symbols by
computing the following SVD

ÛΣ̂2ÛH =
1

γd

(
R̂y − NIr

)
, (3)

where R̂y �
∑N

i=1 yiy
H
i and γd � NPD/t is the transmit data

SNR, per antenna. The estimate of u1, denoted ûs, is thus com-
puted blind from the received data as the first column of Û . The
MMSE estimate of v1 (under ‖v1‖ = 1) with perfect knowledge
of u1 is then given by the solution to the following constrained
least squares problem:

v̂s = arg min
v∈ Ct, ‖v‖=1

‖Ỹp − vHX̃p‖2, (4)

where Ỹp � u1
HYp

σ1γp
, and X̃p � Xp

γp
. The unit-norm constrained

estimate v̂s which minimizes the above cost-function can then be
shown [4] to be given as,

v̂s =
XpY H

p u1

‖XpY H
p u1‖ . (5)

We estimate v1 from the training symbols Xp, by substituting ûs

for u1 in (5). Fig. 1 shows a schematic representation of the CLSE
and the CFSB schemes.

MRC Receive Beamforming: An alternative to employing û1

at the receiver is to use an estimate of the maximum ratio com-
bining (MRC) beamforming vector Hv̂1/‖Hv̂1‖, denoted as û′

1

which can be accurately estimated blind by computing the domi-
nant eigenvector of the output covariance R̂y of the received beam-
formed data. We present the theoretical analysis of this technique
as well.

V. MSE AND SNR ANALYSIS

We recapitulate a result from matrix perturbation theory that is
extensively used in the analysis [5]. Consider a first order pertur-
bation of a hermitian symmetric matrix R by an error matrix ∆R

to get R̂, that is, R̂ = R + ∆R. Then, if the eigenvalues of R are
distinct, for small perturbations, the eigenvectors ŝk of R̂ can be
approximately expressed in terms of the eigenvectors sk of R as

ŝk = sk +

L∑
r=1
r �=k

sH
r ∆Rsk

λk − λr
sr, (6)

where L is the rank of R, λk is its k-th eigenvalue, and λk �=
λj , k �= j. When k = 1, s̃1 = ŝ1/‖ŝ1‖ = Sd, where d =
[1 + ∆d1, ∆d2, . . . , ∆dn]T . If ∆di are small, since ‖d‖ = 1, the
components ∆di can be approximately expressed as

∆di � sH
i ∆Rs1

λ1 − λi
, i = 2, . . . , n

∆d1 � −1

2

t∑
i=2

|∆di|2 . (7)

Note that ∆d1 is real, and is a second-order term compared to
∆di, i ≥ 2. We will use this fact in our first-order approximations
to ignore terms such as |∆d1|2 , |∆d1|3 , . . . and |∆di|3 , |∆di|4 , . . . ,
i ≥ 2. In the sequel, we assume that the dominant singular value
of H is distinct, so the conditions required for the above result
are valid. For the sake of brevity, we provide the detailed deriva-
tion only for the MSE in v̂c and the channel gain with MRC for
the CLSE scheme. The other results can be derived by following a
similar procedure; interested readers may also refer to [4] for more
details.

A. Conventional Least-Squares Estimation (CLSE)

A.1. MSE in v̂c for the CLSE scheme

To compute the MSE in v̂c, we use (2), to write the matrix ĤH
c Ĥc

as a perturbation of HHH as,

ĤH
c Ĥc � V Σ2V H + Et, (8)

where Et =
[
V ΣUHEp + Ep

HUΣV H
]

and the matrix Ep �
1

γp
ηpXH

p . Recall that v̂c is estimated from the SVD of Ĥc. We

can let v̂c = V d, and write d = [1 + ∆d1, ∆d2, . . . , ∆dt]
T as

a perturbation of [1, 0, . . . , 0]T . For i ≥ 2, ∆di is obtained from
(7) as

∆di =
vi

HEtv1

σ2
1 − σ2

i

=
σiu

H
i Epv1 + σ1v

H
i Ep

Hu1

σ2
1 − σ2

i

. (9)

The following result is used to find E
{|∆di|2

}
.

Lemma 1 Let µ1, µ2 ∈ C be fixed complex numbers. Let σ2
p =

1
γp

denote the variance of one of the elements of Ep. Then, Ω �
E

{∣∣µ1ui
HEpvj + µ2vi

HEp
Huj

∣∣2} = σ2
p

(|µ1|2 + |µ2|2
)
, for

any 1 ≤ i ≤ r, 1 ≤ j ≤ t.
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Proof: Let a � ui
HEpvj and b � vi

HEp
Huj . Then, a and

b are circularly symmetric random variables. Since Ep is cir-
cularly symmetric (E {Ep (i, j) Ep (k, l)} = 0, ∀ i, j, k, l) and a
and b∗ are both linear combinations of elements of Ep, we have
E {ab∗} = 0. Finally, since ‖ui‖ = ‖vj‖ = 1, the variance of a
and b are equal, and σ2

a = σ2
b = σ2

p. Substituting, we have

Ω = |µ1|2 σ2
a + |µ2|2 σ2

b

= σ2
p(|µ1|2 + |µ2|2).

Which concludes the proof. �
Using the above lemma with µ1 = σi, µ2 = σ1 and j = 1,

we get, for i ≥ 2,

E
{|∆di|2

}
= σ2

p
σ2

1 + σ2
i

(σ2
1 − σ2

i )
2 , (10)

where the expectation is taken with respect to the AWGN term ηp.
The following lemma helps simplify the expression further. We
omit the proof, as it is straightforward.

Lemma 2 If v̂c = V d, then

‖v̂c − v1‖2 = 2 (1 − Re(d1)) = − (∆d1 + ∆d∗
1) , (11)

where d1 = 1 + ∆d1 is the first element of d.

Using (10) in (7) and substituting into in (11), the final expression
for the MSE in v̂c for the CLSE is

E
{‖v̂c − v1‖2} =

1

γp

t∑
i=2

σ2
1 + σ2

i

(σ2
1 − σ2

i )2
. (12)

A.2. Channel Gain with ûc for the CLSE scheme

The channel gain when using ûc and v̂c as beamforming vectors
at the receiver and the transmitter respectively, given by ρc =

E
{∣∣ûH

c Hv̂c

∣∣2} can be shown to be

σ2
1 − 1

γp
(r + t − 2 · rank(H)) − 2

γp

rank(H)∑
i=2

σ2
1

σ2
1 − σ2

i

. (13)

Note that ρc ≤ ρp � σ2
1 , which is the gain with perfect beam-

forming at both the transmitter and the receiver. As γp = LPT /t
increases, ρc approaches ρp. Note that, when r = 1, the above
expression simplifies to ρc = ρp − 1

γp
(t − 1). Also, when r = t,

the CLSE performs best when the channel is spatially single di-
mensional, that is, σi = 0, i ≥ 2. In this case, we have ρc =
ρp − 2

γp
(t − 1).

A.3. Channel Gain with MRC for the CLSE scheme

When û′
c is used as the receive beamforming vector, the channel

gain ρs � E
{
v̂H

c HHHv̂c

}
is given by

ρs = E
{
v̂H

c HHHv̂c

}
= E

{
dHΣ2d

}
,

= σ2
1 −

t∑
i=2

(
σ2

1 − σ2
i

)
E

{|∆di|2
}

.

Substituting for E
{|∆di|2

}
from (10), we get

ρs = σ2
1 − 1

γp

t∑
i=2

σ2
1 + σ2

i

σ2
1 − σ2

i

(14)

Comparing, it can be seen that (14) outperforms (13), since σ1 >
σi, i ≥ 2.

B. Closed Form Semi-Blind (CFSB) Estimation

B.1. MSE in v̂s of the CFSB Scheme

Let γp = LPT /t and γd = NPD/t. The error in v̂s can be
thought of as the sum of two terms: the first one being the error
due to the noise in the white (unknown) data, and the second being
the error due to the noise in the training data. A similar decompo-
sition can be used to express the loss in channel gain (relative to
σ2

1). Using a high-SNR first order perturbation analysis, the con-
tributions of these two components can be computed and the final
expressions for the MSE in v̂s can be derived as,

(2t − 1)

2γpσ2
1

+

r∑
i=2

σ2
i

σ2
1 (σ2

1 − σ2
i )

2

(
σ2

1σ2
i

N
+

σ2
i + σ2

1

γd
+

N

γ2
d

)
.

An interesting relation between the above expression and the Cramer-
Rao lower bound (CRB) for the constrained estimation of v1 is
stated in the following theorem.

Theorem 1 The error component (2t−1)

2γpσ2
1

is the CRB for the con-

strained estimation of v1 under perfect knowledge of u1, that is,

E
{‖v1 − v̂1‖2} ≥ (2t − 1)

2γpσ2
1

. (15)

Proof: Since Ỹp = v1
HX̃p + ñ, the effective SNR for estimation

of v1 is SNR γs = γpσ2
1 . From the results derived for the CRB

with constrained parameters [6], since X̃pX̃p
H

= It/γp, the es-
timation error in v1 is proportional to the number of parameters,
which equals 2t − 1 as v1 is a t-dimensional complex vector with
one constraint (‖v1‖ = 1). The estimation error is given by

E
{‖v̂s − v1‖2} ≥ {Num. Parameters}

2γs
=

(2t − 1)

2γpσ2
1

,

which proves the desired result. �

B.2. Channel Gain with ûs of the CFSB Scheme

The power amplification ρu � E
{∣∣u1

HHv̂s

∣∣2} conditioned on

the channel matrix H , can be shown to be given as,

σ2
1 − t − 1

γp
−

r∑
i=2

1

(σ2
1 − σ2

i )

(
σ2

1σ2
i

N
+

σ2
1 + σ2

i

γd
+

N

γ2
d

)
.

Comparing the above expression with the power amplification of
CLSE (13), we see that when N is large (perfect u1) and r = t,
even in the best case of a spatially single-dimensional channel,
ρc = ρp − 2

γp
(t − 1) < ρu. Next, when r = 1, CLSE and

CFSB techniques perform exactly the same: ρc = ρu = σ2
1 − t−1

γp

since u1 = 1 (that is, no receive beamforming is needed). Thus,
if perfect knowledge of u1 is available at the receiver, CFSB is
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guaranteed to perform as well as CLSE, regardless of the training
symbol SNR. It has been observed through simulations that the
CFSB outperforms the CLSE scheme in many cases for reasonable
values of N .

B.3. Channel Gain with MRC of the CFSB Scheme

When MRC is employed at the receiver,

ρ = σ2
1 − t − 1

γp
+

1

γp

t∑
i=2

σ2
i

σ2
1

−
r∑

i=2

σ2
i

σ2
1 (σ2

1 − σ2
i )

×
(

σ2
1σ2

i

N
+

σ2
i + σ2

1

γd
+

N

γ2
d

)

Comparing the gains, it can be seen that the channel gain with
MRC is higher than that with using the estimate ûs as the receive
beamforming vector.

VI. SIMULATION RESULTS

The simulation setup consists of a Rayleigh flat fading channel
with 4 transmit antennas and 4 receive antennas (t = r = 4).
The data (and training) are drawn from a 16-QAM constellation.
10,000 random instantiations of the channel were used in the aver-
aging. The results of our simulations are presented in the following
graphs.

Experiment 1: Fig.2 shows the MSE performance of the CLSE-
and the CFSB schemes at two different values of N , as well as
the N = ∞ (perfect knowledge of U ) case. For comparison, we
also plot the performance of the so-called orthogonal pilot maxi-
mum likelihood (OPML) technique, presented in [6], which uses
the white data to estimate the entire U matrix, and uses the training
to estimate V . At N = 100 white data symbols, the CLSE tech-
nique outperforms the CFSB for L ≥ 20, as the error in u1 dom-
inates the error in the semi-blind technique. As white data length
increases, the CFSB performs progressively better than the CLSE.
Also, in the presence of a finite number (N ) of white data, the
CFSB outperforms the OPML scheme as CFSB only requires an
accurate estimate of the dominant eigenvector u1 from the white
data, which is easier to obtain compared to the entire U matrix.

Experiment 2: Next, as an example of overall performance
comparison, fig.3 shows the BER performance versus the data
SNR of the different estimation schemes for a 2 × 2 system, with
uncoded 4-QAM transmission, L = 2 training symbols, N = 16
white data symbols (for the semi-blind technique) and a frame size
Ld = 500 symbols. The CFSB scheme outperforms the CLSE
scheme in terms of its BER performance, including the effect of
white data transmission.

VII. CONCLUSION

We have investigated semi-blind channel estimation for MIMO
flat-fading channels with MRT, in terms of the MSE in the beam-
forming vector v1 and received SNR. The CFSB scheme is pro-
posed as a closed-form semi-blind solution for estimating the opti-
mum transmit beamforming vector v1. Analytical expressions for
the mean-squared error (MSE) and the channel power gain of both
the CLSE and the CFSB estimation schemes are developed, which
can be used to theoretically compare their performance. Sim-
ulations illustrate the relative performance of the different tech-
niques.
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