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I. ALGORITHMIC DESCRIPTION: OMP

The algorithmic description of the OMP scheme is presented in Algorithm-1. The main steps
of this algorithm are explained here. In each iteration 7, Step-3 obtains the index j of the column
of the matrix D, which has the highest correlation with the residual vector r;_;. Step-4 updates
the index set Z; by including the index j. Step-5 updates the matrix D? with the jth column
of the matrix D. The intermediate LS solution h’ is obtained in Step-6 and the corresponding
residual vector r; is computed in Step-7. The above procedure terminates, when the difference

between the [5-norm of the consecutive residues falls below a threshold ¢g.

Algorithm 1: OMP-based sparse channel estimation for SISO-FBMC systems

Input: Dictionary matrix D, Observation vector yl, Stopping parameter ¢,

Output: Estimate h°™P of the SISO-FBMC channel tap vector h

1 Initialization: Zo = [ ], residue r_; = 0, rg = y!4, hOMP = 0, DT =[], i =1
2 while ([ ;1 [|3 — || ria I3 > ) do
3 j = argmax |D7(:, k)r;_|

k=12,....Lp,

4 1,=2,_,Uj

s | D =[D? D(:j)]
p hi — (DI)Tygi

7 | r;=yy - D’

8 t=1+1

9 return:h®P (7,) = h'

II. ALGORITHMIC DESCRIPTION: TD-SBL, TD-SBL-KF AND TD-GSBL-KF

The algorithmic description for the proposed TD-SBL, TD-SBL-KF and TD-GSBL-KF schemes
are presented below. Algorithm-2 describes the various steps in the TD-SBL scheme for esti-

mation of the sparse SISO-FBMC CIR vector h using the procedure derived in Section-III-3
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Fig. 1: (a) Block diagram representation of the TD-SBL-KF algorithm; (b) Block-sparse and group-sparse structures in the IAM

and TD models, respectively.

of the manuscript. The various steps in the estimation of sparse doubly-selective SISO-FBMC
CIR vector h,, using the TD-SBL-KF scheme developed in Section-1V, are similarly given in
Algorithm-3. Its block diagram is also provided in Fig. 1(a). Finally, the proposed TD-GSBL-KF
technique is described in Algorithm-4. Furthermore, for reader’s convenience, the block-sparse
and group-sparse structures arising in the IAM and TD models, respectively, have been shown
in Fig. 1(b).

Note that the proposed SBL-KF framework initializes the hyperparameter matrix T for
block u as T'\) = T'”)

u—1°

i.e., to the converged estimate of the hyperparameter matrix obtained
from the previous block. The advantage of this initialization procedure is two-fold: when the
sparsity profile of the CIR does not change, the convergence is faster. On the other hand, when
it changes suddenly, the proposed SBL-KF is able to detect the change and it adapts to the new
sparsity profile in a few iterations. This has been illustrated via a simulation result in Fig. 2 of
this document. From this figure, it can be readily observed that when the sparsity profile changes
at the block index u = 10, the proposed SBL-KF-based schemes are able to adapt to the new
profile within 5 blocks.

III. COMPUTATIONAL COMPLEXITY

A comprehensive analysis is presented for the computational complexities of the proposed
OMP, SBL and SBL-KF schemes for sparse channel estimation in SISO- and MIMO-FBMC
systems. The complexity of each scheme is quantified in terms of complex additions and

multiplications.
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Fig. 2: NMSE versus number of blocks of the proposed schemes when sparsity profile changes at v = 10 with N = 64,
Np =28 and z = 3, p = 0.9981 and SNR = 15 dB.
A. Complexity of the OMP Scheme

For a general channel estimation model, y = ®h + n with & € CM*¥ the computational
complexity of the OMP scheme is derived next. Table-I details the computational cost of the

various steps in the ith iteration, as described in Algorithm-1 of this document.

B. Complexity of SBL Scheme for Quasi-Static Channel Estimation

For a general channel estimation model, y = ®h + n with ® € CM*" the computational
complexity is derived next. The E-step in the SBL scheme requires the computation of mean

vector p and covariance matrix 3 given below
p=3®"R'yand £ = (I"' + "R, '®) (1)

where R, denotes noise covariance matrix and the diagonal matrix I' comprises of hyperparam-

eters ;. In the M-step, the hyperparameter ~; is updated as follows
o2 o
vi= @) |+ (,19). (2)

Table-II details the computational cost of the various steps.



Algorithm 2: TD-SBL based sparse channel estimation in SISO-FBMC systems
Input: Observation yY, Dictionary Matrix D, Noise Covariance R, Stopping

Parameters €¢; and N,

Output: Estimate h™-SBL of the SISO-FBMC CIR vector h
~(0
Initialization: %(0) =1,V1i<i<L,-1 = I‘( - I.,, Set counter p = 0 and
~(=1)
F = OLhXLh
~-1)

while (Hf‘p) _7

o

(5]

>e && p < Nmax> do
F
3 p—p+1
4 E-step: Evaluate a posteriori mean and covariance
(p) ~(p—1) -1 HD -1 -
=0~ ((f"") +D"R,'D
5 “(p) - 2(p)DHR;1de
6 M-step: Evaluate estimate of the hyperparameters
7 for i =0,1,...,L, — 1 do
s t /7\1‘(17) — ’u(p) (4) ‘2 + ¥y (i,19)
~(p) . ~(p) ~ ~
9 ' = diag (yép),vép),...,yé’;)_J

10 return:h™>-SBL — ;)

C. Complexity of SBL-KF Scheme for Doubly-Selective Channel Estimation

For a general channel estimation model, y, = ®h, + 7, with ® € CM*¥ and state model
h, = ph, 1 + /1 — p?> w,, where p denotes temporal correlation parameters and the vector
w,, symbolises the innovation noise. For this model, the computational complexity is derived
next. The E- and M-step of the SBL-KF scheme are identical to the SBL scheme, where as the
former additionally requires following computations.

Let flu_l‘u_l and X, ), represent the filtered estimate and the corresponding estimation
error covariance matrix of the vector h, ;, respectively. Let f‘u denote the estimate of the
hyperparameter matrix I', in the uth block. The MMSE prediction ﬁu\u—1 of the vector h, and

the corresponding error covariance matrix X,,_; are obtained as

~ ~ ) S

hu\ufl =p hu71|u717 and Eu\ufl =p z]ufl|u71 + (1 —p ) L. (3)
Furthermore, the filtered estimate ﬁu‘u and the associated error covariance X, can be updated as

i/\lu\u = ﬁu|u—1 + Ku(Yu - (ﬁﬁu|u—1)7 and Eu\u = (I - Kuq))zum—la “4)



Algorithm 3: TD-SBL-KF based sparse doubly-selective channel estimation in SISO-
FBMC systems

Input: Observation yO .» dictionary matrix D, correlation coefficient p, noise covariance

R, stopping parameters €; and Ny ax
Output: Estimate h™SBLKF of the doubly-selective SISO-FBMC CIR vector h,
1 Initialization: f‘iofv =1,

2 foru=20,1,2,... do

3 Set p =0, Y = fc and f(_ - =0p,x1,
+ | while (|F; r” _p” )| > € &l p < Ny ) do
F
5 p—p+1
—1\ -1
6 =) = (D*R;'D + (T¢") )
b /’l’l(tp) — Eu DHR lybdu
8 fori—O,l,.. , L, —1do
) A = W 0[P+ B9 ()
~conv  (p ) . ~
10 r, =T, =diag (73127 ... ,vé’f_l,u>
1 if (u ==0) then
12 B Set ﬁ71|71 = Othl, 2,”,1 = fép)
13 Obtain ﬁu\u—1 and X, using (27)
14 Obtain the Kalman-gain K, using (29)
15 Obtain ﬂu‘u and 3, using (28)
16 return:ﬂID‘SBL‘KF = ﬁu|u

where K, is the Kalman-gain matrix given by K, = £,,_1®" (R, + ®X,,_1®") . Table-III

details the computational cost of the various steps for the SBL-KF scheme.

IV. BAYESIAN CRAMER-RAO LOWER BOUNDS AND COMPLEXITY ANALYSIS

The BCRLBs of the TD model of CSI estimation in MIMO-FBMC systems using (29) and
(50) are derived next.

1) BCRLB of Quasi-static MIMO-FBMC channel estimation: The Bayesian Fisher informa-
tion matrix (FIM) denoted by Jz € CN-NeLnxNeNeLi for the estimate of the CSI h can be



Algorithm 4: TD-GSBL-KF based sparse doubly-selective channel estimation in MIMO-
FBMC systems
Input: y0 ws D, p, f{n, €1 and Ny«

Output: Estimate h™-GSBLKF of

Initialization: T, =1,
2 foru=20,1,2,... do
3 Set p =0, f‘(o) I‘COHZ and I‘ - =0p,x1,
1
4 while <HI‘ - I‘p )H >e6 &&p < Nmax> do

o

5 p—p+1

o || 8= (D"RyD 4 (L @) ) s a0 = SUD R, Iy,

7 for i =0,1,..., L, — 1 do

8 L ﬁf’;) = NT»th flV:’“let ﬁ(p)(d)) + f (CZ 1) where d = (i + 1+ (d — 1) Ly,)
9 " =T = diag (73’27 At - - ﬁéh)_l,u>

10 if (u ==0) then

1 B H—1\—1 = 0N, N L x1; 2-1)-1 = Iy, @ fép)

12 Obtain ﬁu\u—1 and X, using (3)
13 Obtain Hu‘u and X, using (4)

14 | return:h[POSBLEE —

TABLE I: Complexity of OMP scheme

Operation | Complex Multiplications Complex Additions
Step-3 NM N(M — 1)
g 5.5 . lg 1
Step-6 1"+ =1 +iM —1 M—— ) +iM — 2
2 2 2
Step-7 Mi Mi

expressed as [1]

Jg=Jp+Jp, 5)



TABLE II: Complexity of SBL scheme

Operation | Complex Multiplications Complex Additions
3 3 P) P) 3 3 p) P)
b)) MZ N7 3ME L SNT L v e e N | AN M SNT L N NP M N—MN
2 2 2 2 2 2 2 2
o N+ NM N? 4+ NM — 2N
Yi N N
TABLE III: Complexity of SBL-KF scheme
Operation | Complex Multiplications Complex Additions
3 3 P) P) 3 3 p) P)
b MZ N 3ME L SNT v NN | ML N ME SN e N2 M N—MN
2 2 2 2 2 2 2 2
" N2 4+ NM N2 4+ NM — 2N
Yi N N
ﬁu|u—1 N -
Z:u\u—l N2 + N N
3 2 3 2
K. N2M+2M2N+MT+3A2/[ N2M+2M2N+M77M772MN
h,., |2MN 2MN
Sulu N® 4+ N*M N® 4+ N?M + N —2N?

where both Jp and Jp having the size N,.N,L;, x N, N;Ly;, symbolize the FIMs associated with

the pilot output y' and CSI h, respectively. These matrices are formulated as

9*log f (yf)d | fl) 9*log f (fl;I‘)
OhohH OhohH

and Jp = —E;

Ip = —Ej gu

The quantities log p (3731 | fl) and log p (fl; I‘> are simplified to
. _ NH .
log f (v§|h) =C,— (4~ Dh) R, (vs —Dh), and
kgf(&F)sz-ﬁWI@FYWL

where the constants C; and Cs are given by C; = —N,N,logmr — log det <f{n> and C3 =
—N;N, Lplogr — log det (Iy,n, ® T'). Upon employing the above expressions, the FIMs Jp
and Jp can be expressed as Jp = ﬁHR,;l@ and Jp = (IN,«Nt ® I‘)_l. Substituting these into
(5), the Bayesian FIM Jp is expressed as

Jp=D"R,'D+ (Iyy o) . 6)

It can be readily observed from the above expression that the Bayesian FIM J g follows J g sng, >~

J B snr,, if SNR; > SNRy, since the quantity @Hf{; D, in which D comprises pilot symbols

and R, is the noise covariance matrix, is a function of SNR. This implies that J E}SNRI =<J ;SNRQ,



which in turn implies that Tr {J g}SNRI} <Tr {J E;}SNRQ}. This verifies the decreasing trend of
mean square error (MSE) with SNR. The MSE of the estimate of the vectorized channel h can
in turn be formulated as

MSE (R S) > Tr {31} (7)

2) BCRLB of Doubly-selective MIMO-FBMC channel estimation: Let J,, € CNrNeLnxNeNeLy,
denote the Bayesian FIM for the MSE of the doubly-selective CSI vector h, estimate in the uth

block. Using the results of [1], J, can be recursively updated as
J,=G2-G»(J,, +G) G2 (8)
where the matrices G1!, G2, G2! and G??, each of size N,N;L;, X N,N;Ly, are formulated as

2, | T 2/ (h.. | h
Gl = —E{a £(hy | h“l)} and G2 = —IE{8 £y | h“)} =(@H", ©)

aflu—laflluq_l 8flu_18flf “
2 I 1 2 (otd fl
GiQ - _FE 0 E({IU |~hU—1) _E 0 ‘C<~y0,u~| u) . (10)
Oh,oh! Oh,oh!

Using the state and measurement model Equations in (48) and (50), respectively, the quantities

L(h, | h,_;) and L(y, | h,) can be expressed as

~ ~ ~—1 ~ ~
S (hy — phy_1) T (h, — phy_1)

Lh, | h, )=Kr — , 11
(hy [ hy—1) =5 = (11D

L(y¥, | h,) =k — (i, — Dh,)" R, (yi!, — Dh,), (12)
where the constants are x; = —N,N,Lplogm (1 —p?) — logdet(T'), k; = —N,N,logm —

log det (f{n) and T = (In,n, ® T'). Substituting the quantities L(h, | h,_,) and L(yE, | h,)
from (11), (12) into (9)-(10) determines the matrices G1!, G2 G2! and G?2. These are further
substituted into (8), followed by further simplification to obtain the matrix J, as
N1 g
J, = (p2Ju_1 +(1-p?) r) +D"R;'D. (13)
The BCRLB of the MSE of the TD-GSBL-KF estimate is finally expressed as

MSE (BgD—GSBL—KF) AR { ’

~ ~ 2
TD-GSBL-KF
h' —h,

2} > Te{J71. (14)

When p is close to 1, one can verify that the time-recursive update equation of (13) becomes
J, ~J, 1+ TDHR; D, which further implies that J, > J,_;. This leads to the decreasing
MSE trend with respect to the time index u. These BCRLB trends can also be verified from our

simulation results.



The BCRLB corresponding to the KFS framework is developed next. It follows from (13)

that the forward recursion for the BFIM J,|, is given by

Juju = Jujur + i)Hf{;li).

N\ 1
where we have J,,_; = <p2J ! + (1 —p?) I‘> . Employing the results derived in [2], the

u—1lu—1

BFIM for the backward recursion becomes

J—l — J—l

u—1|U u—1lu—1

+ P2J_1 Ju|ufl [J;‘}] - J_l

H —-H
u—1ju—1 u|u—1] J 1J

ulu—1y—1ju—1"

The BCRLB for the mean square error (MSE) of the time-domain TD-GSBL-KFS estimate is
given by

1. TD-GSBL-KFS 1
h? —h,

MSE (hpPosess) 2 g | i pemdagt. (15)

2

Both the BCRLBs of the IAM- and TD-based SISO-FBMC channel estimation using (16)
and (24), as well as the MIMO-FBMC channel estimation using (21), and the doubly-selective
channel estimation using (49), can be derived along similar lines. For example, for the IAM-
based MIMO-FBMC system, the FIMs Jp and Jp can be expressed as Jp = @7 R; 1® and
Jp = (I‘ X IN,,,Nt)*l. Thus, the Bayesian FIM Jp is expressed as Jp = @HR;“I) + (I‘ ®
Iy, Nt)_l. The MSE of the estimate of the vectorized channel h can in turn be formulated
as MSE (h"MBSBL) > Ty {J '}, Furthermore, for its doubly-selective extension, the BFIM
J., can be recursively computed as J, = (p*J,1 + (1 — pQ)f‘)f1 + ®"R,'®, where T’ =
(I‘ ® Iy, Nt)- Finally, the BCRLB of the MSE of the IAM-BSBL-KF estimate is expressed as
MSE (BLAM-BSBL-KF) > Tr{J; 1}

V. BER COMPARISON OF THE PROPOSED AND EXISTING SCHEMES

Fig. 3 shows the coded BER performance of MIMO-FBMC systems using channel estimates
obtained from the proposed and existing schemes. A 2x2 MIMO system with N = 64 subcarriers
is considered together with a rate 1/3 LDPC code. A 3-tap equalizer, similar to [3], is used for
data detection in the TD system, whereas a one-tap ZF equalizer is used for the IAM system.
BER with perfect CSI (PCSI) has also been plotted for the reference. The TD system using
GSBL can be seen to achieve the lowest BER, outperforming, viz. IAM with BSBL and both
TD as well as IAM-based OMP and LS estimators. The NMSE floor of channel estimation in
the IAM-based techniques naturally leads to the BER floor at high SNRs.
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Fig. 3: BER of the proposed and existing methods for quasi-static sparse CSI estimation in 2 X 2 coded MIMO-

FBMC systems with a rate 1/3 low-density parity-check (LDPC) code, N = 64, N, = 28, z = 3, BPSK modulation

and Lj = 16 with 4 dominant paths.
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