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I. ALGORITHMIC DESCRIPTION: OMP

The algorithmic description of the OMP scheme is presented in Algorithm-1. The main steps

of this algorithm are explained here. In each iteration i, Step-3 obtains the index j of the column

of the matrix D, which has the highest correlation with the residual vector ri−1. Step-4 updates

the index set Ii by including the index j. Step-5 updates the matrix DI with the jth column

of the matrix D. The intermediate LS solution hi is obtained in Step-6 and the corresponding

residual vector ri is computed in Step-7. The above procedure terminates, when the difference

between the l2-norm of the consecutive residues falls below a threshold ϵ0.

Algorithm 1: OMP-based sparse channel estimation for SISO-FBMC systems
Input: Dictionary matrix D, Observation vector ytd

0 , Stopping parameter ϵ0

Output: Estimate ĥOMP of the SISO-FBMC channel tap vector h

1 Initialization: I0 = [ ], residue r−1 = 0, r0 = ytd
0 , ĥOMP = 0,DI = [ ], i = 1

2 while (∥ ri−1 ∥22 − ∥ ri−2 ∥22 ≥ ϵ0) do

3 j = argmax
k=1,2,...,Lh

∣∣DH(:, k)ri−1

∣∣
4 Ii = Ii−1 ∪ j

5 DI =
[
DI D(:, j)

]
6 hi =

(
DI)†ytd

0

7 ri = ytd
0 −DIhi

8 i = i+ 1

9 return:ĥOMP (Ii) = hi

II. ALGORITHMIC DESCRIPTION: TD-SBL, TD-SBL-KF AND TD-GSBL-KF

The algorithmic description for the proposed TD-SBL, TD-SBL-KF and TD-GSBL-KF schemes

are presented below. Algorithm-2 describes the various steps in the TD-SBL scheme for esti-

mation of the sparse SISO-FBMC CIR vector h using the procedure derived in Section-III-3
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Fig. 1: (a) Block diagram representation of the TD-SBL-KF algorithm; (b) Block-sparse and group-sparse structures in the IAM

and TD models, respectively.

of the manuscript. The various steps in the estimation of sparse doubly-selective SISO-FBMC

CIR vector hu, using the TD-SBL-KF scheme developed in Section-IV, are similarly given in

Algorithm-3. Its block diagram is also provided in Fig. 1(a). Finally, the proposed TD-GSBL-KF

technique is described in Algorithm-4. Furthermore, for reader’s convenience, the block-sparse

and group-sparse structures arising in the IAM and TD models, respectively, have been shown

in Fig. 1(b).

Note that the proposed SBL-KF framework initializes the hyperparameter matrix Γ̂
(0)
u for

block u as Γ̂
(0)
u = Γ̂

(p)
u−1, i.e., to the converged estimate of the hyperparameter matrix obtained

from the previous block. The advantage of this initialization procedure is two-fold: when the

sparsity profile of the CIR does not change, the convergence is faster. On the other hand, when

it changes suddenly, the proposed SBL-KF is able to detect the change and it adapts to the new

sparsity profile in a few iterations. This has been illustrated via a simulation result in Fig. 2 of

this document. From this figure, it can be readily observed that when the sparsity profile changes

at the block index u = 10, the proposed SBL-KF-based schemes are able to adapt to the new

profile within 5 blocks.

III. COMPUTATIONAL COMPLEXITY

A comprehensive analysis is presented for the computational complexities of the proposed

OMP, SBL and SBL-KF schemes for sparse channel estimation in SISO- and MIMO-FBMC

systems. The complexity of each scheme is quantified in terms of complex additions and

multiplications.
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Fig. 2: NMSE versus number of blocks of the proposed schemes when sparsity profile changes at u = 10 with N = 64,

Np = 28 and z = 3, ρ = 0.9981 and SNR = 15 dB.

A. Complexity of the OMP Scheme

For a general channel estimation model, y = Φh + η with Φ ∈ CM×N , the computational

complexity of the OMP scheme is derived next. Table-I details the computational cost of the

various steps in the ith iteration, as described in Algorithm-1 of this document.

B. Complexity of SBL Scheme for Quasi-Static Channel Estimation

For a general channel estimation model, y = Φh + η with Φ ∈ CM×N , the computational

complexity is derived next. The E-step in the SBL scheme requires the computation of mean

vector µ and covariance matrix Σ given below

µ = ΣΦHR−1
η y and Σ =

(
Γ−1 +ΦHR−1

η Φ
)−1

, (1)

where Rη denotes noise covariance matrix and the diagonal matrix Γ comprises of hyperparam-

eters γi. In the M-step, the hyperparameter γi is updated as follows

γi =
∣∣µ (i)

∣∣2 +Σ (i, i) . (2)

Table-II details the computational cost of the various steps.
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Algorithm 2: TD-SBL based sparse channel estimation in SISO-FBMC systems
Input: Observation ytd

0 , Dictionary Matrix D, Noise Covariance Rη, Stopping

Parameters ϵ1 and Nmax

Output: Estimate ĥTD-SBL of the SISO-FBMC CIR vector h

1 Initialization: γ̂(0)
i = 1,∀ 1 ≤ i ≤ Lh − 1 =⇒ Γ̂

(0)
= ILh

, Set counter p = 0 and

Γ̂
(−1)

= 0Lh×Lh

2 while
(∥∥∥Γ̂(p)

− Γ̂
(p−1)

∥∥∥
F
> ϵ1 && p < Nmax

)
do

3 p← p+ 1

4 E-step: Evaluate a posteriori mean and covariance

Σ(p) =

((
Γ̂

(p−1)
)−1

+DHR−1
η D

)−1

5 µ(p) = Σ(p)DHR−1
η ytd

0

6 M-step: Evaluate estimate of the hyperparameters

7 for i = 0, 1, . . . , Lh − 1 do

8 γ̂
(p)
i =

∣∣µ(p) (i)
∣∣2 +Σ(p) (i, i)

9 Γ̂
(p)

= diag
(
γ̂
(p)
0 , γ̂

(p)
2 , . . . , γ̂

(p)
Lh−1

)
10 return:ĥTD-SBL = µ(p)

C. Complexity of SBL-KF Scheme for Doubly-Selective Channel Estimation

For a general channel estimation model, yu = Φhu + ηu with Φ ∈ CM×N and state model

hu = ρhu−1 +
√
1− ρ2 wu, where ρ denotes temporal correlation parameters and the vector

wu symbolises the innovation noise. For this model, the computational complexity is derived

next. The E- and M-step of the SBL-KF scheme are identical to the SBL scheme, where as the

former additionally requires following computations.

Let ĥu−1|u−1 and Σu−1|u−1 represent the filtered estimate and the corresponding estimation

error covariance matrix of the vector hu−1, respectively. Let Γ̂u denote the estimate of the

hyperparameter matrix Γu in the uth block. The MMSE prediction ĥu|u−1 of the vector hu and

the corresponding error covariance matrix Σu|u−1 are obtained as

ĥu|u−1 = ρ ĥu−1|u−1, and Σu|u−1 = ρ2 Σu−1|u−1 + (1− ρ2) Γ̂u. (3)

Furthermore, the filtered estimate ĥu|u and the associated error covariance Σu|u can be updated as

ĥu|u = ĥu|u−1 +Ku(yu −Φĥu|u−1), and Σu|u = (I−KuΦ)Σu|u−1, (4)
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Algorithm 3: TD-SBL-KF based sparse doubly-selective channel estimation in SISO-

FBMC systems
Input: Observation ytd

0,u, dictionary matrix D, correlation coefficient ρ, noise covariance

Rη, stopping parameters ϵ1 and Nmax

Output: Estimate ĥTD-SBL-KF of the doubly-selective SISO-FBMC CIR vector hu

1 Initialization: Γ̂
conv
−1 = ILh

2 for u = 0, 1, 2, . . . do

3 Set p = 0, Γ̂(0)
u = Γ̂

conv
u−1 and Γ̂

(−1)

u = 0Lh×Lh

4 while
(∥∥∥Γ̂(p)

u − Γ̂
(p−1)

u

∥∥∥
F
> ϵ1 && p < Nmax

)
do

5 p← p+ 1

6 Σ(p)
u =

(
DHR−1

η D+
(
Γ̂

(p−1)
u

)−1 )−1

7 µ
(p)
u = Σ(p)

u DHR−1
η ytd

0,u

8 for i = 0, 1, . . . , Lh − 1 do

9 γ̂
(p)
i,u =

∣∣µ(p)
u (i)

∣∣2 +Σ(p)
u (i, i)

10 Γ̂
conv
u = Γ̂

(p)

u = diag
(
γ̂
(p)
0,u, γ̂

(p)
1,u, . . . , γ̂

(p)
Lh−1,u

)
11 if (u == 0) then

12 Set ĥ−1|−1 = 0Lh×1,Σ−1|−1 = Γ̂
(p)
0

13 Obtain ĥu|u−1 and Σu|u−1 using (27)

14 Obtain the Kalman-gain Ku using (29)

15 Obtain ĥu|u and Σu|u using (28)

16 return:ĥTD-SBL-KF
u = ĥu|u

where Ku is the Kalman-gain matrix given by Ku = Σu|u−1Φ
H(Rη+ΦΣu|u−1Φ

H)−1. Table-III

details the computational cost of the various steps for the SBL-KF scheme.

IV. BAYESIAN CRAMÉR-RAO LOWER BOUNDS AND COMPLEXITY ANALYSIS

The BCRLBs of the TD model of CSI estimation in MIMO-FBMC systems using (29) and

(50) are derived next.

1) BCRLB of Quasi-static MIMO-FBMC channel estimation: The Bayesian Fisher informa-

tion matrix (FIM) denoted by JB ∈ CNrNtLh×NrNtLh for the estimate of the CSI h̃ can be
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Algorithm 4: TD-GSBL-KF based sparse doubly-selective channel estimation in MIMO-

FBMC systems

Input: ȳtd
0,u, D̄, ρ, R̃η, ϵ1 and Nmax

Output: Estimate ĥTD-GSBL-KF
u of h̃u

1 Initialization: Γ̂
conv
−1 = ILh

2 for u = 0, 1, 2, . . . do

3 Set p = 0, Γ̂(0)
u = Γ̂

conv
u−1 and Γ̂

(−1)

u = 0Lh×Lh

4 while
(∥∥∥Γ̂(p)

u − Γ̂
(p−1)

u

∥∥∥
F
> ϵ1 && p < Nmax

)
do

5 p← p+ 1

6 Σ̃
(p)

=
(
D̄H

R̃−1
η D̄ +

(
INrNt ⊗ Γ̂

(p−1)
u

)−1 )−1

; µ̃(p) = Σ̃
(p)D̄H

R̃−1
η ȳtd

0,u

7 for i = 0, 1, . . . , Lh − 1 do

8 γ̂
(p)
i,u = 1

NrNt

∑NrNt

d=1

∣∣∣µ̃(p)(d̃)
∣∣∣2
2
+ Σ̃

(p)
(d̃, d̃) where d̃ = (i+ 1 + (d− 1)Lh)

9 Γ̂
conv
u = Γ̂

(p)

u = diag
(
γ̂
(p)
0,u, γ̂

(p)
1,u, . . . , γ̂

(p)
Lh−1,u

)
10 if (u == 0) then

11 ĥ−1|−1 = 0NrNtLh×1;Σ−1|−1 = INrNt ⊗ Γ̂
(p)
0

12 Obtain ĥu|u−1 and Σu|u−1 using (3)

13 Obtain ĥu|u and Σu|u using (4)

14 return:ĥTD-GSBL-KF
u = ĥu|u

TABLE I: Complexity of OMP scheme

Operation Complex Multiplications Complex Additions

Step-3 NM N(M − 1)

Step-6
1

2
i3 +

5

2
i2 + iM

1

2
i3 − i2

(
M − 1

2

)
+ iM − 2i

Step-7 Mi Mi

expressed as [1]

JB = JD + JP , (5)
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TABLE II: Complexity of SBL scheme

Operation Complex Multiplications Complex Additions

Σ
M3

2
+

N3

2
+

3M2

2
+

3N2

2
+NM2 +N2M +N

M3

2
+

N3

2
−M2

2
− 3N2

2
+NM2+N2M+N−MN

µ N2 +NM N2 +NM − 2N

γi N N

TABLE III: Complexity of SBL-KF scheme

Operation Complex Multiplications Complex Additions

Σ
M3

2
+

N3

2
+

3M2

2
+

3N2

2
+NM2 +N2M +N

M3

2
+

N3

2
−M2

2
− 3N2

2
+NM2+N2M+N−MN

µ N2 +NM N2 +NM − 2N

γi N N

ĥu|u−1 N -

Σu|u−1 N2 +N N

Ku N2M + 2M2N +
M3

2
+

3M2

2
N2M + 2M2N +

M3

2
− M2

2
− 2MN

ĥu|u 2MN 2MN

Σu|u N3 +N2M N3 +N2M +N − 2N2

where both JD and JP having the size NrNtLh×NrNtLh, symbolize the FIMs associated with

the pilot output ȳtd
0 and CSI h̃, respectively. These matrices are formulated as

JD = −Eh̃,ȳtd
0

∂2log f
(
ȳtd
0 | h̃

)
∂h̃∂h̃H

 and JP = −Eh̃

∂2log f
(
h̃;Γ

)
∂h̃∂h̃H

 .

The quantities log p
(
ȳtd
0 | h̃

)
and log p

(
h̃;Γ

)
are simplified to

log f
(
ȳtd
0 | h̃

)
= C2 −

(
ȳtd
0 − D̄h̃

)H

R̃−1
η

(
ȳtd
0 − D̄h̃

)
, and

log f
(
h̃;Γ

)
= C3 − h̃H(I⊗ Γ)−1h̃,

where the constants C2 and C3 are given by C2 = −NpNrlogπ − log det
(
R̃η

)
and C3 =

−NtNrLhlogπ − log det (INrNt ⊗ Γ). Upon employing the above expressions, the FIMs JD

and JP can be expressed as JD = D̄H
R̃−1

η D̄ and JP =
(
INrNt ⊗ Γ

)−1. Substituting these into

(5), the Bayesian FIM JB is expressed as

JB = D̄H
R̃−1

η D̄ +
(
INrNt ⊗ Γ

)−1
. (6)

It can be readily observed from the above expression that the Bayesian FIM JB follows JB,SNR1 ⪰

JB,SNR2 , if SNR1 ≥ SNR2, since the quantity D̄H
R̃−1

η D̄, in which D̄ comprises pilot symbols

and Rη is the noise covariance matrix, is a function of SNR. This implies that J−1
B,SNR1

⪯ J−1
B,SNR2

,
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which in turn implies that Tr
{
J−1
B,SNR1

}
≤ Tr

{
J−1
B,SNR2

}
. This verifies the decreasing trend of

mean square error (MSE) with SNR. The MSE of the estimate of the vectorized channel h̃ can

in turn be formulated as

MSE
(
h̃TD-GSBL

)
≥ Tr

{
J−1
B

}
. (7)

2) BCRLB of Doubly-selective MIMO-FBMC channel estimation: Let Ju ∈ CNrNtLh×NrNtLh

denote the Bayesian FIM for the MSE of the doubly-selective CSI vector h̃u estimate in the uth

block. Using the results of [1], Ju can be recursively updated as

Ju = G22
u −G21

u

(
Ju−1 +G11

u

)−1
G12

u , (8)

where the matrices G11
u ,G12

u ,G21
u and G22

u , each of size NrNtLh ×NrNtLh, are formulated as

G11
u = −E

{
∂2L(h̃u | h̃u−1)

∂h̃u−1∂h̃H
u−1

}
and G12

u = −E

{
∂2L(h̃u | h̃u−1)

∂h̃u−1∂h̃H
u

}
=

(
G21

u

)H
, (9)

G22
u = −E

{
∂2L(h̃u | h̃u−1)

∂h̃u∂h̃H
u

}
− E

{
∂2L(ȳtd

0,u | h̃u)

∂h̃u∂h̃H
u

}
. (10)

Using the state and measurement model Equations in (48) and (50), respectively, the quantities

L(h̃u | h̃u−1) and L(ȳtd
0,u | h̃u) can be expressed as

L(h̃u | h̃u−1) = κ1 −
(h̃u − ρh̃u−1)

HΓ̃
−1
(h̃u − ρh̃u−1)

1− ρ2
, (11)

L(ȳtd
0,u | h̃u) = κ2 − (ȳtd

0,u − D̄h̃u)
HR̃−1

η (ȳtd
0,u − D̄h̃u), (12)

where the constants are κ1 = −NrNtLh log π (1− ρ2) − log det(Γ), κ2 = −NpNrlogπ −

log det
(
R̃η

)
and Γ̃ =

(
INrNt ⊗ Γ

)
. Substituting the quantities L(h̃u | h̃u−1) and L(ȳtd

0,u | h̃u)

from (11), (12) into (9)-(10) determines the matrices G11
u ,G12

u ,G21
u and G22

u . These are further

substituted into (8), followed by further simplification to obtain the matrix Ju as

Ju =
(
ρ2Ju−1 +

(
1− ρ2

)
Γ̃
)−1

+ D̄H
R̃−1

η D̄. (13)

The BCRLB of the MSE of the TD-GSBL-KF estimate is finally expressed as

MSE
(
h̃TD-GSBL-KF
u

)
≜ E

{∥∥∥h̃TD-GSBL-KF
u − h̃u

∥∥∥2

2

}
≥ Tr{J−1

u }. (14)

When ρ is close to 1, one can verify that the time-recursive update equation of (13) becomes

Ju ≈ Ju−1 + D̄H
R̃−1

η D̄, which further implies that Ju ⪰ Ju−1. This leads to the decreasing

MSE trend with respect to the time index u. These BCRLB trends can also be verified from our

simulation results.



9

The BCRLB corresponding to the KFS framework is developed next. It follows from (13)

that the forward recursion for the BFIM Ju|u is given by

Ju|u = Ju|u−1 + D̄H
R̃−1

η D̄.

where we have Ju|u−1 =
(
ρ2J−1

u−1|u−1 + (1− ρ2) Γ̃
)−1

. Employing the results derived in [2], the

BFIM for the backward recursion becomes

J−1
u−1|U = J−1

u−1|u−1 + ρ2J−1
u−1|u−1Ju|u−1

[
J−1
u|U − J−1

u|u−1

]
JH
u|u−1J

−H
u−1|u−1.

The BCRLB for the mean square error (MSE) of the time-domain TD-GSBL-KFS estimate is

given by

MSE
(
h̃TD-GSBL-KFS
u

)
≜ E

{∥∥∥h̃TD-GSBL-KFS
u − h̃u

∥∥∥2

2

}
≥ Tr

{
J−1
u|U

}
. (15)

Both the BCRLBs of the IAM- and TD-based SISO-FBMC channel estimation using (16)

and (24), as well as the MIMO-FBMC channel estimation using (21), and the doubly-selective

channel estimation using (49), can be derived along similar lines. For example, for the IAM-

based MIMO-FBMC system, the FIMs JD and JP can be expressed as JD = ΦHR̄−1
η Φ and

JP =
(
Γ ⊗ INrNt

)−1. Thus, the Bayesian FIM JB is expressed as JB = ΦHR̄−1
η Φ +

(
Γ ⊗

INrNt

)−1. The MSE of the estimate of the vectorized channel h̄ can in turn be formulated

as MSE
(
h̄IAM-BSBL

)
≥ Tr

{
J−1
B

}
. Furthermore, for its doubly-selective extension, the BFIM

Ju can be recursively computed as Ju =
(
ρ2Ju−1 + (1− ρ2) Γ̄

)−1
+ ΦHR̄−1

η Φ, where Γ̄ =(
Γ ⊗ INrNt

)
. Finally, the BCRLB of the MSE of the IAM-BSBL-KF estimate is expressed as

MSE
(
h̄IAM-BSBL-KF
u

)
≥ Tr{J−1

u }.

V. BER COMPARISON OF THE PROPOSED AND EXISTING SCHEMES

Fig. 3 shows the coded BER performance of MIMO-FBMC systems using channel estimates

obtained from the proposed and existing schemes. A 2×2 MIMO system with N = 64 subcarriers

is considered together with a rate 1/3 LDPC code. A 3-tap equalizer, similar to [3], is used for

data detection in the TD system, whereas a one-tap ZF equalizer is used for the IAM system.

BER with perfect CSI (PCSI) has also been plotted for the reference. The TD system using

GSBL can be seen to achieve the lowest BER, outperforming, viz. IAM with BSBL and both

TD as well as IAM-based OMP and LS estimators. The NMSE floor of channel estimation in

the IAM-based techniques naturally leads to the BER floor at high SNRs.
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Fig. 3: BER of the proposed and existing methods for quasi-static sparse CSI estimation in 2 × 2 coded MIMO-

FBMC systems with a rate 1/3 low-density parity-check (LDPC) code, N = 64, Np = 28, z = 3, BPSK modulation

and Lh = 16 with 4 dominant paths.
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