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Recent developments on adhesives are motivated by biological species, e.g. structured

adhesives. Some of these adhesives incorporate beams as basic building blocks. Under-

standing the response of an adhesive beam to indentation tests will help in creating better

adhesives. In this work, we present a formulation to study the contact of an adhesive

elastic beam resting on flexible supports with a rigid cylinder. We limit ourselves to two-

dimensional plane strain indentation problem. The adhesion between the beam and the

punch is modeled through an adhesive zone model, that can be conveniently generalized.

The contact problem is reformulated as a boundary value problem for the unknown pres-

sure field, the adhesive zone’s size and the displacement of the beam’s bottom surface. This

results in two coupled Fredholm integral equations of the first kind, that are solved through

Galerkin or collocation methods. When the contact area is not large, the displacement

of the bottom surface may be conveniently approximated by that of an Euler-Bernoulli

beam’s, reducing the problem to one integral equation. However, for greater contact areas

the coupled system is solved. We investigate non-adhesive indentation in great detail,

comparing our results with finite element simulations and previously published results; a

good match is found. Later, we study adhesive beam indentation. We employ both the

JKR approximation and adhesive zone models. Finally, we compare our semi-analytical

predictions with preliminary experiments and also demonstrate its application to an actual

structural adhesive.
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the bottom row plots the change of Â with the punch’s displacement ∆̂.
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Results are obtained by setting l = 40 mm and varying h as shown. . . . . . 101

3.11 Adhesive contact of clamped (top row) and simply supported beams (bot-

tom row) with the JKR approximation. Left column, i.e. (a) and (c),

reports the variation of contact area Â with total load P̂ , while the right
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Chapter 1

Basic contact mechanics theories

In this work, we investigate indentation by a rigid cylindrical punch of an adhesive beam.

This work is motivated by ongoing research and development of structural adhesives, many

of which incorporate adhesive beams as a core structural element.

In this chapter, we start with a discussion on non-adhesive contact of spheres, often

called as Hertzian contact. Later we explain the famous Johnson-Kendall-Roberts (JKR)

and Derjaguin-Muller-Toporov (DMT) approximate theories for the adhesive contact of

spheres. We then discuss the adhesive zone model proposed by Maugis (1992), which

resolved the long standing conflict between the JKR and DMT theories. At the end of

this chapter, we provide an outline for the rest of the thesis.

1.1 Non-adhesive (‘Hertzian’) contact

In 1881, Hertz investigated the indentation of two spheres as shown in Fig. 1.1. The

spheres are considered to be elastic and smooth. Adhesion was not considered in the

problem.

As shown in Fig. 1.1, the two elastic spheres, with Young’s modulus E1 and E2, Poisson’s

ratios ‹1 and ‹2, radii R1 and R2, and surface profiles f1 (r) and f2 (r), where r2 = x2 +y2,

are pressed against each other by a force P . Under the action of this load, the spheres

make contact over a circle of radius a and the spheres’ centres move a distance ” – called

total indentation depth – towards each other. The indentation depths in the spheres are

”1 and ”2 and the vertical displacements of the interacting surfaces (z = 0) are ūz1
and

1
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δ
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δ2
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E2

f1 (r)

f2 (r)
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ν2
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plane

ūz1

ūz2

Figure 1.1: Indentation of two non-adhesive spheres. This figure is adapted from Johnson
(1985, p. 88).

ūz2
, as shown in Fig. 1.1. In this configuration, a pressure p(r) acts on each sphere within

the contact region. It is also assumed that R1 and R2 are much large compared to a and ”.

Thus, the surface profiles f1 (r) and f2 (r) may, respectively, be approximated by r2/2R1

and r2/2R2. Then, employing the theory of elasticity, Hertz obtained the relationship

between the contact parameters, i.e. a, ”, P and p(r). In this section, we derive these

relationships following Johnson (1985) for completeness.

From Fig. 1.1, we may write the total vertical displacement in the contact region as

ūz1
(r) + ūz2

(r) = ”1 ≠ f1 (r) + ”2 ≠ f2 (r) = ” ≠ r2

2Rc
, (1.1)

where

” = ”1 + ”2 and
1

Rc
=

1

R1
+

1

R2
. (1.2)

Next, because ” << R, each sphere is approximated as an elastic half-space, each of

which has a pressure p(r) acting on its surface within the contact region. The vertical

displacements ūz1
and ūz2

due to the pressure p(r) acting on the bodies may then be

found using Boussinesq’s solution for a point load acting on the three dimensional elastic

half-space surface. Boussinesq solved the problem of a point load acting on the surface
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of a three dimensional elastic half-space, whose Young’s modulus and Poisson’s ratio are

E and ‹, respectively; see e.g. Johnson (1985, p. 52). The vertical displacement of the

surface in Boussinesq’s problem is

ūp
z =

2 (1 ≠ ‹) P

4firG
=

P

firEú
, (1.3)

where Eú = E/(1 ≠ ‹2).

The axi-symmetric load distribution p(r) acting over a circle of radius a is now expressed

as the superposition of infinitely many concentrated point loads. The displacement at any

point on the surface of a sphere can then be written in terms of Boussinesq’s solution (1.3)

through a convolution integral.

First, consider points inside the contact region. For this we choose a point B(r, 0) inside

the circle of radius a as shown in Fig. 1.2(a). The displacement at this point due to a load

element p (t) sds d„ at the point C(s, „) is p (t) ds d„/fiEú, when the coordinates (s, „) are

with respect to point ‘B’. Integrating over s and „ leads to

ūz (r) =
1

fiEú

2fi
⁄

0

s1
⁄

0

p (t) ds d„ for r Æ a, (1.4)

with

a2 ≠ t2 = –2 ≠ 2—s ≠ s2, (1.5)

where

–2 = a2 ≠ r2, — = cos „ (1.6)

and s1 is the positive solution of –2 ≠ 2—s ≠ s2 = 0. Evaluating the above integral we may

obtain vertical displacement of the surface at points in the interior of the contact region.

Similarly, from Fig. 1.2(b), the vertical displacement of the surface for the points outside

the contact region is given by

ūz (r) =
1

fiEú

„1
⁄

≠„1

s2
⁄

s1

p (t) ds d„ for r > a, (1.7)

with

a2 ≠ t2 = –2 + 2—s ≠ s2, (1.8)
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Figure 1.2: The circular contact region of radius a found during the indentation of two
non-adhesive elastic spheres. The displacements (a) inside and (b) outside the contact
patch at the point ‘B’ located at (r, 0) with respect to the center of contact patch ‘O’, are
found. For this we select an element of size s ds d„, where the pressure p(t) is acting, at
the point ‘C’ whose coordinates are (s, „) when measured from point ‘B’. This figure is
adapted from Johnson (1985, p. 57).

s1,2 being the two roots of –2 + 2—s ≠ s2 = 0 and „1 = sin≠1 (a/r).

Finding ūz1
(r) and ūz2

(r) employing (1.4) to spheres 1 and 2 (approximated as half-

spaces), and substituting them in (1.1), for points inside the contact region we obtain

” ≠ r2

2Rc
=

1

fiEú

c

2fi
⁄

0

s1
⁄

0

p (t) ds d„ for r Æ a, (1.9)

where

1

Eú

c

=
1 ≠ ‹2

1

E1
+

1 ≠ ‹2
2

E2
. (1.10)

We note that for a rigid punch indenting an elastic half-space we set Eú

c = Eú and Rc = R

in the above equations. Hence, we continue our subsequent calculations with Eú and R.

Following Johnson (1985), the general pressure distribution that satisfies (1.9) is given by

p (r) = p0

A

1 ≠ r2

a2

B1/2

+ pÕ

0

A

1 ≠ r2

a2

B

≠1/2

, (1.11)

where p0 and pÕ

0 are constants that will now be determined. When pÕ

0 ”= 0, the contact

pressure p (r) is singular at the contact edges, i.e. at r = a. Negative pÕ

0 leads to negative

tractions, i.e. tensile forces, at the contact edges, which indicates the presence of adhesive
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forces between the spheres. Because Hertz did not consider adhesion between the spheres,

pÕ

0 cannot be negative. A positive pÕ

0 makes the surfaces interact outside of the contact

area. In Hertzian contact, departing surfaces do not interact outside the contact area –

the two surfaces depart tangentially from the outer edges of the contact – hence, pÕ

0 cannot

be positive. Therefore, in Hertzian contact pÕ

0 should be zero. This reduces the contact

pressure distribution p (r) in (1.11) to

p (r) = p0

A

1 ≠ r2

a2

B1/2

. (1.12)

Employing the above Hertzian pressure distribution in (1.9) and evaluating the integral,

we obtain the relationships for a and ” in terms of p0:

a =
fip0R

2Eú
and ” =

fiap0

2Eú
. (1.13)

Finding the total load acting on the bodies by integrating the normal traction p (r), given

by (1.12) yields

P =

a
⁄

0

2firp (r) dr =
2

3
p0fia2. (1.14)

Using (1.14), we may find p0 in terms of P as

p0 =
3P

2fia2
. (1.15)

Finally, employing (1.15), the relationships (1.13) may be expressed as

a3 =
PR

K
and ” =

a2

R
. (1.16)

Thus, knowledge of any one of a, ” or P allows the computation of the other two.

In this work we will consider contact in two dimensions. Hence, we indicate how the

above process is adapted to the case of contact of two cylinders. When cylinders are

pressed against each other they make contact along their longitudinal axis. Then we

follow the above procedure with few modifications. These modifications are: (a) First,

we replace the Boussinesq’s solution with Flamant’s solution for a point load acting on

two-dimensional elastic half-space (Johnson, 1985, p. 14-17). (b) Then, we integrate the
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Flamant’s solution over the contact area, which is a line contact of length 2a in two-

dimensional indentation. Finally, we obtain the relationships for the contact area a and

the contact pressure distribution p (x) under the action of the total load P as

a2 =
16

3

PR

fiK
and p (x) = p0

A

1 ≠ x2

a2

B1/2

, (1.17)

with p0 = 2P/fia; see (Johnson, 1985, p. 99-101). We note that, for two-dimensional

Hertzian contact, we cannot obtain the relationship for the punch displacement ” explicitly,

as the far-field displacements are infinity in two-dimensional half-spaces.

1.2 Adhesive contact: JKR approximation

When adhesion is present between the spheres the relationships between a, ”, P and p(r)

obtained in Sec. 1.1 are not valid any more. We now derive the appropriate relationships.

The effect of adhesion between the elastic spheres was first studied by Derjaguin (1934).

To this end, Derjaguin proposed an energy approach. The effect of adhesive forces outside

the contact area was ignored. However, the solutions obtained in this paper were found

to be unsatisfactory.

Later, the problem of adhesive spheres indentation was studied by Johnson et al. (1971)

through an energy approach, similar to the one used in Derjaguin (1934). The former

solution is now called the JKR approximation. We follow Johnson (1985) to outline their

derivation. For this, we assume two elastic spheres as in Sec. 1.1, with adhesion present

between them. When these adhesive spheres are pressed against each other by a force

P , they make a contact over a circle of radius a, the spheres’ centres move a distance ”

towards each other and a pressure p(r) acts on each of these spheres within the contact

region, which is now different from what was found in Sec. 1.1; see Fig. 1.3. From our

discussion in Sec. 1.1, the vertical displacement of the surfaces in the contact region r Æ a

may be written as

” ≠ r2

2R
=

1

fiEú

2fi
⁄

0

s1
⁄

0

p (t) ds d„ for r Æ a. (1.18)

It is reminded that we again employ Eú and R for Eú

c and Rc, respectively, in the above
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equation. The pressure distribution p (r) satisfying the above equation is

p (r) = p0

A

1 ≠ r2

a2

B1/2

+ pÕ

0

A

1 ≠ r2

a2

B

≠1/2

, (1.19)

where p0 and pÕ

0 are constants that need to be determined. In adhesionless Hertzian

contact we argued that pÕ

0 has to be zero. However, in the presence of adhesion, adhesive

forces act between the interacting surfaces, so that pÕ

0 may be allowed to be negative. We

now proceed to find p0 and pÕ

0.

a0 a0

R1

R2

a

P

a

P

Figure 1.3: Schematic for the indentation of two adhesive elastic spheres. The contact
area with pÕ

0 = 0, i.e. in the absence of adhesion is indicated by a0. This figure is adapted
from Johnson et al. (1971).

In Johnson et al. (1971) the adhesive contact between spheres is broken up into two

steps. First, the contact area a is achieved without adhesion between the spheres. This is

represented by the curve O-A in Fig. 1.4. For this curve pÕ

0 = 0 and the contact pressure

is represented by only the first part of (1.19). Then, by keeping the contact area constant

at a, the adhesion between the spheres is turned on, which in Fig. 1.4, is represented by

the curve A-B. This is equivalent to unloading a flat-ended cylinder of radius a, such that

the final load becomes P and the approach between the spheres’ centers become ”. The

contact pressure during this is given by the second part of (1.19); see Johnson (1958).

From our discussion on Hertzian contact, for curve O-A, we already know that

p0 = 2aEú/fiR and ”0 =
fiap0

2Eú
. (1.20)
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adhesion on,

a constant

no adhesion

δ
δ0

A

B

O

P

δ

P0 a

a

P -axis

δ-axis

Figure 1.4: A schematic showing how the adhesion is introduced in the JKR approxima-
tion. This figure is adapted from Johnson et al. (1971).

We now find the flat-ended cylindrical punch displacement for the curve A-B. From John-

son (1985, p. 60), the total displacement (approach of the indenters) in the contact region

due to pÕ

0

!

1 ≠ r2/a2
"

≠1/2
is

”Õ

0 =
fiapÕ

0

Eú
. (1.21)

Employing (1.20b) and (1.21), we obtain the indentation depth ” due to the axi-symmetric

pressure distribution (1.19) to be

” = ”0 + ”Õ

0 =
fia

2Eú

!

p0 + 2pÕ

0

"

. (1.22)

The total load required to generate the axi-symmetric p(r) given by (1.19) is

P =

a
⁄

0

p (r) 2fir dr d◊ = fia2
3

2

3
p0 + 2pÕ

0

4

. (1.23)

The elastic energy stored in the spheres due to the pressure distribution (1.19) is

ŨE =
1

2

2fi
⁄

0

a
⁄

0

p (r) r dr d◊ ūz (r) , (1.24)

where ūz (r) = ” ≠ r2/2R. Evaluating the above integral:

ŨE =
fi2a3

Eú

3

2

15
p2

0 +
2

3
p0pÕ

0 + pÕ 2
0

4

. (1.25)

If a constant load P acts on the punch while achieving the contact area a and punch
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displacement ”, then the amount of work done is

ŨW = P ”, (1.26)

where ” and P are, respectively, given by (1.22) and (1.23). If contact area a is achieved

by keeping ” constant, i.e. fixed grips, then ŨW = 0.

The surfaces of the spheres lose surface energy ŨS while making contact over a circle of

radius a, which is given by

ŨS = ≠wfia2, (1.27)

where w is the surface energy per unit area.

The total energy ŨT , employing (1.25) and (1.27), is

ŨT = ŨE ≠ ŨW + ŨS . (1.28)

At equilibrium, the variation of the total energy ŨT with the contact radius a should

vanish (Kanninen and Popelar, 1985, p. 158). This should be true if the total deflection

of the two bodies ” is kept constant or whether the load acting on the punch P is held

constant. Thus, we have

ˆŨT

ˆa

-

-

-

-

-

”

=
ˆŨE

ˆa

-

-

-

-

-

”

+
ˆŨS

ˆa

-

-

-

-

-

”

= 0 (1.29)

or
ˆŨT

ˆa

-

-

-

-

-

P

=
ˆŨE

ˆa

-

-

-

-

-

P

≠ ˆŨW

ˆa

-

-

-

-

-

P

+
ˆŨS

ˆa

-

-

-

-

-

P

= 0, (1.30)

corresponding to experiments carried out with load and displacement control, respectively.

The partial derivatives in (1.29) may be obtained from (1.25) and (1.27) as, respectively,

ˆŨE

ˆa

-

-

-

-

-

”

=
fi2a2

Eú
pÕ 2

0 and
ˆŨS

ˆa

-

-

-

-

-

”

= ≠2fiaw. (1.31)
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Now finding the partial derivatives in (1.30) from (1.25), (1.26) and (1.27) yields, respec-

tively,

ˆŨE

ˆa

-

-

-

-

-

P

=
fi2a2

Eú

3

≠2

3
p0pÕ

0 ≠ pÕ 2
0

4

,
ˆŨM

ˆa

-

-

-

-

-

P

=
fi2a2

Eú

3

≠2

3
p0pÕ

0 ≠ 2pÕ 2
0

4

and
ˆŨS

ˆa

-

-

-

-

-

P

= ≠2fiaw. (1.32)

Combining (1.29) and (1.31), or (1.30) and (1.32) yields

pÕ

0 = ±

Û

2wEú

fia
. (1.33)

From our previous discussion in this section, pÕ

0 has to be negative, so that

pÕ

0 = ≠
Û

2wEú

fia
. (1.34)

Replacing p0 and pÕ

0 in (1.22) and (1.23) from, respectively, (1.20)(a) and (1.34), produces

the punch displacement and the load acting on the punch in JKR approximation:

” =
a2

R
≠

Ú

8fiaw

3K
(1.35)

and P =
a3K

R
≠

Ô
6fiwKa3. (1.36)

Now rearranging (1.36) yields

A

P ≠ a3K

R

B2

= 6fiwKa3. (1.37)

Solving the above equation for a3 we obtain the contact area

a3 =
R

K

3

P + 3wfiR ±
Ò

6wfiRP + (3wfiR)2
4

. (1.38)

The variation of a with P given by the above equation is shown in Fig. 1.5. In Fig. 1.5,

curve B-C represents (1.38) with the positive sign, while the curve O-B is for the negative

sign. However, we cannot trace the curve O-B from experiments, as the contact is lost if

we try to unload the spheres below the point ‘B’. Thus, we consider only positive sign in
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(1.38), i.e.

a3 =
R

K

3

P + 3wfiR +
Ò

6wfiRP + (3wfiR)2
4

. (1.39)

P

a

A

B

O

Hertz

C

(a)

δ

A

B

Ca

O

Hertz

(b)

Figure 1.5: Variation of contact area a with (a) total load P and (b) punch’s displacement
” is shown for JKR and Hertz approximations. Figure. (a) is adapted from Johnson (1985,
p. 128).

The above relationship may also be obtained by alternative approaches of Maugis (1992);

cf. Sec. 1.4.

Setting the surface energy w = 0 in (1.39) reduces it to the Hertzian relationship (1.16a).

From (1.39), we find that when there is no load acting on the spheres, i.e. P = 0, they

may still be in contact over a circle of radius

a3 =
R

K
(6wfiR) , (1.40)

which is caused by adhesion. Thus, in order for contact to be lost we have to apply

negative (tensile) loads. At these negative loads, for a to be real, we should have

6wfiRP Æ (3wfiR)2 , (1.41)

in (1.39). Rearranging, we obtain

P Ø ≠3

2
wfiR, (1.42)
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so that the minimum tensile load that can be applied without loss of contact is

Pc = ≠3

2
wfiR. (1.43)

Note that this load is independent of the elastic modulus. At this load the contact radius

is given by

ac =

A

3

2

fiwR2

K

B1/3

. (1.44)

The quantities Pc and ac locate the point ‘B’ in Fig. 1.5. Applying more tensile loads than

Pc will lead to an abrupt loss in contact. Hence, Pc represents the pull-off load. We may

also obtain Pc and ac by setting dP/da = 0, where the load P is given by (1.36). Thus,

Pc and ac represent the pull-off load and the corresponding contact area in an experiment

where the load is controlled.

The pull-off load and the corresponding contact area in ” controlled experiment are given

by d”/da = 0, where ” is employed from (1.35); see Fig. 1.5(b). The pull-off load and the

corresponding contact area in experiments with displacement control are

P ”
c = ≠5

6
fiwR and a”

c =

A

fiwR2

6K

B1/3

. (1.45)

In Fig. 1.5, P ”
c and a”

c represent the point ‘A’. We cannot trace the curve O-A from

either load or displacement controlled experiments, as we lose contact at point ‘B’ (load

controlled test) or point ‘A’(displacement controlled test).

1.3 Adhesive contact: DMT approximation

The axi-symmetric adhesive contact between two bodies was also investigated by Derjaguin

et al. (1975) building upon Derjaguin (1934). They chose to study the contact between a

rigid plane and an adhesive elastic sphere with Young’s modulus E, Poisson’s ratio ‹ and

radius R; see Fig. 1.6. This so-called DMT theory/approximation may be generalized to

the case of two adhesive spheres indentation by redefining 1/R and 1/Eú as, respectively,

1

Rc
=

1

R1
+

1

R2
and

1

Eú

c

=
1

Eú

1

+
1

Eú

2

,
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where

Eú

1 =
E1

1 ≠ ‹2
1

and Eú

2 =
E2

1 ≠ ‹2
2

,

with Ei and ‹i, i (i = 1, 2), representing the Young’s modulus and the Poission’s ratio of

the sphere’s material, respectively.

δ

a a

x− y

plane

R

E, ν

Rigid plane

O(0, 0, z0)

P

z

z−axis

Figure 1.6: The indentation of an adhesive elastic sphere with a rigid plane as approxi-
mated by the DMT theory. This figure is adapted from Derjaguin et al. (1975).

In DMT approximation, it is assumed that the contact pressure within the contact region

remains Hertzian and is given by (1.12). Hence, the pressure distribution p (r) within the

contact region and the indentation depth ” are, respectively,

p(r) =
3P

2fia2

A

1 ≠ r2

a2

B1/2

and ” =
a2

R
=

3P

4aEú
. (1.46)

From our discussion on the Hertzian contact in Sec. 1.1, we may find the vertical displace-

ment at a point on the sphere, that lies outside the contact region, employing (1.7). Doing

so, and employing (1.46b), we obtain

ūz (r) =
1

2fiR

I

2a
Ò

(r2 ≠ a2) +
1

2a2 ≠ r2
2

cos≠1

A

1 ≠ 2a2

r2

BJ

for r > a; (1.47)

see also Johnson (1985, p. 61). Because we are considering the contact of Fig. 1.6, we use

ūz to denote surface displacement of the sphere, which is distinct from ūz in (1.1).

The distance between the spherical and the flat surfaces is then

z =
r2

2R
+ ūz (r) ≠ ”. (1.48)
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Employing (1.46b) and (1.47) in (1.48) yields

z =
1

fiR

S

Ua
Ò

(r2 ≠ a2) ≠
1

2a2 ≠ r2
2

tan≠1

Y

]

[

A

r2

a2
≠ 1

B1/2
Z

^

\

T

V for r Ø a. (1.49)

The microscopic distance between two contacting surfaces can never be zero (Derjaguin

et al., 1975). Thus, we rewrite (1.49) as

H =
1

fiR

S

Ua
Ò

(r2 ≠ a2) ≠
1

2a2 ≠ r2
2

tan≠1

Y

]

[

A

r2

a2
≠ 1

B1/2
Z

^

\

T

V + ‘ for r Ø a, (1.50)

where ‘ is the microscopic distance between the bodies inside the contact area.

Now we proceed to find various energies that are associated with adhesive contact. The

elastic energy We stored in the sphere due to the contact pressure p(r) is given by

We =

”
⁄

0

Fe (”) d”, (1.51)

where, from Hertzian theory, we write the force required to produce the deflection ” in

the spherical particle is

Fe = k”3/2 =
4Eú

Ô
R

3
”3/2 = K

Ô
R”3/2. (1.52)

In DMT theory, surface interactions are modeled through an interaction potential Ï (H).

The surface energy due to the potential Ï (H) acting between the sphere and the flat

surface is

Ws =

L
⁄

0

Ï (H) 2firdr, (1.53)

where L = Hmax is the maximum air-gap between the contacting surfaces. The interaction

potential Ï (H) decreases rapidly with an increase in H as shown in Fig. 1.7. Thus, the

upper limit of the integration in (1.53) may conveniently be taken to be infinity. Re-writing

(1.53):

Ws =

Œ
⁄

0

Ï (H) 2firdr =

a
⁄

0

Ï (H) 2firdr +

Œ
⁄

a

Ï (H) 2firdr = W Õ

s + W ÕÕ

s , (1.54)

where W Õ

s and W ÕÕ

s represent the surface energies from the contact (r Æ a) and non-contact
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(r Ø a) regions, respectively.

O H

ϕ

Figure 1.7: A sample interaction potential Ï (H) with the variation in H.

Once the total surface energy Ws is known, we may find the total adhesive force Fs by

differentiating Ws:

Fs = ≠dWs

dzÕ
, (1.55)

where zÕ is the position of the sphere’s center:

zÕ = R + ‘ ≠ ”, so that dzÕ = ≠d”. (1.56)

Combining (1.55) and (1.56), we find the adhesive force

Fs =
dWs

d”
. (1.57)

We now proceed to find the surface energy contribution from the contact and non-contact

regions. From there the corresponding adhesive force components F Õ

s and F ÕÕ

s will then be

found through the formula

Fs =
dWs

d”
=

dW Õ

s

d”
+

dW ÕÕ

s

d”
= F Õ

s + F ÕÕ

s . (1.58)

We first find the surface energy W Õ

s from the contact region using the fact that within the
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contact region H = ‘. Thus,

W Õ

s =

a
⁄

0

Ï (‘) 2firdr = fia2Ï (‘) . (1.59)

Employing (1.46b), the above equation may be rewritten as

W Õ

s = fi”RÏ (‘) . (1.60)

The adhesive force component is then

F Õ

s =
dW Õ

s

d”
= fiRÏ (‘) , (1.61)

which contributes to the total adhesion force Fs. We observe that F Õ

s is independent of ”

and a.

Next, we find the surface energy component W ÕÕ

s and the corresponding adhesive force

component F ÕÕ

s contributed by the non-contact zone, i.e. r Ø a. The surface energy in the

non-contact zone is

W ÕÕ

s =

Œ
⁄

a

Ï [H (r, ”)] 2fir dr. (1.62)

Employing the change of variables r2 ≠ a2 = x2, we rewrite (1.62) as

W ÕÕ

s = 2fi

Œ
⁄

0

Ï [H (x, ”)] x dx, (1.63)

where

H (x, ”) =
1

fiR

;

ax +
1

x2 ≠ a2
2

tan≠1
3

x

a

4<

+ ‘. (1.64)

Evaluating F ÕÕ

s from (1.58), we obtain

F ÕÕ

s =
dW ÕÕ

s

d”
= 2fi

Œ
⁄

0

ÏÕ [H (x, ”)]
dH (x, ”)

d”
x dx. (1.65)

Because we have not assumed a specific form for the interaction potential ÏÕ(H), we cannot

evaluate the above integral. However, we know that Ï(H æ Œ) æ 0 and Ï(H æ 0) æ

Ï(‘). So, we may obtain limiting value of the integral in (1.65) when contact is lost and the

deformation in the spherical particle vanishes. For this, we have to first evaluate dH/d”
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employing (1.64), which yields

d

d”
H (x, ”) =

dH

da

da

d”
=

1

fi

;

ax

x2 + a2
≠ tan≠1

3

x

a

4<

(1.66)

During unloading, as the deformation in the spherical particle disappears we are going to

have a point contact, i.e. ” æ 0 and a æ 0. In the limit ” æ 0, (1.64) and (1.66) become,

respectively,

H|”æ0 =
x2

2R
+ ‘, so that x dx = R dH, (1.67)

and
dH

d”

-

-

-

-

”æ0
= ≠1

2
. (1.68)

Evaluating F ÕÕ

s after substituting (1.67) and (1.68) in (1.65) provides

F ÕÕ

s (” = 0) = 2fi

Œ
⁄

‘

ÏÕ (H)
≠1

2
R dH = ≠fiR Ï (H)|Œ‘

= fiRÏ (‘) . (1.69)

Finally, substituting (1.61) and (1.69) in (1.58) yields the total adhesive force

Fs = fiRÏ (‘) + fiRÏ (‘) = 2fiRÏ (‘) . (1.70)

When the adhesive sphere does not make a contact with the flat rigid surface, the distance

between them is given by

H =
r2

2R
+ H0, (1.71)

where H0 is the gap between the flat surface and the lowest point of the adhesive sphere;

see Fig. 1.8.

z

x− y

plane

R

E, ν

Rigid plane

O

z
00

H0

Figure 1.8: An adhesive elastic sphere and a rigid plane when not in contact. This figure
is adapted from Derjaguin et al. (1975).
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Differentiating (1.71) yields

r dr = R dH. (1.72)

Finding the surface energy Ws from (1.53) and (1.72) provides

Ws (H0) = 2fiR

Œ
⁄

H0

Ï (H) dH. (1.73)

In the configuration of Fig. 1.8, the position of the spherical particle’s center is given by

zÕÕ = H0 + R, so that dxÕÕ = dH0. (1.74)

Finding the total adhesive force utilizing (1.55) and (1.74) provides

Fs = ≠dWs

dH0

-

-

-

-

H0=‘

. (1.75)

Finally, evaluating adhesion force employing (1.73) and (1.75) yields

Fs (‘) = 2fiRÏ (‘) . (1.76)

From (1.70) and (1.76), respectively, we may conclude that an adhesion force of 2fiRÏ (‘)

acts between the spherical particle and the flat surface if there is a point contact or just

before contact.

To find the total adhesive force during indentation, we assume a specific form for the

surface interaction potential. Following Derjaguin et al. (1975), the interaction potential

may be considered as

Ï (H) =
A

12fiH2
, (1.77)

where the Hamaker constant A measures the attractive van der Waals forces strength

between two surfaces (Maugis, 2000, p.15), is found from

AR

6‘2
= 2fiRÏ (‘) = F0, (1.78)

where F0 is force required to break the contact when the sphere and plane are separated

by a distance ‘.
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From (1.58) we already know that the total adhesive force may be found by adding the

contributions from the contact and the non-contact regions. From (1.70) we note that F Õ

s

is independent of ” and a, while F ÕÕ

s varies with ” as per (1.65). We now compute the total

adhesive force Fs.

Employing (1.78) in (1.70) yields

F Õ

s =
F0

2
. (1.79)

To compute F ÕÕ

s we evaluate ÏÕ employing (1.64), (1.77) and (1.78) to find

ÏÕ (x, a) = ≠ F0‘2

fiR
Ë

1
fiR

)

ax + (x2 ≠ a2) tan≠1
!

x
a

"*

+ ‘
È3 . (1.80)

Combining (1.66) and (1.80) with (1.65) provides

F ÕÕ

s =
2

fi
F0

Œ
⁄

0

‘2
)

tan≠1 (x/a) ≠
!

ax/x2 + a2
"*

R
#

(1/fiR)
)

ax + (x2 ≠ a2) tan≠1 (x/a)
*

+ ‘
$3 x dx. (1.81)

Before proceeding to the evaluation of the integral in (1.81), we set

— =
”

‘
=

a2

R‘
and › =

xÔ
R‘

. (1.82)

Introducing the above in (1.81), we obtain

F ÕÕ

s =
2

fi
F0

Œ
⁄

0

)

tan≠1
!

›/
Ô

—
"

≠ ›
Ô

—/
!

›2 + —
"*

#

(1/fi)
)

›
Ô

— + (›2 ≠ —) tan≠1
!

›/
Ô

—
"*

+ 1
$3 › d›. (1.83)

Finding the total adhesive force employing (1.58), (1.79) and (1.83) yields

Fs

F0
=

1

2
+

2

fi

Œ
⁄

0

)

tan≠1
!

›/
Ô

—
"

≠ ›
Ô

—/
!

›2 + —
"*

#

(1/fi)
)

›
Ô

— + (›2 ≠ —) tan≠1
!

›/
Ô

—
"*

+ 1
$3 › d›. (1.84)

It is difficult to evaluate the above integral in closed form. However, we may find the

asymptotic behavior of the integral at small and large ”. This may be done by expanding

the integrand in (1.84) in a series in terms of
Ô

— and 1/
Ô

—, respectively. The integral in

(1.84) is then found by integrating the series termwise.

For small ”, we expand the integrand in (1.84) in a Taylor series about small
Ô

— =


”/‘
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:

Fs

F0
¥ 1

2
+

2

fi

Œ
⁄

0

I

4fi›

(›2 + 2)3 ≠ 16

(›2 + 2)3



— +
12fi›

(›2 + 4)4 — + · · ·

J

d›. (1.85)

Integrating the above termwise, we obtain

Fs

F0
¥ 1

2
+

2

fi

A

fi

4
≠ 3fi

Ô
2

8



— +
fi

4
— + · · ·

B

, (1.86)

which may be simplified and written in terms of ” as

Fs

F0
¥ 1 ≠ 3

Ô
2

4

Û

”

‘
+

1

2

”

‘
+ · · · . (1.87)

From (1.87) we observe that, as ” vanishes, the adhesive force Fs becomes F0 = 2fiRÏ(‘),

which confirms the result obtained in (1.70).

At large deformations, i.e. ” ∫ ‘, expanding the integrand in (1.84) in terms of 1/
Ô

— =


‘/”, we obtain

Fs

F0
¥ 1

2
+

4

3fi


—3

Œ
⁄

0

›4

)!

4›3/3fi
Ô

—
"

+ 1
*3 d› + · · · . (1.88)

Employing the change of variables

t = ›
1

4/3fi


—
21/3

, (1.89)

(1.88) becomes

Fs

F0
¥ 1

2
+

4

3fi


—3

A

3fi
Ô

—

4

B5/3 Œ
⁄

0

t4

(t3 + 1)3 dt + · · · . (1.90)

With the change of variables t = (tan ◊)2/3, the above may be integrated and written in

terms of ” as

Fs

F0
¥ 1

2
+

fi2

9
Ô

3 3
Ô

6fi

3

‘

”

42/3

+ · · · . (1.91)

From (1.91), we see that the adhesive force decreases with increase in indentation depth.

At large indentations Fs = F0/2 = fiRÏ(‘). This result is true for any interaction potential

Ï; for details see Derjaguin et al. (1975).
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Finally, the total load P acting on the punch is obtained by adding Fe and Fs:

P = Fe + Fs. (1.92)

In DMT theory, from (1.87), the contact between the adhesive sphere and the rigid plane

is broken when we apply a tensile load of magnitude 2fiRÏ(‘) on the punch.

1.4 Adhesive contact: Adhesive zone model

From Secs. 1.2 and 1.3, we see that the predictions of JKR (Johnson et al., 1971)) and

DMT (Derjaguin et al., 1975) theories are at odds with each other. The main differences

between the two theories are shown in Table. 1.1.

JKR theory DMT theroy

(i) Both compressive and tensile stresses

are allowed inside the contact region. Sin-

gularities in the contact pressure at the

contact edges are permissible.

(i) This theory assumes that the stresses

in the contact region are compressive only,

and the contact pressure profile remains

Hertzian.

(ii) No stresses act between the interacting

surfaces outside the contact region.

(ii) DMT theory considers the stresses act-

ing between the interacting bodies outside

the contact region. The nature of these

stresses are tensile.

(iii) From (i) and (ii), we may observe that

the stress distribution is discontinuous at

the contact edges: as r æ a≠, ‡y æ ≠Œ,

and as r æ a+, ‡y æ 0.

(iii) From (i) and (ii), we see that there is

a discontinuity in the stress distribution at

the contact edges: as r æ a≠, ‡y æ 0, and

as r æ a+, ‡y æ ≠‡0.
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JKR theory DMT theroy

(iv) In JKR theory, it is assumed that

the adhesive forces are strong and, hence,

cause deformations in the elastic bod-

ies. This deformation may deviates sig-

nificantly from Hertzian theory. The de-

formations caused by adhesive forces play

an important role in neck formations, i.e.

tangents to the contacting surfaces are ver-

tical, at the contact edges; see Fig. 1.3.

(iv) DMT theory assumes that the adhe-

sive forces are small and, hence, do not

cause any deformations in the elastic bod-

ies. Therefore, the deformation in the elas-

tic bodies are only due to stresses in the

contact region, and the deformations in

the elastic bodies are as given by Hertzian

theory. Thus, DMT theory does not allow

neck formations at the contact edges.

Table 1.1: Differences betwen JKR and DMT theories

To resolve the percieved discrepancy between JKR and DMT theories, Tabor (1977) pro-

posed that these two theories are the two extreme limits of one general theory. Maugis

(1992) proved this hypothesis. He employed an adhesive zone, similar to cohesive zone

in fracture mechanics, to account for adhesion outside the contact region. Employing the

strength of adhesion as a parameter, Maugis showed that both JKR and DMT theories are

contained within one general theory. In this section we discuss Maugis (1992) approach

to adhesive contact in detail.

Maugis (1992) considered the axi-symmetric frictionless indentation by a rigid spherical

punch of an adhesive elastic half-space. The problem was posed within the framework of

fracture mechanics.

We first recall that Sneddon (1965) considered the frictionless indentation by a axi-

symmetric rigid punch, whose profile is given by f(x), where x = r/a, with an elastic

half-space whose Young’s modulus and Poisson’s ratio are E and ‹, respectively. Sneddon

obtained the relationships for the indentation depth (or punch displacement) ”, load P

acting on the punch, normal traction on the surface ‡y(r, o) within the contact zone, i.e.

r Æ a, and vertical displacement of the surface uy(r, o) outside the contact zone, i.e. r Ø a,
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as, respectively,

” =

1
⁄

0

f Õ (x)Ô
1 ≠ x2

dx +
fi

2
‰ (1) , (1.93)

P =
3fiaK

4

1
⁄

0

‰ (t) dt =
3fiaK

2

Q

a” ≠
1

⁄

0

xf (x)Ô
1 ≠ x2

dx

R

b , (1.94)

‡y (r, 0) = ≠3K

8a

Q

c

a

‰ (1)


1 ≠ r2/a2
≠

1
⁄

r/a

‰Õ (t)


t2 ≠ r2/a2
dt

R

d

b
for r < a, (1.95)

and uy (r, 0) =

1
⁄

0

‰ (t)


r2/a2 ≠ t2
dt for r > a, (1.96)

where

‰ (t) =
2

fi

Q

a” ≠ t

t
⁄

0

f Õ (x)Ô
t2 ≠ x2

dx

R

b , (1.97)

with K = 4E/3
!

1 ≠ ‹2
"

. We observe from (1.95) that the contact pressure is singular

at the contact edge r = a, unless ‰ (1) = 0. Thus, when the surface profiles of the

interacting surfaces are smooth, we do not expect a stress singularity and we set ‰ (1) = 0

in (1.93)–(1.96), to recover the results for axi-symmetric, non-adhesive indentation. On

the other hand, Maugis (1992) showed that allowing ‰ (1) ”= 0 helps in providing results for

adhesive, axi-symmetric indentation, as well as for those indentations where the indenter

is not smooth, so that ‡y may be singular at r = a.

Employing (1.96), we may find the distance between the elastic half-space and the rigid

spherical punch as

[uy] = f

3

r

a

4

≠ ” + uy (r, 0) ; (1.98)

see Fig. 1.9.

aa

Half-space

P

y

x

δ f(r)

uy [uy]

ρ

Figure 1.9: The indentation of a rigid spherical punch with an adhesive elastic half-space.
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We now represent the stresses in the contact region and the distance between the surfaces

in terms of the stress intensity factor K1 defined by

K1 = ≠3K

8
‰ (1)

Ú

fi

a
. (1.99)

We shift the coordinate system to the contact edge, and introduce fl as a measure of

distance from the contact edge. Employing (1.95) and (1.98), we may represent the nor-

mal surface traction ‡y (r, 0) inside the contact region, and the distance [uy] between the

contacting surfaces as, respectively,

‡y (a ≠ fl, 0) ¥ K1Ô
2fifl

, (1.100)

and [uy] (a ≠ fl, 0) ¥ 4
!

1 ≠ ‹2
"

E
K1

Ú

fl

2fi
. (1.101)

The above are analogous to the expressions for crack tip stresses and the crack opening

displacement, respectively, in plane strain problems (Kanninen and Popelar, 1985, p. 163).

This suggests that we may employ concepts from fracture mechanics to analyse contact

problems. We begin by finding the energy release rate – variation of elastic energy with

a keeping ” constant. As the stresses at the contact edges can be singular, the energy

release rate; see (Kanninen and Popelar, 1985, p. 163),

G =
1

2

1 ≠ ‹2

E
K2

1 . (1.102)

In (1.102) the factor ‘1/2’ enters as we assume the punch to be rigid, so that frictionless

indentation by a rigid punch with an elastic half-space is analogous to half of the Mode-I

crack (Kanninen and Popelar, 1985, p. 139).

At equilibrium the Griffith’s criterion must hold:

G = w, (1.103)

which reflects the balance between the elastic energy that is provided and the surface

energy lost (gain) to increase (decrease) the contact by da.

For the stable equilibrium (contact is not lost suddenly), we should have ˆG/ˆa > 0, i.e.

load increases with the increase in contact area. However, the load, contact radius and
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displacement at this stable equilibrium are different for experiments done at fixed load P

from those performed with fixed grips (fixed displacement ”).

Employing the above relationships we now obtain results for few simple cases. For this,

we first consider the axi-symmetric indentation of a flat-ended cylindrical rigid punch.

We will recover all relationships given by Boussinesq; see Todhunter and Pearson (1893,

p. 255). Then we proceed to the axi-symmetric indentation of a rigid spherical punch.

1.4.1 Flat punch

For the flat ended cylindrical punch, the profile of the indenting surface is given by

f (x) = 0. (1.104)

Substituting the above into (1.93) and (1.97) yields

‰ (1) = ‰ (t) =
2”

fi
, (1.105)

Employing the above in (1.94)–(1.96) and rearranging terms, we obtain, respectively,

” =
2P

3aK
, (1.106)

‡y (r, 0) = ≠ P

2fia2

1


1 ≠ r2/a2
for r < a, (1.107)

and uy (r, 0) =
1 ≠ ‹2

fiE

P

a
sin≠1

3

a

r

4

for r > a. (1.108)

The above equations were first given by Boussinesq; see Todhunter and Pearson (1893,

p. 255). Note that for this case ‰(1) is not zero, as the surface profile of the flat ended

cylindrical punch is not smooth; there is a kink in the surface displacement at the contact

edge.

Now assume that there is adhesion between the punch and the half-space. Finding the

stress intensity factor K1 employing (1.99), (1.105) and (1.106) we obtain

K1 = ≠ P

2fia

Ú

fi

a
. (1.109)
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Computing the energy release rate G from (1.102) yields

G =
P 2

6fia3K
=

3K”2

8fia
. (1.110)

Finally, at equilibrium we invoke Griffith’s criterion (1.103) with the first part of the above

G, to find the pull-off load to be

Pmin = ≠
Ô

6fia3Kw. (1.111)

The negative sign in (1.111) indicates the tensile loads and applying more tensile loads

than Pmin leads to the rupture of the contact. The above relationship was given by Kendall

(1971). However, the above equilibrium is always unstable, i.e. contact is lost suddenly,

whether the experiment is done at fixed load or at fixed grips.

1.4.2 Spherical punch: Hertzian and JKR contacts

During indentation by a rigid spherical punch with an elastic half-space we write the

surface profile as

f (x) =
a2

2R
x2, (1.112)

where x = r/a. Substituting the above into (1.97), we obtain

‰ (t) =
2

fi

A

” ≠ a2

R
t2

B

, (1.113)

and ‰ (1) =
2

fi

A

” ≠ a2

R

B

. (1.114)

Non-adhesive (Hertzian) indentation

In this case the normal stresses ‡y on the surface can not be singular, as the interacting

surfaces are smooth. For this ‰ (1) must vanish, so that (1.114) yields

” =
a2

R
. (1.115)

We now find the total load P , the contact pressure ‡y (r, 0) and the vertical displacement

uy (r, 0) of the surface outside the contact region from, respectively, (1.94), (1.95) and
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(1.96):

P =
a3K

R
, (1.116)

‡y (r, 0) = ≠3

2

P

fia2

Û

1 ≠ r2

a2
for r < a, (1.117)

and uy (r, 0) =
a2

fiR

S

U

Û

r2

a2
≠ 1 +

A

2 ≠ r2

a2

B

sin≠1
3

a

r

4

T

V for r > a, (1.118)

These agree with Hertz’s (1881) results; see also Sec. 1.1.

Finally, substituting (1.115) and (1.118) into (1.98), we obtain the distance between the

surfaces outside the contact zone from (1.98) as

[uy] =
a2

fiR

Û

r2

a2
≠ 1 +

r2 ≠ 2a2

fiR
cos≠1

3

a

r

4

for r > a. (1.119)

Adhesive indentation: JKR approximation

In the JKR approximation, singularities in the contact pressure at the contact edges are

allowed. Thus, ‰ (1) ”= 0, and from (1.94), (1.95) and (1.96) we obtain, respectively,

” =
a2

3R
+

2P

3aK
, (1.120)

‡y (r, 0) =
K1Ô
fia

1
Ò

1 ≠ r2

a2

≠ 3aK

2fiR

Û

1 ≠ r2

a2
for r < a, (1.121)

and uy (r, 0) = ≠2
!

1 ≠ ‹2
"

fiE
K1

Ô
fia sin≠1

3

a

r

4

+

a2

fiR

S

U

Û

r2

a2
≠ 1 +

A

2 ≠ r2

a2

B

sin≠1
3

a

r

4

T

V for r > a; (1.122)

in the above, the stress intensity factor K1 is found from (1.99) and (1.114):

K1 = ≠ 3K

4
Ô

fia

A

” ≠ a2

R

B

. (1.123)

Employing (1.120), we may also write the above as

K1 = ≠ 1

2a
Ô

fia

A

P ≠ a3K

R

B

. (1.124)
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We now calculate the energy release rate G from (1.102) employing (1.123) or (1.124):

G =
3K

8fia

A

” ≠ a2

R

B2

=
1

6fia3K

A

a3K

R
≠ P

B2

. (1.125)

Combining (1.125) with Griffith’s criterion (1.103), we obtain

” =
a2

R
≠

3

8fiwa

3K

41/2

. (1.126)

and
a3K

R
= P + 3fiwR +

Ò

6fiwRP + (3fiwR)2 (1.127)

The above relationships match with the results of Johnson et al. (1971); see also Sec. 1.2.

From (1.127), we obtain the radius of the contact area at zero load, i.e. P = 0 as

a3
0 =

6fiwR2

K
. (1.128)

There is an abrupt loss of contact when

ˆG

ˆa
= 0. (1.129)

Substituting (1.125) into (1.129) and keeping the load P fixed we obtain

3

ˆG

ˆa

4

P
=

1

2fia4K

Y

]

[

A

a3K

R

B2

≠ P 2

Z

^

\

= 0. (1.130)

Solving the above we find the minimum load at which contact separation happens abruptly:

Pmin = ≠3

2
fiwR. (1.131)

The contact radius and the punch displacement at this load are obtained from (1.127) and

(1.126):

a =

A

3

2

fiwR2

K

B1/3

= 0.63a0 (1.132)

and ” = ≠ a2

3R
= ≠

A

fi2w2R

12K2

B1/3

. (1.133)

Repeating the above process for finding the instability point when the grips are kept fixed
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gives
3

ˆG

ˆa

4

”

=
3K

8fiR2a2

1

a2 ≠ ”R
2 1

3a2 + ”R
2

= 0, (1.134)

so that the minimum depth of penetration at which the punch jumps out of contact is

”min = ≠3a2

R
= ≠

A

3

4

fi2w2R

K2

B1/3

. (1.135)

At this ”min, the contact radius and the load are, respectively, from (1.126) and (1.127):

a =

A

fiwR2

6K

B1/3

= 0.30a0 (1.136)

and Pmin = ≠5P1 = ≠5

6
fiwR. (1.137)

Thus, we see that the load at which the contact separation happens is quite different for

load controlled experiments compared to displacement control. This should be kept in

mind while analyzing or performing experiments.

Finally, to find the vertical distance between the surfaces of the sphere and half-space

outside the contact region, we employ (1.120) and (1.122) in (1.98):

[uy] =
2

!

1 ≠ ‹2
"

fiE
K1

Ô
fia cos≠1

3

a

r

4

+
a2

fiR

Û

r2

a2
≠ 1 +

r2 ≠ 2a2

fiR
cos≠1

3

a

r

4

. (1.138)

1.4.3 Adhesive indentation: DMT approximation

The detailed description of the DMT approximation for an adhesive contact is done in

Sec. 1.3. Here, we revisit few important aspects of this theory, which will be useful in our

later discussions.

In DMT theory, an attractive force acts between the interacting surfaces due to adhesion.

The magnitude of this force, just before contact, and at point contact is 2fiwR. This force

decreases as the contact area increases. Contrary to this, Pashley (1984) showed that

this force increases with increase in the contact area. However, we assume that this force

remains constant at 2fiwR, and write from (1.92) that

a3K

R
= P + 2fiwR. (1.139)
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The above relationship provides the correct estimation of the pull-out forces and the

contact area at zero load (Muller et al., 1983). Employing (1.103) we obtain the energy

release rate G from (1.139) as

G =
1

2fiR

A

a3K

R
≠ P

B

. (1.140)

Finally, we recall from Sec. 1.3 that the contact stress distribution and the surface defor-

mations in DMT theory remain the same as in Hertzian theory.

1.4.4 Adhesive indentation: adhesive zone modeling

We now proceed to investigate adhesive contact within the framework of adhesive zone

models. In this, an adhesive zone is introduced outside the contact region within which

adhesive forces act between the interacting surfaces. These forces are modeled by the

Dugdale-Barenblatt model – a constant tensile traction ‡0 acting over the adhesive zone;

see the inset of Fig. 1.10.

P

aa

a

σ0

δc

c

Half-space

Figure 1.10: The indentation of a rigid spherical punch with an adhesive elastic half-space.
The adhesive zone along with active adhesive forces is shown in the inset.

We obtain the solutions for the adhesive-zone model shown in Fig. 1.10 by combining the

JKR solution – the inner problem – with the solution of the elasticity problem associated

with the adhesive zone – the outer problem. The JKR results are already known. To find

the tractions on the surface of the half-space and its displacement due to the action of the

adhesive zone, we first consider the solutions for an external crack under pressure. This

solution will be combined with that of an unloading flat punch to yield the solution to the

outer problem.
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External crack under pressure

The loading due to an adhesive zone with the Dugdale-Barenblatt model representing the

adhesive forces within the the adhesive zone may be considered as a problem of an external

crack in which a constant tensile pressure ‡0 acts on the crack faces between r = a and

r = c; see Fig. 1.11.

a

σ0

δc

c

aa

Half-space

uy(r,∞) = 0

(a)

a
σ0 δc

c

uy(r,∞) = 0

(b)

Figure 1.11: (a) An adhesive zone is introduced into the contact problem. A constatnt
stress ≠‡0 acts between r = c and r = a. The displacement of the punch at faraway
loactions is zero. (b) An external crack with a constant stress ≠‡0 acts between r = c and
r = a.

Lowengrub and Sneddon (1965) found the normal stress distribution inside the body

and the vertical displacements of the crack faces for an external crack in which an axi-

symmetric pressure distribution p(r) is acting on the crack faces between r = a and r = c,

with c > a. These normal stress distribution inside the body and the crack faces displace-

ment are given by, respectively,

‡y (r, 0) =
2

fi

S

U

g (a)Ô
a2 ≠ r2

+

Œ
⁄

a

gÕ (t)Ô
t2 ≠ r2

dt

T

V for r < a (1.141)

and uy (r, 0) =
4

!

1 ≠ ‹2
"

fiE

r
⁄

a

g (t)Ô
r2 ≠ t2

dt for r > a, (1.142)

with

g (t) =

Œ
⁄

t

sp (s)Ô
s2 ≠ t2

ds. (1.143)

We note that in the analysis of Lowengrub and Sneddon (1965) the far-field displacements

are implicitly assumed to be zero.
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In the case of the adhesive zone we set p(r) = ≠‡0 in (1.143) to compute

g (t) = ≠‡0



c2 ≠ t2 for t Æ c, (1.144)

and g (t) = 0 for t Ø c. Evaluating gÕ (t) and g (a) yields

gÕ (t) =
≠‡0 tÔ
c2 ≠ t2

, (1.145)

and g (a) = ≠‡0



c2 ≠ a2. (1.146)

Substituting (1.144) – (1.146) in (1.141) and (1.142) yields the normal surface stresses

inside the contact region and the displacements outside the contact region as, respectively,

‡y (r, 0) =
≠2‡0

fi

CÔ
c2 ≠ a2

Ô
a2 ≠ r2

≠ tan≠1

Ô
c2 ≠ a2

Ô
a2 ≠ r2

D

for r < a, (1.147)

and

uy (r, 0) = ≠ 4
!

1 ≠ ‹2
"

fiE

I

‡0

a



c2 ≠ a2


r2 ≠ a2≠

‡0c2

min(r,c)
⁄

a

Ô
r2 ≠ t2

t2
Ô

c2 ≠ t2
dt

J

for r > a.

(1.148)

It is to be noted that the constant stresses acting in the adhesive zone deforms the surface

profiles of the elastic bodies outside the contact region. However, inherent in the solution

of Lowengrub and Sneddon (1965) is the assumption that the displacement at infinity

is zero, which, in the case of indentation by a rigid punch, becomes equivalent to the

requirement

” = 0. (1.149)

The load required to produce the stress distribution (1.147) is

Pext =

a
⁄

0

‡y 2firdr = ≠‡0fi
1

c2 ≠ a2
2

+ 2‡0a2

S

U

c2

a2
cos≠1

3

a

c

4

≠
Û

c2

a2
≠ 1

T

V , (1.150)

where the first term is due to the adhesive forces acting in the adhesive zone. The ap-

plication of constant pressure ≠‡0 in the adhesive zone lying between r = a and r = c

should produce a total load equal to ≠‡0fi
!

c2 ≠ a2
"

. The extra (second) term in (1.150)

is due to the assumption (1.149) that the displacement of the punch is zero. For this we
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need to impose at infinity a compressive load

P Õ = 2‡0a2

S

U

c2

a2
cos≠1

3

a

c

4

≠
Û

c2

a2
≠ 1

T

V > 0. (1.151)

Unloading of flat punch

The solution to the above problem correspond to a system where the displacement ” at

infinity was maintained at zero by the application of the compressive load P Õ. We, on

the other hand, are interested in the solution to the outer problem where the load on the

punch at infinity vanishes. This is achieved by applying a tensile load P Õ on the punch,

while keeping the contact radius at a, as shown in Fig. 1.12.

The configuration shown in Fig. 1.12 is much like a flat punch pulling away from the surface

that is in contact with it. Hence, we may find the solutions of this problem employing the

solutions available for flat punch indentation in Sec. 1.4.1. We now present the results for

the configuration shown in Fig. 1.12.

aa

P
0

Half-space

(a)

aa

Half-space

P
0

(b)

Figure 1.12: (a) Unloading of the spherical punch while keeping the contact radius at a
(left). The problem is solved by appealing to the solutions for the analogous problem of
the unloading of a flat cylindrical punch (right).

Finding the normal stresses in the contact region and the displacements outside the contact

area, respectively, from (1.107) and (1.108) yields

‡y (r, 0) =
P Õ

2fia

1Ô
a2 ≠ r2

for r < a (1.152)

and ub (r, 0) = ≠
!

1 ≠ ‹2
"

fiE

P Õ

a
sin≠1

3

a

r

4

for r > a, (1.153)
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respectively. Evaluating the displacement of the punch ”b from (1.106), we obtain

”b = ≠
!

1 ≠ ‹2
"

fiE

P Õ

a

fi

2
. (1.154)

Finally, shifting the origin to the contact edge and employing (1.153) and (1.154), we have

uÕ

b (r, 0) = ”b ≠ ub = ≠
!

1 ≠ ‹2
"

fiE

P Õ

a
cos≠1

3

a

r

4

for r > a, (1.155)

Solution to the outer problem

We now obtain the contribution of the adhesive zone. For this, we add the solutions of the

external crack under pressure and appropriately modified solutions due to the unloading

of a flat punch described in the preceding two sections.

We find the normal stress in the contact region due to the adhesive zone by adding (1.147)

and (1.152):

‡T (r, 0) =
≠‡0

fi

S

U

1Ô
a2 ≠ r2

A



c2 ≠ a2 +
c2

a
cos≠1

3

a

c

4

B

≠ 2 tan≠1

Û

c2 ≠ a2

a2 ≠ r2

T

V . (1.156)

The total load acting in the contact region due to the above stress field is pfi
!

c2 ≠ a2
"

,

which balances the tensile load of ≠pfi
!

c2 ≠ a2
"

due to adhesive forces active in the adhe-

sive zone. Thus, the total load acting on the punch is now zero.

We now introduce the outer stress intensity factor

Km =
≠‡0Ô

fia

C



c2 ≠ a2 +
c2

a
cos≠1

3

a

c

4

D

, (1.157)

to represent the strength of the singularity in the contact stresses (1.156) due to only

adhesive forces. The stress field (1.156) thus simplifies to

‡T (r, 0) =
KmÔ

fia

aÔ
a2 ≠ r2

+
2‡0

fi
tan≠1

Û

c2 ≠ a2

a2 ≠ r2
. (1.158)

The displacement ”T of the punch due to only adhesive forces is found by adding (1.149)

and (1.154):

”T = ≠
!

1 ≠ ‹2
"

fiE

P Õ

a

fi

2
. (1.159)
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Finally, the total distance between the interacting surfaces outside the contact zone is

obtained by subtracting (1.155) from (1.148):

uyT = uy ≠ uÕ

y

=
2

!

1 ≠ ‹2
"

fiE
Km

Ô
fia cos≠1

3

a

r

4

≠ 4
!

1 ≠ ‹2
"

fiE

‡0

fia

C



c2 ≠ a2

;



r2 ≠ a2≠

a cos≠1
3

a

r

4 <

≠ ac2

min(r,c)
⁄

a

Ô
r2 ≠ t2

t2
Ô

c2 ≠ t2
dt

D

for r > a. (1.160)

Final solutions for the adhesive-zone model

Finally, we obtain expressions for the adhesive-zone model. First, we find the normal

stresses in the contact region for the adhesive-zone model by adding (1.121) and (1.158):

‡y (r, 0) =
K1Ô
fia

aÔ
a2 ≠ r2

≠ 3K

2fiR



a2 ≠ r2+

KmÔ
fia

aÔ
a2 ≠ r2

+
2‡0

fi
tan≠1

Û

c2 ≠ a2

a2 ≠ r2
for r < a.

(1.161)

The load P acting on the punch is evaluated from (1.124):

P =
a3K

R
≠ 2aK1

Ô
fia. (1.162)

Finally, the punch’s displacement ” is obtained by adding (1.120) and (1.159):

” =
a2

3R
+

2P

3aK
+

!

1 ≠ ‹2
"

E
‡0a

S

U

c2

a2
cos≠1

3

a

c

4

≠
Û

c2

a2
≠ 1

T

V . (1.163)

We note from (1.161) that the singularities at r = ±a in the contact stress vanishes if

K1 = ≠Km. (1.164)

This reduces the contact stress distribution in (1.161) to

‡y (r, 0) = ≠ 3K

2fiR



a2 ≠ r2 +
2‡0

fi
tan≠1

Û

c2 ≠ a2

a2 ≠ r2
. (1.165)

We observe that ‡y (±a, 0) = ≠‡0. Thus, the condition (1.164) also ensures the continuity
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of the stress at the contact edges.

From (1.157) and (1.164), we obtain

K1 =
‡0Ô
fia

C



c2 ≠ a2 +
c2

a
cos≠1

3

a

c

4

D

. (1.166)

Substituting K1 into (1.162) provides the load acting on the punch:

P =
a3K

R
≠ 2‡0a2

Y

]

[

Û

c2

a2
≠ 1 +

c2

a2
cos≠1

3

a

c

4

Z

^

\

. (1.167)

Employing the above in (1.163), and simplifying the resulting equation yields the displace-

ment of the punch:

” =
a2

R
≠ 8‡0

3K



c2 ≠ a2. (1.168)

Finally, the air-gap between the surfaces of the sphere and the half-space is obtained by

adding (1.138) and (1.160):

[uy] =
a2

fiR

S

U

Û

r2

a2
≠ 1 +

A

r2

a2
≠ 2

B

cos≠1
3

a

r

4

T

V +
4

!

1 ≠ ‹2
"

fiE

‡0

fia

C

ac2

min(r,c)
⁄

a

Ô
r2 ≠ t2

t2
Ô

c2 ≠ t2
dt ≠



c2 ≠ a2

;



r2 ≠ a2 ≠ a cos≠1
3

a

r

4 <

D

for r > a.

(1.169)

It now remains to find the extent c of the adhesive zone. To this end, we set r = c in

(1.169), invoke

cos≠1
3

a

c

4

= tan≠1

Q

a

Û

c2

a2
≠ 1

R

b

and set m = c/a in the resulting equation to obtain the air-gap at the edge of the adhesive

zone

”c =
a2

fiR

Ë


m2 ≠ 1 +
1

m2 ≠ 2
2

tan≠1


m2 ≠ 1
È

+

4
!

1 ≠ ‹2
"

fiE
‡0a

C



m2 ≠ 1 tan≠1


m2 ≠ 1 ≠ m + 1

D

.

(1.170)

We now employ the J-integral (Rice, 1968) to compute the energy release rate for the

Dugdale-Barenblatt adhesive zone model as

G = ‡0”c. (1.171)



37

Substituting for ”c from (1.170) into the above we find

G =
‡0a2

fiR

Ó


m2 ≠ 1 +
1

m2 ≠ 2
2

tan≠1


m2 ≠ 1
Ô

+

4
!

1 ≠ ‹2
"

fiE
‡2

0a

I



m2 ≠ 1 tan≠1


m2 ≠ 1 ≠ m + 1

J

.

(1.172)

We may now find c by utilizing the Griffith’s criterion (1.103), which yields

w =
‡0a2

fiR

Ë


m2 ≠ 1 +
1

m2 ≠ 2
2

tan≠1


m2 ≠ 1
È

+

4
!

1 ≠ ‹2
"

fiE
‡2

0a

C



m2 ≠ 1 tan≠1


m2 ≠ 1 ≠ m + 1

D

.

(1.173)

In an adhesive contact problem we know a, w and ‡0, so that the above equation can be

solved to find m = c/a. We may now find the contact stress distribution ‡y (r, 0), the load

acting on the punch P and the punch’s displacement ” from, respectively, (1.165), (1.167)

and (1.168).

1.4.5 Limits of the adhesive zone model

We now demonstrate how the JKR and DMT approximations may be obtained as limits

of the adhesive-zone model. To this end, we first find ‡0 in terms of K1 from (1.166) as

‡0 =
fiK1Ô

fia

Ó


m2 ≠ 1 + m2 tan≠1
1



m2 ≠ 1
2Ô

≠1
. (1.174)

Employing the above into (1.172), we obtain the energy release rate

G =
a2K1

R
Ô

fia

I

1 ≠ 2 tan≠1
Ô

m2 ≠ 1Ô
m2 ≠ 1 + m2 tan≠1

Ô
m2 ≠ 1

J

+

4
!

1 ≠ ‹2
"

E
K2

1

Y

_

]

_

[

Ô
m2 ≠ 1 tan≠1

Ô
m2 ≠ 1 ≠ m + 1

1Ô
m2 ≠ 1 + m2 tan≠1

Ô
m2 ≠ 1

22

Z

_

^

_

\

.

(1.175)

JKR limit

To obtain the JKR approximation, we consider the limit c/a æ 1. In this limit, from

(1.166) we have

K1

‡0
Ô

fia
æ 0 as

c

a
æ 1. (1.176)
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So, as c/a æ 1, the adhesive strength at the contact edges becomes singular, i.e. ‡0 æ Œ.

Also, for c/a ¥ 1 we have



c2 ≠ a2 ¥ (c2/a) cos≠1(a/c). (1.177)

Thus, from (1.166) we obtain


c2 ≠ a2 ¥ K1
Ô

fi a

2‡0
. (1.178)

From (1.178), it is also implied that

d ¥ fi K2
1

8‡2
0

. (1.179)

where d = c ≠ a. The parameter d shows the extent of adhesive zone outside contact area

and this goes to zero in JKR approximation.

Now finding the stress distribution employing (1.165) and (1.174) yields

‡y (r, 0) = ≠ 3K

2fiR



a2 ≠ r2 +
2K1Ô

fia
tan≠1

Û

c2 ≠ a2

a2 ≠ r2
◊

Y

]

[

Û

c2

a2
≠ 1 +

c2

a2
tan≠1

Q

a

Û

c2

a2
≠ 1

R

b

Z

^

\

≠1

. (1.180)

Substituting c = a + ‘, where ‘ π 1, in the above equation and expanding the resulting

equation in a Taylor series about ‘ = 0, we obtain

‡JKR
y (r, 0) ¥ ≠ 3K

2fiR



a2 ≠ r2 +
K1Ô
fia

aÔ
a2 ≠ r2

+ O (‘) . (1.181)

The above leading order normal stress distribution is the JKR pressure distribution of

(1.121). Integrating the above stress distribution we obtain the total load acting on the

punch

P JKR ¥ a3K

R
≠ 2 a K1

Ô
fia. (1.182)

Employing the above to find the stress intensity factor K1 yields

K1 ¥ ≠ 1

2 a
Ô

fia

A

P JKR ≠ a3K

R

B

. (1.183)
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Next, we find the displacement ” in the JKR approximation from the adhesive zone model’s

solution given by (1.168). For this, we employ (1.178) in (1.168) to obtain

”JKR ¥ a2

R
≠ 4

3K
K1

Ô
fia. (1.184)

Finding the stress intensity factor K1 in terms of ” gives

K1 ¥ ≠ 3K

4
Ô

fia

A

”JKR ≠ a2

R

B

. (1.185)

We now find the limiting value of the energy release rate G for the adhesive zone model

given by (1.175) as c/a æ 1. For this, we expand (1.175) in a Taylor series as m æ 1:

G ¥ 1

2

1 ≠ ‹2

E
K2

1 + O (m ≠ 1) . (1.186)

The above leading order estimate for G is the energy release rate in the JKR approxima-

tion; cf. (1.102).

Substituting K1 from (1.183) or (1.185) in the leading order approximate of G given by

(1.186) yields

G ¥ 1

6fia3K

A

a3K

R
≠ P

B2

¥ 3K

8fia

A

” ≠ a2

R

B2

. (1.187)

Employing Griffith’s criterion (1.103) with the above we obtain

a3K

R
¥ P + 3fiwR ±

Ò

6fiwRP + (3fiwR)2. (1.188)

and ”JKR ¥ a2

R
≠

3

8fiwa

3K

41/2

. (1.189)

The above agrees with (1.127) and (1.126) obtained earlier.

Thus, we recover the JKR approximation from the adhesive zone model in the limit c/a æ

1. We may also conclude from (1.179) and (1.176) that as c/a æ 1, the adhesive zone

size outside the contact area goes to zero and the stresses at the contact edges become

singular.
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DMT limit

We now obtain the DMT theory as a limit of the adhesive zone model when c/a æ Œ,

i.e. the adhesive zone extends to infinity. As c/a æ Œ, (1.166) yields

K1

‡0
Ô

fia
¥ c2

2a2
æ Œ. (1.190)

Employing the above and finding the stress distribution from (1.165) gives

‡DMT
y (r, 0) ¥ ≠

3

3K

2fiR
+

2‡0

fic

4



a2 ≠ r2 + ‡0. (1.191)

From (1.190) as c/a æ Œ, the adhesive strength ‡0 æ 0 and, hence, the stresses above

reduce to the Hertzian distribution, which is the assumed stress distribution in the DMT

approximation as well.

To find the limit of ” given by (1.168) as c/a æ Œ, we first obtain the adhesive strength

‡0 from (1.190) as

‡0 =
K1Ô
fia

2a2

c2
. (1.192)

Combining the above with (1.168) yields

”DMT ¥ a2

R
≠ 16K1Ô

fia

a

c

Û

1 ≠ a2

c2
. (1.193)

Taking the limit c/a æ Œ, the above reduces to

” ¥ a2

R
. (1.194)

The above matches the punch displacement in DMT approximation, which is assumed to

be the same as in Hertzian contact. This is due to the fact that in DMT approximation,

the adhesive forces acting outside the contact region will not cause any deformations in the

elastic bodies. Thus, the displacement in these bodies is only due to the contact pressure,

which is Hertzian.

Finally, we obtain the relationship between a and P in the DMT approximation. As
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c/a æ Œ, employing (1.190), we may write (1.167) as

P ¥ a3K

R
≠ 2aK1

Ô
fia. (1.195)

Finding the stress intensity factor from the above we obtain

K1 ¥ 1

2a
Ô

fia

A

a3K

R
≠ P

B

. (1.196)

To find the energy release rate G in the DMT approximation, we expand (1.175) in a

Taylor series about m æ Œ:

G ¥ K1a2

R
Ô

fia
+ O

3

1

m2

4

. (1.197)

Substituting K1 from (1.196) into the leading order approximate of energy release rate G

yields

G ¥ 1

2fiR

A

a3K

R
≠ P

B

. (1.198)

The above matches with the energy release rate in the DMT approximation, cf. (1.140).

Finally, employing the Griffith criterion (1.103), we find

a3K

R
¥ P + 2fiwR. (1.199)

The above agrees with the DMT result given by (1.139).

From the above discussions, we conclude that by considering c/a æ Œ, which is equivalent

to the adhesive stress outside the contact zone going to zero, i.e. ‡0 æ 0, we recover the

DMT approximation for adhesive contact.

1.4.6 Summary

Finally, we summarize how Maugis (1992) resolved differences between the JKR and DMT

approximation:

(i) In Maugis (1992), the stresses outside the contact region are taken into account

employing an adhesive zone model. And these stresses are considered to be constant,

i.e. ‡y = ≠‡0 for a+ < r < c.
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(ii) According to Maugis (1992), both compressive and tensile stresses are allowed inside

the contact region. The stresses at the contact edges do not go either to zero or to

infinity. Instead their value will be ≠‡0, i.e. r æ a≠, ‡y æ ≠‡0. Thus, there is no

discontinuity in the normal stresses at the contact edge, i.e. r æ a±, ‡y æ ≠‡0.

(iii) From Maugis (1992), the extent of deformation caused by adhesive forces depends

upon the non-dimensional adhesion parameter ⁄ = 2‡0
!

R/fiwK2
"1/3

. At small ⁄,

the adhesion is small compared to the elastic material’s Young’s modulus. Thus, the

adhesive forces cause minimal deformation in the elastic bodies. However, when ⁄

is high, adhesive forces are dominant and/or the material is soft. In this case the

adhesive forces deform the elastic bodies and, hence, neck formations are seen at the

contact edges.

We see that employing the adhesive-zone model removes the singularities and discontinu-

ities from the contact pressure.

For a more detailed discussion on two-dimensional adhesive contact employing the adhesive

zone model and it’s corresponding JKR and DMT limits, the reader is suggested to refer

Baney and Hui (1997).

1.5 Thesis outline

In the remaining part of this thesis, we discuss indentation by a rigid circular punch of

an adhesive elastic layer supported at its ends. In this discussion we limit ourselves to

two-dimensional plane strain indentation. We model the adhesion between the interacting

surfaces through the adhesive-zone model, in which a constant stress ‡0 acts outside the

contact zone and within the adhesive zone. We then obtain the results for different types

of contact, i.e. non-adhesive ‘Hertzian’ contact, JKR approximation, and the transition of

the JKR to DMT, by varying the adhesion parameter ⁄. Now, we provide a brief outline

to the subsequent chapters.

In Chapter 2, we start with a mathematical formulation for the indentation of an adhesive

elastic layer supported by flexible end supports. We employ displacements due to a point

load of an Euler-Bernoulli beam to estimate the displacement of the bottom surface of the

elastic layer. We discuss results for different types of contacts in detail. While doing so,
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we compare our theoretical results with FE simulations and previously published results.

We also outline an experimental procedure for an adhesive contact of beam, and compare

our theoretical results with those of preliminary experiments. Finally, we demonstrate the

utility of our approach to model structural adhesive.

In Chapter 3, we describe a more general formulation, which is free from the assumptions

of Chapter 2. In this formulation, we limit ourselves to clamped and simply supported

beams, as these are the two extreme limits for a beam supported on flexible end supports.

Finally, we discussed the results for different types of contacts using this approach and

compared these results against the results of Chapter 2.

In Chapter 4, we briefly conclude and then discuss the possible extensions for the current

work.





Chapter 2

Contact mechanics of adhesive

beams: Low to moderate

indentation.

2.1 Introduction

Research in patterned adhesives is often motivated by the structures of natural adhesives,

such as those present in the feet of gekkos; see e.g. Hiller (1976), and Arul and Ghatak

(2008). In conventional adhesives, such as thin, sticky tapes, only the top and bottom

surfaces are active. However, multiple surfaces may be activated with appropriate pat-

terning. With more surfaces participating in the adhesion process the adhesives show

increased hysteresis and, so, better performance. One example of a patterned adhesive is

the structural adhesive shown in Fig. 2.1(a), which was developed by Arul and Ghatak

(2008). Figure 2.1(b) shows a possible mechanical model of the structural adhesive of

Fig. 2.1(a) that utilizes several interacting adhesive beams. This motivates the goal of

this study, which is to investigate the adhesive contact of a beam; see Fig. 2.2(a).

Contact with a half-space has been well studied over the past century, and we refer the

reader to Alexandrov and Pozharskii (2001), and also the texts of Galin and Gladwell

(2008), Gladwell (1980), Johnson (1985), Hills et al. (1993) and Goryacheva (1998). At

the same time, the contact of thin layers is an active area of research in view of applications

to electronics and computer industry; see, e.g. Barthel and Perriot (2007), and Dalmeya

45
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Figure 2.1: (a) Structural adhesive designed by Arul and Ghatak (2008). (b) Mechanical
model of the structural adhesive in (a) employing an interconnected stack of adhesive
beams. The rigidity of the vertical walls is modeled through torsional (stiffness kt) and
vertical translational (stiffness ks) springs, as shown. The system is indented by a rigid
punch, pressed down by the force P .
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Figure 2.2: (a) Indentation by a rigid cylindrical punch of an adhesive beam resting
upon flexible supports. The flexible supports are modeled through torsional and vertical
translational springs with stiffnesses kt and ks, respectively. (b) Mathematical model of
the indentation process shown in (a). The inset shows details of the adhesive zone active
near the contact edges; see text for details. The vertical deflection is exaggerated for ease
of representation.
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et al. (2012). In contrast, the indentation of beams is much less studied.

Seeking the solution to the indentation of a beam through a strength-of-materials approach

overlooks the local contact mechanics. To probe the latter, it is necessary to formulate

an elasticity problem with appropriate boundary conditions. This is typically a complex

problem, and has prompted some alternate approaches to adhesionless contact, as dis-

cussed in the next paragraph. A careful study of the adhesive contact of beams with a

rigid cylindrical punch is not yet available and will be helpful for several applications.

Two-dimensional adhesionless indentation of a beam has been studied in the past by Keer

and Silva (1970), Keer and Miller (1983), Keer and Schonberg (1986), Sankar and Sun

(1983), Sun and Sankar (1985), and Kim et al. (2014). Keer and Miller (1983) modeled the

beam as a linear elastic layer of infinite extent with frictionless bottom and top surfaces.

First, the elasticity problem was solved through Fourier transforms, see e.g. (Sneddon,

1995, p. 395-414). Then, employing the Hankel transform (Gladwell, 1980, p. 213) for the

pressure distribution, and asymptotically matching the far-field displacements with those

obtained from Euler-Bernoulli beam theory, a Fredholm integral equation of the second

kind was obtained. This equation was solved numerically.

Sankar and Sun (1983) employed Fourier series in their investigation of adhesionless con-

tact with beams of finite length. Their results were in good agreement with those of Keer

and Miller (1983). Recently, Kim et al. (2014) studied beam indentation through asymp-

totics. Finite element (FE) simulations were also carried out. The contact parameters,

i.e. contact area and the total load acting on the punch, obtained through asymptotics,

matched results of FE simulations well. In all these studies, the interaction of the beam

with the punch is non-adhesive. However, extending these methods to adhesive beams is

difficult due to the presence of several iterated integral transforms.

Recently, adhesive beams are studied by Zhang and Li (2011), Wagner and Vella (2012),

and Hu and Adams (2016), as they found applications in nano (or) micro electro mechan-

ical systems (NEMs/MEMs). Zhang and Li (2011) investigated the adhesive interaction

of graphene layers with a patterned elastic substrate. A theoretical model based on the

minimum energy principle was developed to study the contact characteristics of graphene

layers with different patternings in the elastic substrate by varying the number of graphene

layers. Wagner and Vella (2012) studied the interaction of graphene sheets with a grooved



48

surface formed inside a rigid substrate. The graphene sheets placed over the grooved

surface form a conformal contact over some of its length depending on their adhesive

characteristics and bending stiffness. The graphene sheets area modeled as beam em-

ploying the Euler-Bernoulli beam theory. Tension in the graphene sheets was neglected.

A simple theoretical method was developed employing the minimum energy principle to

study the effect of graphene adhesion on contact characteristics. Later, Hu and Adams

(2016) extended the analysis of Wagner and Vella (2012) by considering the tension in the

graphene sheets.

Sekiguchi et al. (2012) studied the interaction of an adhesive beam, whose bottom surface

is brought (pressed) into the contact at an angle, with a rigid, flat surface, as they found

applications in grip-and-release processes. The load, displacement and contact area rela-

tionships in these adhesive beams are obtained employing the minimum energy principle.

In each case, classical beam theories were employed and no effort was made to resolve the

details of the contact, e.g. the local pressure distribution.

The recent studies on other structural adhesives like membranes, which are close to beams,

include Long et al. (2010), Laprade et al. (2013) and Srivastava and Hui (2013), also

highlights the importance of this study. Long et al. (2010) and Laprade et al. (2013)

studied the contact mechanics of inflated and highly deformed axi-symmetrical membranes

with and without adhesion. Srivastava and Hui (2013) extended this to inflated and highly

deformed rectangular membranes.

Here, we propose an alternative approach to the contact of a beam with a rigid punch,

shown in Fig. 2.2(a), that models both non-adhesive and adhesive interactions in a straight-

forward manner. Adhesion is modeled through the introduction of an adhesive zone that

extends beyond the contact zone, as shown in the inset of Fig. 2.2(b). An adhesive zone

model allows us to investigate the effect of adhesion by admitting continuous variations in

it’s strength. The popular JKR Johnson et al. (1971) and DMT Derjaguin et al. (1975)

models for adhesion are obtained as special cases. The non-adhesive case (‘Hertzian con-

tact’) is found by setting the adhesion strength to zero.

This chapter is organized as follows. We start by formulating a mathematical model for

the adhesive contact of the beam shown in Fig. 2.2(a). We will obtain a Fredholm integral

equation of the first kind that relates the contact pressure distribution with the vertical
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displacement in the contact patch. Relevant conditions at the edge of the contact zone

will also be derived. This integral equation is then solved numerically employing Galerkin

projections in terms of Chebyshev polynomials. Theoretical results are compared with FE

simulations whenever possible. We then explore the effect of various parameters in the

problem, viz. flexibility of end supports, strength of adhesion, the beam’s geometry, etc.

We close with a comparison with preliminary experimental results, and an application of

our solution to complex structural adhesives, such as the one shown in Fig. 2.1(a).

2.2 Mathematical model

We begin by extending the finite beam of Fig. 2.2(a), whose length is 2l, beyond the

supports to infinity, as shown in Fig. 2.2(b). The extension is done in a manner consistent

with the kinematic and kinetic constraints imposed by the supports. Thus, the beam

is extended linearly along its slope at the supports. The beam may now be thought

of as a linear elastic layer of infinite length with thickness h. The beam is isotropic

and homogeneous, with Young’s modulus E and Poisson’s ratio ‹. The top and bottom

surfaces of the beam are frictionless.

During indentation, a normal traction distribution ≠Pc(x) acts on the top surface 1. At

this time, the vertical displacement of the bottom surface is vb(x), which is typically not

known. When the contact area is less than the beam’s thickness, we assume that vb(x) may

be approximated by the displacement obtained from Euler-Bernoulli beam theory when a

point load of magnitude P acts at the center of the top surface, as depicted in Fig. A.1.

The details of how vb(x) is calculated for a beam on flexible supports are provided in

Appendix A.

The governing equations for the horizontal (u) and vertical (v) displacements in the ex-

tended beam (elastic layer) of Fig. 2.2(b), assuming plane strain, are given by

2 (1 ≠ ‹)

1 ≠ 2‹

ˆ2u

ˆx2
+

ˆ2u

ˆy2
+

1

1 ≠ 2‹

ˆ2v

ˆxˆy
= 0 (2.1a)

and
ˆ2v

ˆx2
+

2 (1 ≠ ‹)

1 ≠ 2‹

ˆ2v

ˆy2
+

1

1 ≠ 2‹

ˆ2u

ˆxˆy
= 0, (2.1b)

which reflect horizontal and vertical linear momentum balance, respectively; see, e.g.

1The negative sign is introduced in order to report compressive pressure during contact as positive.
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(Timoshenko and Goodier, 1970, p. 241) or (Sadd, 2005, p. 125). The boundary con-

ditions may be taken to be

‡xy = 0, ‡yy = ≠Pc(x) on the top surface, i.e. at y = 0, (2.2a)

and ‡xy = 0, v = vb(x) on the bottom surface, i.e. at y = h. (2.2b)

We now follow (Sneddon, 1995, p. 402) to map the above problem into Fourier space by

transforming the x coordinate. Solving for the vertical displacement in Fourier space and,

then, taking the inverse Fourier transform yields the following integral equation for the

vertical displacement of the top surface:

v (x, 0) = ≠ 2

fiEú

Œ
⁄

0

P̄c (›)
sinh2 › h

› (› h + sinh › h cosh › h)
cos ›x d›

+
1

fi

Œ
⁄

0

v̄b (›)
sinh › h + › h cosh › h

› h + sinh › h cosh › h
cos ›x d›, (2.3)

where Eú = E/
!

1 ≠ ‹2
"

,

P̄c (›) =

Œ
⁄

≠Œ

≠Pc (t) cos ›t dt and v̄b (›) =

Œ
⁄

≠Œ

vb (t) cos ›t dt. (2.4)

Appendix C provides details of how (2.3) is obtained. For non-dimensionalizing it is more

convenient to rewrite (2.3) as

v (x, 0) =
2

fiEú

Œ
⁄

0

Œ
⁄

≠Œ

Pc (t) cos ›t dt
sinh2 › h

› (› h + sinh › h cosh › h)
cos ›x d›

+
1

fi

Œ
⁄

0

Œ
⁄

≠Œ

vb (t) cos ›t dt
sinh › h + › h cosh › h

› h + sinh › h cosh › h
cos ›x d›, (2.5)

where we have invoked definitions (2.4) of P̄c and v̄b.

In contact problems the vertical displacement within the contact region is constrained. For

example, during indentation with a rigid punch, the surface in the contact region must

conform to the shape of the punch. We now approximate the profile of the cylindrical

punch of radius R as a parabola in the contact region, as is appropriate if the indentation

depth, and the dimensions of the contact region are much smaller than the radius of

curvature of the punch. We set ” to be the vertical displacement of the punch. This allows
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us to write the vertical displacement of the beam’s top surface within the contact region

as

v(x, 0) = ” ≠ x2

2R
, ≠a Æ x Æ a, (2.6)

where the contact region lies between ≠a and a.

During contact, the pressure on the beam’s top surface depends also on the adhesive inter-

action between the beam and the punch. This adhesive interaction is, in turn, introduced

through the presence of an adhesive zone; see inset of Fig. 2.2(b). Within the adhesive

zone the adhesive interaction is modeled through a Dugdale-Barenblatt model Maugis

(1992), which assumes the adhesion to be of constant strength ‡0. Thus, we may write

the force distribution on the beam’s top surface as

Pc (x) =

Y

_

_

]

_

_

[

p (x) , |x| Æ a

≠‡0, a < |x| Æ c

0, |x| > c,

(2.7)

where c locates the outer edge of the adhesive zone; see inset in Fig. 2.2(b). Adhesive

zones were introduced by Maugis (1992) in order to avoid the singularity in the pressure

at the contact edge (x = ±a) found in JKR theory. For this, it is also necessary that there

be no discontinuity in the contact pressure at the contact edge, i.e.

lim
xæ±a≠

p (x) = ≠‡0. (2.8)

To close our mathematical description we require an additional equation to compute the

extent c of the adhesive zone. This is obtained by equating the energy release rate com-

puted from the J≠integral Rice (1968) and the work of adhesion w, which leads to

‡0”c = w, (2.9)

where

”c =
1

c2/2R
2

≠ ” + vc (2.10)

is the air-gap at which the adhesive forces vanish and vc = v (c, 0); see inset in Fig. 2.2(b).

During non-adhesive indentation (2.10) is automatically satisfied as ‡0 = 0 = w. The

JKR approximation is obtained in the limits ‡0 æ Œ and c æ a, at which the energy
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balance (2.9) becomes

K2
1

2Eú
= w, (2.11)

where

K1 = ≠ lim
xæa≠

Ò

2fi (a ≠ x)p (x) (2.12)

is the stress intensity factor that measures the strength of the square root singularity

in the pressure at the contact edge; see Maugis (1992). This is equivalent to Griffith’s

criterion in fracture mechanics; see e.g. (Kanninen and Popelar, 1985, p. 168). In this

limit, we do not require the contact pressure end condition (2.8).

Finally, the total load acting on the punch is found by integrating the normal traction

over the top surface of the beam:

P =

Œ
⁄

≠Œ

Pc (x) dx =

a
⁄

≠a

p (x) dx ≠ 2 ‡0 (c ≠ a) . (2.13)

2.3 Non-dimensionalization

We introduce the following non-dimensional parameters:

A =
a

l
; Ï (·) =

aRl

Kh3
p (a·̄) ; P̄ =

PRl

Kh3
; kf

t =
ktl

EI
; kf

s =
ksl3

EI
;

∆ =
”R

l2
; L =

l

R
; ⁄ = 2‡0

3

R

fiwK2

41/3

; m =

3

fiw

RK

41/3

,

where K = 4 Eú/3 and I = h3/12 is the beam’s area moment of inertia. We also define

the scaled variables

{x̄, ·̄ , c̄, “̄} =
1

a
{x, t, c, h} ; {·̂ , “̂} =

1

l
{t, h} ; {Ê, Ê̄, Ê̂} =

;

›h,
Ê

“̄
,
Ê

“̂

<

;

{Ë (x̄, 0) , Ëb (·̂)} =
R

l2
{v (x̄, 0) , vb (l·̂)} ; Ī =

I

h3
=

1

12
; Φ (·) =

aRl

Kh3
Pc (a·̄) .
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In terms of these variables the non-dimensional vertical displacement of the top surface

(2.5) becomes

Ë (x̄, 0) =
8“̂3

3fi

Œ
⁄

0

Œ
⁄

≠Œ

Φ (·̄) cos (Ê̄·̄) d·̄ K1 (Ê̄, x̄) dÊ +

1

fi“̂

Œ
⁄

0

Œ
⁄

≠Œ

Ëb (·̂) cos Ê̂·̂ d·̂ K2 (Ê̄, x̄) dÊ, (2.14)

with the kernels

K1 (Ê̄, x̄) =
sinh2 Ê

Ê (Ê + sinh Ê cosh Ê)
cos (Ê̄x̄)

and K2 (Ê̄, x̄) =
sinh Ê + Ê cosh Ê

Ê + sinh Ê cosh Ê
cos (Ê̄x̄) .

From (2.7), we obtain the non-dimensional pressure on the beam’s top surface:

Φ (·̄) =

Y

_

_

]

_

_

[

Ï (·̄) , |·̄ | Æ 1

≠⁄Am/2“̂3L, 1 < |·̄ | Æ c̄

0, |·̄ | > c̄.

(2.15)

Combining (2.14) and (2.15) yields

Ë (x̄, 0) = ≠ 8“̂3

3fi

Œ
⁄

0

Ï̄ (Ê̄) K1 (Ê̄, x̄) dÊ ≠ 8⁄Am

3fiL

Œ
⁄

0

Ï̄0 (Ê̄) K1 (Ê̄, x̄) dÊ

+
1

fi“̂

Œ
⁄

0

Ë̂b (Ê̂) K2 (Ê̄, x̄) dÊ, (2.16)

with

Ï̄ (Ê̄) = ≠
1

⁄

≠1

Ï (·̄) cos (Ê̄ ·̄) d·̄ , Ï̄0 (Ê̄) =

c̄
⁄

1

cos (Ê̄ ·̄) d·̄

and Ë̂b (Ê̂) =

Œ
⁄

≠Œ

Ëb (·̂) cos (Ê̂·̂) d·̂ . (2.17)
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Non-dimensionalizing the displacement in the contact region (2.6), the contact pressure

end condition (2.8), and the energy equation (2.9) lead to, respectively,

Ë(x̄, 0) = ∆ ≠ 1

2
x̄2A2 for ≠ 1 Æ x̄ Æ 1, (2.18)

Ï (±1) = ≠⁄ Am

2 “̂3L
(2.19)

and 1 =
fi⁄L2

2m2

C

c̄2A2

2
≠ ∆ + Ëc

D

, (2.20)

where Ëc = Ë (c̄, 0) and ∆ is the non-dimensional displacement of the punch. Combining

(2.11) and (2.12), and non-dimensionalizing, we obtain

lim
x̄æ1≠

Ò

(1 ≠ x̄)Ï (x̄) = ≠ m

2fiL

3

l

h
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Û

3Am

L
, (2.21)

which replaces (2.19) and (2.20) whenever we invoke the JKR approximation.

The total non-dimensional load acting on the punch is found from (2.13):

P̄ =

1
⁄

≠1

Ï (·̄) d·̄ ≠ ⁄Am

“̂3L
(c̄ ≠ 1) . (2.22)

Finally, evaluating (2.16) in the contact region, i.e. for ≠1 Æ x̄ Æ 1, and employing (2.18)

we obtain

∆ ≠ 1

2
x̄2A2 = ≠ 8“̂3

3fi

Œ
⁄

0

Ï̄ (Ê̄) K1 (Ê̄, x̄) dÊ ≠ 8⁄Am

3fiL

Œ
⁄

0

Ï̄0 (Ê̄) K1 (Ê̄, x̄) dÊ

+
1

fi“̂

Œ
⁄

0

Ë̂b (Ê̂) K2 (Ê̄, x̄) dÊ. (2.23)

This is a Fredholm integral equation of first kind; see (Polyanin and Manzhirov, 2008,

p. 573). We now solve the above equation, along with boundary conditions (2.19) and

(2.20), for the contact pressure Ï (x̄), displacement ∆ and the location c̄ of the adhesive

zone’s edge, at a given contact area A.
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2.4 Numerical solution

The integral equation (2.23) does not admit an analytical solution due to the complex

kernels present. Thus, we solve it numerically. To this end, we approximate the unknown

pressure distribution p (x) in the contact region through a series of Chebyshev polynomials.

Chebyshev polynomials are chosen due to their spectral convergence; see (Mason and

Handscomb, 2003, p. 63).

The unknown non-dimensional pressure distribution is expressed as a series of Chebyshev

polynomials of the first kind, viz.

Ï (·̄) = ≠⁄Am

2“̂3L
+

1Ô
1 ≠ ·̄2

N
ÿ

n=0

b2nT2n (·̄) , (2.24)

where b2n are unknown constants that are to be found. Only even Chebyshev polynomials

are considered as the problem is symmetric about the origin. The constant term in the

approximation is introduced to explicitly account for the continuity condition (2.19) that

is imposed on the contact pressure at the edge of the contact zone.

Employing (2.24) to evaluate the integrals Ï̄ (Ê̄) and Ï̄0 (Ê̄) from (2.17), we obtain, re-

spectively,

Ï̄ (Ê̄) =
⁄Am

“̂3L

sin Ê̄

Ê̄
≠

N
ÿ

n=0

b2n–2n (Ê̄) (2.25)

and Ï̄0 (Ê̄) =
1

Ê̄
(≠ sin Ê̄ + sin Ê̄c̄) , (2.26)

where

–2n (Ê̄) =

1
⁄

≠1

1


(1 ≠ ·2)
T2n (·̄) cos Ê̄·̄ d·̄ . (2.27)

Appendix D provides details of how –2n (Ê̄) are computed. Combining (2.22) and (2.24),

we find the total load acting on the punch to be

P̄ = fib0 ≠ ⁄Am

“̂3L
c̄. (2.28)

The displacement of the beam’s bottom surface Ë̄b (Ê̂) may, with (2.28), be written as

1

fi“̂
Ë̂b (Ê̂) =

4

3“̂Ī (1 ≠ ‹2)

3

b0 ≠ ⁄Amc̄

fi“̂3L

4

Ë̂p (Ê̂) , (2.29)
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where Ī is the scaled area moment of inertia, and the exact form of Ë̄p depends upon how

the beam is supported at its ends; see Appendix A.

The vertical displacement in the contact region may be expressed in terms of Chebyshev

polynomials as

∆ ≠ 1

2
x̄2A2 =

N
ÿ

n=0

a2nT2n (x̄) =

A

∆ ≠ A2

4

B

T0 (x̄) ≠ A2

4
T2 (x̄) . (2.30)

Employing expansions (2.24)–(2.30) in the integral equation (2.23), we obtain

N
ÿ

n=0

a2nT2n (x̄) =
8“̂3

3fi

N
ÿ

n=0

b2nJ
(1)
2n (x̄) ≠ 8⁄Am

3fiL
J (1) (x̄) +

4

3“̂Ī (1 ≠ ‹2)

3

b0 ≠ ⁄Amc̄

fi“̂3L

4

J (2) (x̄) , (2.31)

where

J
(1)
2n (x̄) =

Œ
⁄

0

–2n (Ê̄) K1 (Ê̄, x̄) dÊ,

J (1) (x̄) =

Œ
⁄

0

sin Ê̄ c̄

Ê̄
K1 (Ê̄, x̄) dÊ

and J (2) (x̄) =

Œ
⁄

0

Ë̂p (Ê̂) K2 (Ê̄, x̄) dÊ.

We evaluate the above integrals at any x̄ through the Clenshaw-Curtis quadrature (Press

et al., 1992, p. 196). We now follow (Gladwell, 1980, p. 267) and utilize Galerkin projec-

tions to solve (2.31) for the unknown coefficients b2n. To this end, we multiply both sides

of (2.31) by T2m (x̄) /
Ô

1 ≠ x̄2, for m = 0, · · · , N , and integrate from x̄ = ≠1 to x̄ = 1.

This yields the following system of N + 1 linear algebraic equations:

N
ÿ

n=0

a2nJnm =
8“̂3

3fi

N
ÿ

n=0

b2nJ (1)
nm ≠ 8⁄Am

3fiL
J (1)

m +
4

3“̂Ī (1 ≠ ‹2)

3

b0 ≠ ⁄Amc̄

fi“̂3L

4

J (2)
m , (2.32)
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where

Jnm =

1
⁄

≠1

T2n (x̄) T2m (x̄)Ô
1 ≠ x̄2

dx̄, J (1)
nm =

1
⁄

≠1

J
(1)
2n (x̄) T2m (x̄)Ô

1 ≠ x̄2
dx̄,

J (1)
m =

1
⁄

≠1

J (1) (x̄) T2m (x̄)Ô
1 ≠ x̄2

dx̄ and J (2)
m =

1
⁄

≠1

J (2) (x̄) T2m (x̄)Ô
1 ≠ x̄2

dx̄.

The foregoing integrals are evaluated through a Gauss-Chebyshev quadrature (Gladwell,

1980, p. 260).

Equations for b2n, ∆ and c̄ are now obtained. Employing the expansion (2.24) in the

contact pressure end condition (2.19) yields

b0 + b2 + · · · + b2N = 0. (2.33)

The energy balance (2.20) provides

fi⁄L2

2m2

A

c̄2A2

2
≠ ∆ + Ëc

B

= 1, (2.34)

where the non-dimensional displacement of the punch

∆ =
8“̂3

3fi

N
ÿ

n=0

b2nJ
(1)
2n (0) ≠ 8⁄Am

3fiL
J (1) (0) +

4

3“̂Ī (1 ≠ ‹2)

3

b0 ≠ ⁄Amc̄

fi“̂3L

4

J (2) (0) , (2.35)

and the air gap at the end of the adhesive zone is

Ë (c̄) =
8“̂3

3fi

N
ÿ

n=0

b2nJ
(1)
2n (c̄) ≠ 8⁄Am

3fiL
J (1) (c̄) +

4

3“̂Ī (1 ≠ ‹2)

3

b0 ≠ ⁄Amc̄

fi“̂3L

4

J (2) (c̄) .

(2.36)

Finally, we have N + 1 equations from (2.32) and one each from (2.33) and (2.34), for a

total of N +3 equations. For a given contact area A, the total number of unknowns in this

problem are also N + 3: the unknown coefficients b2n, with n = 0, · · · , N in the expansion

(2.24) of the contact pressure Ï (x̄), the displacement ∆ of the punch, and the location c̄

of the adhesive zone’s edge.

The system of equations (2.32)–(2.34) are linear in b2n and ∆, but non-linear in c̄; cf. (2.34).

Thus, an iterative procedure is followed beginning with an initial guess for c̄. At any c̄,
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(2.32) and (2.33) are solved for b2n and ∆. These b2n and ∆ must satisfy (2.34) at the

current value of c̄. If (2.34) is not satisfied, then the value of c̄ is updated through a

Newton-Raphson root finding algorithm; see, e.g. Chatterjee (2002). We continue to

iterate until a consistent set of b2n, ∆ and c̄ is found. Care should be taken while finding

the adhesive zone size c̄, as it depends sensitively on the initial guess, and on the root

finding algorithm that is employed. Once b2n, ∆ and c̄ are found, the contact pressure

Ï (x̄) and the total load P̄ may be obtained from (2.24) and (2.28), respectively.

2.5 Finite element simulations

For comparison later, we will also solve the non-adhesive (‘Hertzian’) contact of a rigid

punch with a beam through the finite element (FE) method. We employ the commercial

FE package ABAQUS. While ABAQUS does provide some cohesive zone models that

may be employed to simulate adhesive contact, they are not easily compared with the

Dugdale-Barenblatt model that we employ. Thus, we restrict comparisons with FE results

to non-adhesive contact. We also limit FE simulations to clamped and simply supported

beams.

In our FE simulations, the beam is modeled as a linear elastic layer with Young’s modulus

E = 2000 MPa and Poisson’s ratio ‹ = 0.3. The beam’s thickness and half-span are taken

as h = 4 mm and l = 40 mm, respectively. We note that these material properties are not

typical of beams employed in structural adhesives, for example by Arul and Ghatak (2008).

However, these properties are selected as their magnitudes allow us to easily distinguish

the effect of external inputs to the punch.

The cylindrical punch has radius R = 225 mm and Young’s modulus Ep = 2 ◊ 106 MPa

- a thousand times the Young’s modulus of the beam. A high Ep is chosen in order to

approximate a rigid punch.

In our FE analysis, plane-strain elements are considered for both the beam and the punch.

For more details we refer the reader to Appendix E. The load is applied on the punch. The

remaining contact parameters, i.e. contact pressure, contact area, and the displacement of

the punch, are obtained after post-processing the computation’s output. These parameters

are now compared with the semi-analytical results of Sec. 2.4.
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2.6 Results: Non-adhesive (‘Hertzian’) contact

We first investigate the adhesionless contact of a rigid punch with elastic beams. We will

consider beams that are clamped, simply supported, or rest on flexible supports. Some

results will be compared with FE simulations of Sec. 2.5.

Equations for the indentation of a non-adhesive beam are obtained by setting ⁄ = 0 in

(2.32):

N
ÿ

n=0

a2nJnm =
8“̂3

3fi

N
ÿ

n=0

b2nJ (1)
nm +

4b0

3“̂Ī (1 ≠ ‹2)
J (2)

m for m = 0, · · · , N. (2.37)

The contact pressure vanishes at the edge x̄ = ±1 of the contact zone, so that (2.33)

holds. The energy condition (2.34) is now redundant. The N + 2 equations that comprise

(2.33) and (2.37) are to be solved for the N + 2 unknowns b2n (n = 0, · · · , N) and ∆ for

a given choice of A. The contact pressure distribution and the total load are then found

from (2.24) and (2.28), respectively, after setting ⁄ = 0.

Computations are carried out with N = 5, i.e. the expansion (2.24) is truncated at the

Chebyshev polynomial T10.

2.6.1 Clamped beam

A clamped beam is obtained in the limit of kf
s , kf

t æ Œ. Thus, Ë̄p (Ê̂) is given by (A.15),

which then enters into the computation of J
(2)
m in (2.37). The unknown contact pressure

distribution Ï (x̄) is obtained by solving (2.37) and (2.33).

We compare the results of our semi-analytical procedure of Sec. 2.4 with FE simulations

in Fig. 2.3 and with the results of Keer and Miller (1983) in Fig. 2.4. We observe from

Figs. 2.3 and 2.4 that, when the ratio a/h of the contact area to the beam’s thickness

is low, the maximum contact pressure is obtained at the center of the contact region.

We also find from Fig. 2.4 that at low a/h ratios the pressure profiles are similar to the

pressure distribution obtained for indentation into an elastic half-space. Increasing the

a/h ratio – which, for a given beam (fixed h and l) corresponds to increasing the load,

as the contact area increases – causes the pressure at the center of the contact region to

decrease, but increase near its ends; thus, the pressure profiles acquire a double-humped

character. Our semi-analytical results are in good agreement with those of FE simulations,
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Figure 2.3: Non-adhesive contact of a clamped beam. Non-dimensional contact pressures
(a) Ï (x̄) and (b) ap (x̄) /P are shown. The beam’s slenderness ratio l/h = 10. Several
contact areas a are investigated by varying a/h, which are noted next to their associated
curves. Solid lines are results obtained from the semi-analytical procedure of Sec. 2.4.
Dashed lines correspond to FE simulations of Sec. 2.5.
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Figure 2.4: Non-adhesive contact of a clamped beam. Non-dimensional contact pressure
ap (x̄) /P is shown. The beam’s slenderness ratio l/h = 10. Several contact areas a are
investigated by varying a/h, which are noted next to their corresponding curves. Solid
lines are results obtained from the semi-analytical procedure of Sec. 2.4. Open-circles
represent the solution for an elastic half-space. Results of Keer and Miller (1983), when
available, are shown by filled circles.
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and the theoretical results of Keer and Miller (1983) for a/h / 1; see Figs. 2.3 and 2.4,

respectively. For a/h > 1, our assumption that the displacement of the beam’s bottom

surface may be approximated through Euler-Bernoulli beam theory breaks down. This

causes the semi-analytical results to deviate from those of FE computations in Fig. 2.3.

We have followed Keer and Miller (1983) in plotting ap (x̄) /P along the vertical axis in

Figs. 2.3(b) and 2.4. A match employing this scale may not guarantee a correspondence

of the actual pressure profiles Ï (x̄) or p (x̄). This is because the total load P in the

denominator of ap (x̄) /P is calculated by integrating Ï (x̄) in the numerator. Thus, even

if a constant factor is missed in p (x̄), the ratio ap (x̄) /P will remain unaffected. Given

this, the comparison of pressure profiles shown in Fig. 2.3(a) is more illuminating. Finally,

the pressure profiles in Figs. 2.3(b) and 2.4 do not vary much with the slenderness ratio

l/h. These plots may therefore be utilized to estimate pressures at other l/h as well.

Next, the variation of the contact area A with the total load P̄ and with the displacement

∆ of the punch are shown in Fig. 2.5. Results of both clamped and simply supported

P̄ = PRl/Kh3

A
=

a
/l
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Figure 2.5: Non-adhesive contact of clamped (‘c’) and simply supported (‘s’) beams. The
contact area A is plotted as a function of (a) the total load P̄ acting on the punch and (b)
the punch’s displacement ∆. The beam’s slenderness ratio l/h=10. Solid lines are results
obtained from the semi-analytical procedure of Sec. 2.4. Filled circles correspond to FE
simulations of Sec. 2.5. Predictions of Sankar and Sun (1983) are shown by open circles,
when available.

beams (discussed in the next section) are shown. From Fig. 2.5(a) we find that to obtain

the same contact area A, a clamped beam requires higher load compared to the simply
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supported beam. Similarly, Fig. 2.5(b) shows that, at a given A, a clamped beam displaces

less than a simply supported beam. Both these outcomes are expected, as the bending

stiffness of the clamped beam is higher than that of a simply supported beam. Thus, the

contribution to vertical displacement ∆ from the beam’s bending is lowered in the case of

a clamped beam. Similarly, a clamped beam wraps less about the punch, thereby lowering

the contact area at given load. The clamped beam’s greater bending stiffness compared

to that of a simply supported beam is clearly demonstrated by Fig. 2.6 that plots the

deflection of the beam’s center point – which equals the punch’s displacement ∆ – against

the total load P̄ . The linear response of ∆ with P̄ is not unexpected as the displacement

of the beam’s bottom surface is obtained from beam theory. From Figs. 2.5 and 2.6 it

is evident that end supports have significant bearing on the beam’s indentation. Finally,

in Figs. 2.5 and 2.6, we again find a good match both with FE simulations and with the

results of Sankar and Sun (1983).

P̄ = PRl/Kh3

∆
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δ
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/l
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Figure 2.6: Non-adhesive contact of clamped (‘c’) and simply supported (‘s’) beams. The
displacement ∆ of the punch is shown as a function of the total load P̄ . See also the
caption of Fig. 2.5.

As mentioned in Sec. 2.5, the material parameters employed in FE simulations may not

be relevant for typical applications. Thus, in Figs. 2.7 and 2.8 we report results with

parameters more commonly encountered. Following Dalmeya et al. (2012), the Young’s

modulus and Poisson’s ratio of the beam are taken corresponding to those observed in soft

materials: E = 0.083 MPa and ‹ = 0.4, respectively. The beam’s geometry remains the

same as before. The contact pressure profiles, employing these material parameters, for
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different thick beams, and how they approach those of an elastic half-space, are presented

in Appendix F; cf. Fig. F.1(a).

P̄ = PRl/Kh3
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Figure 2.7: Non-adhesive contact of clamped beams. Variation of contact area A with (a)
total load P̄ and (b) punch’s displacement ∆ is shown. Different slenderness ratios l/h
are considered and these are noted next to their associated curves.

The contact area A is plotted against the total load acting on the punch P̄ and the

displacement ∆ of the punch in Fig. 2.7 for clamped beams of different slenderness ratios

l/h. A more slender beam is less resistant to bending. Thus, beams with higher l/h

require less load P compared to lower l/h to achieve the same contact area a. But, the

curves in A versus P̄ plot, i.e. Fig. 2.7(a), does not show this, as these non-dimensional

terms are expressed using the beam’s geometric parameters, i.e. l and h. To observe

this phenomenon more clearly we refer the reader to Appendix G, where we plot the

variation of contact area with the variation in total load and punch displacement employing

new non-dimensional parameters that are free from both l and h. Similarly, the punch’s

displacement ∆ is high for more slender beams. However, the curves in Fig. 2.7(b) show

this phenomenon correctly, by shifting downward with growing l/h, Appendix G explains

this phenomenon more accurately. We also demonstrate, by varying thickness of beams,

how our predications approach those of an elastic half-space in Appendix F; see Figs. F.2(a)

and (b).

Finally, in Fig. 2.8 we plot variation of the displacement ∆ of the punch with the total

load P̄ for different l/h ratios. We observe that, our choice of non-dimensionalization (cf.
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Figure 2.8: Non-adhesive contact of clamped beams. Variation of punch’s displacement
∆ with total load P̄ is shown. Different slenderness ratios l/h are considered as noted in
the legend.

Sec. 2.3) for the punch’s displacement and the total load allows the curves in Fig. 2.8 to

collapse onto a single line. This is not seen for other scalings, cf. Secs. 2.7 and 2.8, where

we report results for adhesive contact.

2.6.2 Effect of end conditions

We obtain results for a simply supported beam in the limit kf
s æ Œ and kf

t æ 0. The

vertical displacement of the bottom surface is given by (A.16). The contact pressure

Ï (x̄) is then found by solving (2.37) and (2.33), and invoking (2.24). The behavior of

a simply supported beam is qualitatively similar to that of a clamped beam, but differs

quantitatively.

Figure 2.9 repeats Figs. 2.3 and 2.4 for simply supported beams and compare our semi-

analytical results with those of FE simulations, and Keer and Miller (1983). As before,

we find good agreement between all three approaches for a/h / 1.

Contrasting Figs. 2.3(a) and 2.9(a) we find that, at the same a/h, pressures found in

a simply supported beam are lower compared to those in a clamped beam. Thus, the

total load P̄ required to achieve the same contact area, for clamped and simply supported

beams of the same thickness, is very different. This reinforces the importance of correctly

modeling end supports in beam indentation. Interestingly, because of the manner in which
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Figure 2.9: Non-adhesive contact of a simply supported beam. Non-dimensional contact
pressure (a) Ï (x̄) and (b) ap (x̄) /P are shown. Several contact areas are investigated by
varying a/h as noted next to the associated curves, while keeping l/h = 10. Solid lines
are results obtained from the semi-analytical procedure of Sec. 2.4. Dashed lines in (a)
correspond to FE simulations of Sec. 2.5. Open circles in (b) represent the solution for an
elastic half-space. Results of Keer and Miller (1983), when available, are shown in (b) by
filled circles.

the contact pressure is scaled, Figs. 2.4 and 2.9(b) are nearly the same.

Finally, we report results on the non-adhesive contact of beams resting on flexible supports

with parameters utilized to generate Figs. 2.7 and 2.8. Again, for beams with slenderness

ratio l/h = 10, the contact area A is plotted against the total load P̄ acting on the

punch and the punch’s displacement ∆ in Figs. 2.10 and 2.11. Figure 2.10 shows results

for several torsional spring stiffnesses kf
t after setting the vertical translational spring’s

stiffness kf
s to infinity. Such a beam may be thought of as a simply supported beam

with some resistance to rotation at the ends, or a beam whose clamped ends allow some

rotational play. Results lie between those obtained for clamped and simply supported

beams. Expectedly, increasing kf
t shifts the results towards those of a clamped beam, and

decreasing it yields results close to those of a simply supported beam. This is seen clearly

in Fig. 2.10.

Figure 2.11 repeats Fig. 2.10, but this time keeping kf
t as infinity and varying kf

s . We

find that increasing kf
s does not affect the variation of A with P̄ , but the dependence of

A on ∆ changes; see the inset in Fig. 2.11(b). The latter change is, however, due to
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Figure 2.10: Non adhesive contact of beams on flexible supports. The contact area A
is plotted as a function of (a) the total load P̄ acting on the punch and (b) the punch’s
displacement ∆. The beam’s slenderness ratio l/h = 10. The vertical translational spring’s

stiffness kf
s = Œ. Various torsional springs are considered and their stiffnesses kf

t are
indicated next to their associated curves. Open and filled circles represent results for
simply supported and a clamped beams, respectively.

the vertical displacement ∆l of the beam’s spring supports. The presence of ∆l shifts the

datum downwards, so that indentation now initiates from y = ∆l, rather than from y = 0.

Once we correct for ∆l we find that displacement plots in the inset of Fig. 2.11(b) are also

unaffected by variation in kf
s , as shown in Fig. 2.11(b).

2.7 Results: Adhesive contact - JKR approximation

We now consider adhesive contact of beams after invoking the JKR approximation, pre-

viously discussed in Secs. 2.2 and 2.3. Thus, we need to solve the integral equation (2.23)

along with energy balance (2.21), in the limit of adhesive strength dominating elastic

stiffness, i.e. ⁄ æ Œ, while the adhesive zone becomes infinitesimally small, so that

c̄ æ 1. Employing expansion (2.24) for the contact pressure, (2.23) and (2.21) become,

respectively,

N
ÿ

n=0

a2nJnm =
8“̂3

3fi

N
ÿ

n=0

b2nJ (1)
nm +

4b0

3“̂Ī (1 ≠ ‹2)
J (2)

m for m = 0, · · · , N (2.38)
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Figure 2.11: Non-adhesive contact of beams on flexible supports. The contact area A is
plotted as a function of (a) the total load P̄ acting on the punch and (b) the adjusted
punch displacement ∆ ≠ ∆l. The inset in (b) shows the variation of the contact area A
with the punch’s displacement ∆. The beam’s slenderness ratio l/h = 10. The torsional

spring stiffness kf
t = Œ. Various vertical translational springs are considered and their

stiffnesses kf
s are indicated either in the legend or next to their associated curves. Filled

circles in the inset in (b) represent results for a clamped beam.
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From here on, we follow Maugis (1992) and employ
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where H = h/R, instead of, respectively, A, P , and ∆, to report our results. This is done

in order to facilitate contact with other work on adhesion. We set the adhesion energy

w = 0.02 ◊ 10≠3 J/mm2.

Figure 2.12 plots the variation of the contact area Â with the total load P̂ acting on the

punch and with punch’s displacement ∆̂ for clamped beams. While the slenderness ratio

l/h = 10, two different combinations of l and h are considered. From Fig. 2.12 we observe

that the variation of Â with P̂ and ∆̂ is sensitive to the choice of l and h, notwithstanding

the fact that l/h is kept constant. This is in contrast to the case of non-adhesive contact

of Sec. 2.6, where results depended only on l/h. However, this behavior is expected for
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adhesive beams as the right hand side of (2.39) depends on L = l/R. This aspect is further

exemplified in Fig. 2.13, which plots Â against P̂ and ∆̂ for clamped beams for different

choices of l and h.

P̂ = P̄H3/Lm3

Â
=

A
L
/m

1

3

(a)

∆̂ = ∆L2/m2

Â
=

A
L
/m

1

3

(b)

Figure 2.12: Adhesive contact of clamped beams with the JKR approximation. Variation
of contact area Â with the (a) total load P̂ and (b) the punch’s displacement ∆̂. The
beam’s slenderness ratio l/h = 10. Solid lines correspond to l = 40 mm and h = 4 mm,
while the dashed line is for a beam with l = 80 mm and h = 8 mm.

In Figs. 2.12 and 2.13, negative values of P̂ and ∆̂ reflect tensile loads and upward dis-

placement of the punch, respectively. We recall that ∆̂ equals the deflection of the center

point on the beam’s top surface, so that ∆̂ < 0 indicates that the beam bends upwards.

Negative values of P̂ and ∆̂ are due to the attractive adhesive forces. Due to adhesion,

the beam bends upwards and jumps into contact. Equivalently, adhesive forces also act

on the punch to pull it down, so that we require a tensile force to hold the punch in it’s

place. This tensile force P̂ is small for slender beams as they bend easily. For the same

reason, this tensile force is smaller for a simply supported beam compared to a clamped

beam of same slenderness ratio; cf. Fig. 2.14. Once contact is established, the tensile force

is slowly released and replaced by a compressive (downwards) force in order to increase

downward indentation. Again, for compressive loads, slender beams bend more easily to

wrap around the punch. Thus, slender beams show greater contact area and displacement

at the same compressive load P̂ . This explains the intersection of the curves in Fig. 2.13.

Therefore, with increasing slenderness ratio, the Â–P̂ curves in the left column of Fig. 2.13
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Â
=

A
L
/m

P̂ = P̄H3/Lm3

20

5

10

h=4 mm(c)

= l/h

∆̂ = ∆L2/m2

Â
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Figure 2.13: Adhesive contact of clamped beams with the JKR approximation. Left
column reports the variation of contact area Â with total load P̂ , while the right column
plots the change of Â with the punch’s displacement ∆̂. Results in the top row are obtained
by setting l = 40 mm and varying h as shown, while those in the bottom row have h = 4
mm but different l, as indicated. The inset in (b) illustrates behavior at low Â.
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move towards (inwards) the zero-load (P̂ = 0) vertical line, and Â–∆̂ curves in the right

column of Fig. 2.13 move away (outwards) from the ∆̂ = 0 line.
Â

=
A
L
/m

P̂ = P̄H3/Lm3

4

500 1

3

0

4

4

500

1

3

0

Â
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Figure 2.14: Adhesive contact of beam on flexible supports with the JKR approximation.
The contact area Â is plotted as a function of (a) the total load P̂ acting on the punch and
(b) the punch’s displacement ∆̂. The beam’s thickness h = 4 mm and l = 40 mm. The
vertical translational spring’s stiffness kf

s = Œ. Various torsional springs are considered
and their stiffnesses kf

t are indicated next to their associated curves. The insets correspond
to behavior at high Â. Open and filled circles represent results for adhesive beams that
are, respectively, simply supported and clamped.

Finally, for adhesive beams on flexible supports we plot the contact area Â against the load

P̂ and displacement ∆̂ for various kf
t in Fig. 2.14. Convergence to the results obtained for

clamped and simply supported beams may be observed in Fig. 2.14 by varying kf
t . From

our discussion in Sec. 2.6.2, we know that the variation of kf
s does not affect how the contact

area Â varies with the load P̂ . At the same time, change in Â with the displacement ∆̂

is affected by variation in kf
s only through the vertical displacement of the translational

springs supporting the beam at its ends. By removing this global displacement ∆̂l from

∆̂ – as in Sec. 2.6.2 – the response of Â to ∆̂-∆̂l is found to be invariant to kf
s .

2.8 Results: Adhesive contact with an adhesive zone model

We finally consider contact with an adhesive beam within the framework of adhesive zone

models. As already mentioned, we will assume that an adhesive zone of length d = c ≠ a

extends outside the contact zone; cf. Fig. 2.2(b). Within the adhesive zone the interaction
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is modeled through the Dugdale-Barenblatt model of (2.7). To obtain the contact pressure

Ï (x̄), the displacement ∆ and the location c of the adhesive zone’s edge, we have to solve

(2.32)–(2.34).

For the clamped beam we plot in Fig. 2.15 the contact area Â against the total load P̂

and displacement ∆̂ for various adhesive strengths ⁄. With increase in ⁄, the solutions

approach the JKR solution, and we see a close match at ⁄ = 3. On the other hand,

as ⁄ æ 0, i.e. as adhesion reduces, solutions approach those obtained for non-adhesive

contact in Sec. 2.6.
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Figure 2.15: Adhesive contact of clamped beams with an adhesive zone model. Variation
of contact area Â with (a) the total load P̂ and (b) the punch’s displacement ∆̂. Different
adhesive strengths ⁄ are considered and these are indicated next to their associated curves.
The beam’s thickness h = 4 mm and l = 40 mm. Filled circles represent the JKR solution
for the corresponding beam; cf. Sec. 2.7

From previous discussions, it is expected that results for beams with flexible supports will

lie between those obtained for clamped and simply supported beams. Hence, we do not

explore this parameter space in great detail. We only consider the variation of P̂ and ∆̂

with Â for several values of torsional stiffness kf
t for a beam with h = 4 mm and l = 40 mm.

Two different adhesive strengths ⁄ are investigated. The results are shown in Fig. 2.16.

The vertical translational spring’s stiffness kf
s is set to infinity. When kf

t = 0, the solutions

match with those of a simply supported beam with the corresponding ⁄. With increase in

kf
t , the solution curves move towards those obtained for a clamped beam and will coincide
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when kf
t becomes infinity. It is seen in Fig. 2.16 that curves for different kf

t intersect with

each other due to rotation permitted at the supports by the torsional springs – greater the

rotation allowed, higher the displacements, and lower the loads for the same contact area.

This intersection point moves up with increasing ⁄, as strong adhesive forces are able to

bend the beam upwards more easily.

Finally, in Fig. 2.17 we plot the variation of the non-dimensional adhesive zone size d̄ = c̄≠1

with the contact area Â for different adhesive strengths ⁄ and various kf
t . We observe

that the adhesive zone size is large for smaller ⁄, and decreases with increasing ⁄, finally

vanishing as ⁄ æ Œ. Moreover, we find that the adhesive zone’s size does not vary much

with the slenderness ratio l/h, and spring stiffnesses kf
s and kf

t .

2.9 Experiments and Applications

In this final section, we present preliminary experimental results on a clamped beam, as

well as apply our methods to model structural adhesives of the type shown in Fig. 2.1(a).

2.9.1 Experiments

We have experimentally investigated the indentation of a clamped PDMS (poly-dimethyl-

siloxane) beam by a cylindrical glass punch. To make PMDS samples, a uniform mixture

of Sylgard 184 silicone elastomer base and curing agent is prepared by taking them in 10:1

weight ratio. Air is desiccated from this mixture, which is then poured into a rectangular

mould of desired size. This is cured at room temperature (¥ 17oC) for two days and the

PDMS sample is extracted from the mould.

First, micro-tensile tests are carried out on the PDMS samples to measure their Young’s

modulus E. This is found to be in the range of 1 – 2 MPa. Next, standard JKR in-

dentation Chaudhury et al. (1996) tests are carried out. In these tests, PDMS samples

of thickness h ¥ 25 mm are rigidly attached to the micro-positioner, and a cylindri-

cal glass punch of radius R ¥ 27.5 mm is placed on top of the semi-micro balance; see

Fig. 2.18(a). The PDMS samples are brought into contact with the glass punch employing

the micro-positoner. The rectangular contact patch thus formed, shown in the upper inset

of Fig. 2.18(a), is observed through a microscope, and the load acting on the punch is
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Figure 2.16: Adhesive contact of beams on flexible supports with an adhesive zone model.
Top row reports the variation of contact area Â with total load P̂ , while the bottom
row plots the change of Â with the punch’s displacement ∆̂. Different torsional spring
stiffnesses kf

t are considered, and they are noted next to their associated curves. Two
different adhesive strengths ⁄ are considered, as indicated. The beam’s thickness h = 4
mm and half-span l = 40 mm. The insets in (b) and (d) depict behavior at high Â. Open
and filled circles represent results for a simply supported and a clamped beam, respectively,
at the corresponding ⁄.
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Figure 2.17: Adhesive contact of beams on flexible supports with an adhesive zone model.
Variation of the adhesive zone’s size d̄ with the contact area Â for (a) different adhesive

strengths ⁄, with kf
t = Œ and kf

s = Œ, and (b) three different torsional spring stiffnesses

kf
t at ⁄ = 0.5.

noted from the semi-micro balance. The Young’s modulus E and the work of adhesion w

are then found following Chaudhury et al. (1996); see Appendix H. The JKR experiments

confirm the range for E found from micro-tensile tests, and find the work of adhesion

w ¥ 27 mJ/mm2. The values of E and w compare well with those reported earlier by

Johnston et al. (2014), and Arul and Ghatak (2008).

Finally, contact mechanics experiments are carried out on a clamped PDMS beam. In

these experiments, the beam’s half-span and thickness are maintained at l ¥ 50 mm and

h ¥ 8 mm, respectively. The total load P and contact patch width 2a are measured. The

results obtained are then compared with the predictions of our semi-analytical approach

in Fig. 2.18(b). We find good agreement. We observe that the results for a beam vary

considerably from that of a half-space lending support for the necessity of the theoretical

development presented in this chapter.

More thorough experiments, where we vary parameters like flexibility of end supports,

beam thickness h, the work of adhesion w, etc. are under progress.
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Figure 2.18: (a) Indentation experiments for an adhesive clamped beam of thickness h = 8
mm and half-span l = 50 mm. Insets show a closeup of the side view of the indentation
and a top view of the contact patch. (b) Variation of the contact area a (in mm) with
the total load P (in g). Filled circles represent experimental data. Solid lines correspond
to theoretical predictions. For h = 8 mm, we followed Sec. 2.7, while h = 25 mm, we
employed the standard JKR solution for a half-space Chaudhury et al. (1996).

2.9.2 Application

We now demonstrate the application of our semi-analytical procedure to the indentation

of structural adhesives with one micro-channel, as shown in Fig. 2.19(a). To this end,

the parameters shown in Table 2.1 are employed to generate our theoretical results. The

stiffnesses of the flexible end supports are estimated from a strength-of-materials approach

to be kf
s ¥ 12b

Õ

l3/hch
3 and kf

t ¥ lb
Õ 3

/hch
3, where the various geometrical parameters are

indicated in Fig. 2.19(a). Here we have assumed b
Õ

> h, as b
Õ

is not reported by Arul

and Ghatak (2008). Our results are then compared with the experimental results of

Arul and Ghatak (2008) in Fig. 2.19(b). We find good agreement upto an indentation

depth ” ¥ 0.1 mm, i.e. until the point S23. At this point, the bottom surface S2 begins

to interact with the surface S3 in experiments. This feature is not yet implemented in

our mathematical model, so that it is expected that our predictions will deviate from

experimental observations.
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Geometrical and material parameters Value
Beam thickness h = 0.8 mm
Micro-channel’s thickness hc = 0.1 mm
Beam’s length 2l = 5 ≠ 8 mm
Punch radius R = 2.24 mm
Punch length lp = 2.7 mm
Shear modulus G = 1 MPa
Poission’s ratio ‹ = 0.49
Young’s modulus E = 2 (1 + ‹) ¥ 3 MPa
Work of adhesion w = 0.045 ◊ 10≠3 mJ/mm2 or N/mm

Table 2.1: Geometrical and material parameters considered for modeling adhesives with
one micro-channel; see also Fig. 2.19(a). These values are taken from Arul and Ghatak
(2008).
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Figure 2.19: (a) A structural adhesive with one micro-channel. (b) Variation of the total
load P with the punch’s displacement ”. The solid line represents the solution obtained
from the procedure of Sec. 2.7. Asterisk (*) are the experiemtal results of Arul and Ghatak
(2008).
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2.10 Conclusions

In this article we present a theoretical model for the indentation of adhesive beams

mounted on flexible supports. Adhesion, when present, was incorporated through either

the JKR approximation or an adhesive zone model. We approximate the displacement of

the bottom surface of the beam through Euler-Benoulli beam theory. This is then utilized

to formulate a boundary value problem, which is reduced to a single Fredholm integral

equation of the first kind for the unknown contact pressure. The integral equation is then

solved through a Galerkin projection employing Chebyshev polynomials. Finite element

(FE) simulations were carried out for clamped and simply supported non-adhesive beams,

and our results compared well with FE predictions, as well as with previously reported

theoretical results. Results for adhesive contact were found for several combinations of

adhesive strengths, beam geometries, and support flexibilities characterized through tor-

sional and vertical translational springs. Theoretical results for adhesive clamped beam

were compared with preliminary experiments and a satisfactory match was observed. Fi-

nally, we demonstrated the application of our approach to model a complex structural

adhesive.





Chapter 3

Contact mechanics of adhesive

beams: Low to high contact areas.

3.1 Introduction

In this chapter we greatly expand the theoretical framework of Chapter 2.

In recent years, indentation of thin adhesive structures have attracted the attention of

researchers because of their applications in electronics and computer industry, see e.g.

Barthel and Perriot (2007) and Dalmeya et al. (2012). Some of the designs for these struc-

tural adhesives are inspired from biology, such as the one proposed by Arul and Ghatak

(2008); see Fig. 2.1. The theoretical modeling and characterisation of such structural ad-

hesives is of great interest. Chapter 2 presented a step towards the modeling of structural

adhesives of the type shown in Fig. 2.1, by investigating the indentation of adhesive beams

resting on flexible supports.

Indentation studies on non-adhesive beams were pursued in the past by Keer and Miller

(1983), and Sankar and Sun (1983). They employed integral transforms and Fourier

series, respectively. Adhesion was not considered. Recently Kim et al. (2014), revisited the

indention of non-adhesive beams through approximate techniques. However, extending the

methods of these papers to adhesive beams pose difficulties, as they involve several iterated

integral transforms and/or asymptotic matching. Chapter 2 presented a formulation which

could address non-adhesive and adhesive contact of beams within the same framework.

In Chapter 2, we investigated indentation by a rigid cylindrical punch of non-adhesive and

79
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adhesive beams on flexible end supports. However, the mathematical model assumed that,

during indentation, the displacement of the beam’s bottom surface could be approximated

by the deflection of the corresponding Euler-Bernoulli beam under the action of a point

load. This approximation limited the application of Chapter 2’s approach to indentations

where the extent a of the contact region was less than or equal to the thickness h of the

beam. Here we release the assumption of Chapter 2 in order to extend our framework

to indentation with large contact areas. This leads naturally to a set of dual integral

equations for the unknown contact pressure and the displacement of the beam’s bottom

surface.

In this chapter, we restrict ourselves to clamped and simply supported beams which, as

shown in Chapter 2, bound the range of behaviors displayed by beams on flexible supports.

As in Chapter 2, adhesion is modeled through the adhesive-zone model, which allows us to

study the JKR (Johnson et al., 1971) and DMT (Derjaguin et al., 1975) approximations

of adhesive contact by varying a parameter that regulates adhesive strength. Additionally,

by setting adhesive strength to zero we obtain results for non-adhesive contact.

This chapter is organised as follows: We first present the mathematical model, which

leads to a set of dual integral equations in terms of the contact pressure and the vertical

displacement of the beam’s lower surface. This is followed by non-dimensionalization and

the formulation of the corresponding numerical algorithm to solve the integral equations.

We then briefly discuss the FE model employed to study non-adhesive beam indentation.

Next, we present and discuss results for different types of adhesive and non-adhesive

contacts. Finally, we compare our predictions with preliminary experiments.

3.2 Mathematical model

We begin, as in Chapter 2, by extending the beams of Fig. 3.1(a) beyond the supports to

infinity; see Fig. 3.1(b). This extension is done in keeping with the kinematic and kinetic

constraints imposed by the supports. Thus, the beam is extended linearly along the slope

at the supports. The beams may now be represented as a linear elastic layer of infinite

length with thickness h, and with Young’s modulus E and Poisson’s ratio ‹. The top and

bottom surfaces of the beam are frictionless. The corresponding elasticity problem is now
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Figure 3.1: (a) Indentation by a rigid circular punch of an adhesive simply supported
beam. (b) Mathematical model for the simply supported beam indentation by extending
the beam to infinity along its slope near the ends. The inset shows the adhesive zone
model employed in our mathematical formulation.

solved, the details of which are in Sec. 2 of Chapter 2. This yields the vertical displacement

of the beam’s top surface (y = 0) and the normal traction acting on the beam’s bottom

surface (y = h) as, respectively,

v (x, 0) = ≠ 2

fiEú

Œ
⁄

0

P̄c (›) K1 (›, x) d› +
1

fi

Œ
⁄

0

v̄b (›) K2 (›, x) d› (3.1)

and ·yy (x, h) =
1

fi

Œ
⁄

0

P̄c (›) K2 (›, x) d› +
Eú

fi

Œ
⁄

0

v̄b (›) K3 (›, x) cos ›x d›, (3.2)

where

P̄c (›) =

Œ
⁄

≠Œ

≠Pc (t) cos ›t dt and v̄b (›) =

Œ
⁄

≠Œ

vb (t) cos ›t dt (3.3)

are the Fourier transforms of the normal force Pc (t) acting on the beam’s top surface and

the vertical displacement vb (t) of the beam’s bottom surface, respectively, while

K1 (›, x) =
sinh2 ›h

› (›h + sinh ›h cosh ›h)
cos ›x, K2 (›, x) =

sinh ›h + ›h cosh ›h

›h + sinh ›h cosh ›h
cos ›x

and K3 (›, x) =
›

2
·

sinh2 ›h ≠ ›2h2

›h + sinh ›h cosh ›h
cos ›x.
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To ease non-dimensionalization we expand (3.1) and (3.2) by employing definitions of P̄c

and v̄b to obtain:

v (x, 0) =
2

fiEú

Œ
⁄

0

Œ
⁄

≠Œ

Pc (t) cos ›t dt K1 (›, x) d› +
1

fi

Œ
⁄

0

Œ
⁄

≠Œ

vb (t) cos ›t dt K2 (›, x) d›

(3.4)

and ·yy (x, h) =
1

fi

Œ
⁄

0

Œ
⁄

≠Œ

≠Pc (t) cos ›t dt K2 (›, x) d› +
Eú

fi

Œ
⁄

0

Œ
⁄

≠Œ

vb (t) cos ›t dt K3 (›, x) d›.

(3.5)

In (3.5), the second integral is singular at › æ Œ. This singularity may be eliminated by

integrating twice by parts, to find

·yy (x, h) =
1

fi

Œ
⁄

0

Œ
⁄

≠Œ

≠Pc (t) cos ›t dt K2 (›, x) d› ≠ Eú

fi

Œ
⁄

0

Œ
⁄

≠Œ

Ÿb (t) cos ›t dt
1

›2
K3 (›, x) d›,

(3.6)

where Ÿb (t) = d2vb/dt2.

The contact region’s vertical displacement is fixed by the displacement of the punch ” and

the profile g(x) of the punch. So within the contact zone, i.e. ≠a Æ x Æ a – where a

locates the contact edge - we set v(x, 0) = ” ≠ g(x). When a and ” are small compared

to the radius R of the punch, we approximate the cylindrical profile of the punch by a

parabola. Furthermore, there is no normal traction at the bottom surface of the beam,

except at the supports; see Fig. 3.1. Thus, at the top and bottom surfaces of the layer we

have, respectively,

v(x, 0) = ” ≠ x2

2R
for ≠ a Æ x Æ a, (3.7)

and ·yy (x, h) = 0 for ≠ l < x < l. (3.8)

We model adhesive interaction between the punch and the beam through an adhesive-

zone (Maugis, 1992). The normal tractions within the adhesive zone follow the Dugdale-

Barenblatt model, in which a constant attractive force ‡0 acts per unit length within the

adhesive zone of length d = c ≠ a, where c demarcates the adhesive zone’s outer edge, see
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inset in Fig. 3.1(b). With this we write the normal traction on the top surface as

Pc (x) =

Y

_

_

]

_

_

[

p (x) for |x| Æ a,

≠‡0 for a Æ |x| Æ c,

0 for |x| > c.

(3.9)

An adhesive-zone model resolves stress singularities at the contact edges (x = ±a) inherent

in the JKR approximation by requiring the normal traction be continuous there, i.e.,

lim
xæ±aû

p (x) = ≠‡0. (3.10)

An adhesive zone introduces the extra variable c into the contact problem. The required

additional equation is obtained by equating the energy release rate G – computed em-

ploying the J≠Integral (Rice, 1968) – to the work of adhesion w, to obtain the energy

balance

‡0”c = w, (3.11)

where

”c =
1

c2/2R
2

≠ ” + vc (3.12)

is the air gap at the end of the adhesive zone (see inset in Fig. 3.1(b)) and vc = v (c, 0) is

the vertical displacement of the top surface at x = c.

In non-adhesive indentation, ‡0 = 0 = w, and (3.11) is automatically satisfied. When

the JKR approximation is invoked, ‡0 æ Œ and c æ a, so that employing the Griffith’s

criterion (3.11) becomes

K2
1

2Eú
= w, (3.13)

where

K1 = ≠ lim
xæa≠

Ò

2fi (a ≠ x)p (x) (3.14)

is the stress intensity factor ; see e.g. Kanninen and Popelar (1985, p. 168). Note that the

continuity condition (3.10) is redundant for the JKR approximation.

Finally, the total load acting on the punch is

P =

Œ
⁄

≠Œ

Pc (x) dx =

a
⁄

≠a

p (x) dx ≠ 2 ‡0 (c ≠ a) . (3.15)
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3.3 Non-dimensionalization

We generally follow the non-dimensionalization of Chapter 2:

A =
a

l
; Ï (·̄) =

aRl

Kh3
p (a·̄) ; P̄ =

PRl

Kh3
;

∆ =
”R

l2
; L =

l

R
; ⁄ = 2‡0

3

R

fiwK2

41/3

; m =

3

fiw

RK

41/3

,

where K = 4 Eú/3. The variables are scaled as

Ó

x̄, ·̄ , c̄, l̄, “̄
Ô

=
1

a
{x, t, c, l, h} ; {x̂, ·̂ , “̂} =

1

l
{x, t, h} ; {Ê, Ê̄, Ê̂} =

;

›h,
Ê

“̄
,
Ê

“̂

<

;

Φ (·) =
aRl

Kh3
P (a·̄) ; Ëb (·̂) = vb (·̂)

3

R

l2

4

; Ÿb (·̂) =
d2Ëb (·̂)

d·̂2
; T (x̂, h) =

·yy (x̂, h)

K

8“̂

3L
.

Employing the above, the non-dimensional vertical displacement of the top surface (3.4)

and the normal traction at the bottom surface (3.6) become, respectively,

Ë (x̄, 0) =
8“̂3

3fi

Œ
⁄

0

Œ
⁄

≠Œ

Φ (·̄) cos (Ê̄·) d·̄ Kt
1 (Ê̄, x̄) dÊ +

1

fi“̂

Œ
⁄

0

Œ
⁄

≠Œ

Ëb (·̂) cos (Ê̂·̂) d·̂ Kt
2 (Ê̄, x̄) dÊ

(3.16)

and

T (x̂, h) =
8“̂3

3fi

Œ
⁄

0

Œ
⁄

≠Œ

≠Φ (·̄) cos (Ê̄·̄) d·̄ Kb
1 (Ê̂, x̂) dÊ ≠ “̂

fi

Œ
⁄

0

Œ
⁄

≠Œ

Ÿb (·̂) cos (Ê̂·̂) d·̂ Kb
2 (Ê̂, x̂) dÊ,

(3.17)

where the kernels

Kt
1 (Ê̄, x̄) =

sinh2 Ê

Ê (Ê + sinh Ê cosh Ê)
cos (Ê̄x̄) , Kt

2 (Ê̄, x̄) =
sinh Ê + Ê cosh Ê

Ê + sinh Ê cosh Ê
cos (Ê̄x̄) ,

Kb
1 (Ê̂, x̂) =

sinh Ê + Ê cosh Ê

Ê + sinh Ê cosh Ê
cos (Ê̂x̂) and Kb

2 (Ê̂, x̂) =
1

Ê
·

sinh2 Ê ≠ Ê2

Ê + sinh Ê cosh Ê
cos (Ê̂x̂) .

(3.18)
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Non-dimensionalizing (3.7) – (3.11) yields

Ë(x̄, 0) = ∆ ≠ 1

2
x̄2A2 for ≠ 1 Æ x̄ Æ 1, (3.19)

T (x̂, h) = 0 for ≠ 1 < x̂ < 1, (3.20)

Φ (·̄) =

Y

_

_

]

_

_

[

Ï (·̄) , ≠1 Æ ·̄ Æ 1

≠⁄Am/2“̂3L, 1 Æ |·̄ | Æ c̄

0, |·̄ | > c̄

(3.21)

Ï (±1) = ≠⁄Am

2“̂3L
(3.22)

and 1 =
fi⁄L2

2m2

3

1

2
c̄2 A2 ≠ ∆ + Ëc

4

, (3.23)

where Ë (c̄) = Ë (c̄, 0), and ∆ = Ë (0, 0). In the JKR approximation, we replace (3.22) and

(3.23) by the non-dimensional Griffith’s criterion, obtained from (3.13) and (3.14):

lim
x̄æ1≠

Ò

(1 ≠ x̄)Ï (x̄) = ≠ m

2fiL

3

l

h

43
Û

3Am

L
. (3.24)

Substituting (3.21) in (3.16) and (3.17) yields

Ë (x̄, 0) = ≠ 8“̂3

3fi

Œ
⁄

0

Ï̄ (Ê̄) Kt
1 (Ê̄, x̄) dÊ ≠ 8⁄Am

3fiL

Œ
⁄

0

Ï̄0 (Ê̄) Kt
1 (Ê̄, x̄) dÊ +

1

fi“̂

Œ
⁄

0

Ë̂b (Ê̂) Kt
2 (Ê̄, x̄) dÊ,

(3.25)

and

T (x̂, h) =
8“̂3

3fi

Œ
⁄

0

Ï̄ (Ê̄) Kb
1 (Ê̂, x̂) dÊ +

8⁄Am

3fiL

Œ
⁄

0

Ï̄0 (Ê̄) Kb
1 (Ê̂, x̂) dÊ ≠ “̂

fi

Œ
⁄

0

Ÿ̂b (Ê̂) Kb
2 (Ê̂, x̂) dÊ,

(3.26)

with

Ï̄ (Ê̄) = ≠
1

⁄

≠1

Ï (·̄) cos Ê̄ ·̄ d·̄ , Ï̄0 (Ê̄) =

c̄
⁄

1

cos Ê̄ ·̄ d·̄ ,

Ë̂b (Ê̂) =

Œ
⁄

≠Œ

Ëb (·̂) cos Ê̂·̂ d·̂ and Ÿ̂b (Ê̂) =

Œ
⁄

≠Œ

Ÿb (·̂) cos Ê̂·̂ d·̂ . (3.27)
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Then, combining (3.25) with (3.19), and (3.26) with (3.20), we obtain

∆ ≠ 1

2
x̄2A2 = ≠ 8“̂3

3fi

Œ
⁄

0

Ï̄ (Ê̄) Kt
1 (Ê̄, x̄) dÊ ≠ 8⁄Am

3fiL

Œ
⁄

0

Ï̄0 (Ê̄) Kt
1 (Ê̄, x̄) dÊ

+
1

fi“̂

Œ
⁄

0

Ë̂b (Ê̂) Kt
2 (Ê̄, x̄) dÊ for ≠ 1 Æ x̄ Æ 1 (3.28)

and 0 = ≠ 8“̂3

3fi

Œ
⁄

0

Ï̄ (Ê̄) Kb
1 (Ê̂, x̂) dÊ ≠ 8⁄Am

3fiL

Œ
⁄

0

Ï̄0 (Ê̄) Kb
1 (Ê̂, x̂) dÊ

+
“̂

fi

Œ
⁄

0

Ÿ̂b (Ê̂) Kb
2 (Ê̂, x̂) dÊ for ≠ 1 < x̂ < 1. (3.29)

Finally, the total non-dimensional load acting on the punch is given by

P̄ =

1
⁄

≠1

Ï (·̄) d·̄ ≠ ⁄Am

“̂3L
(c̄ ≠ 1) . (3.30)

Equations (3.28) and (3.29) are coupled Fredholm integral equations of the first kind; see

Polyanin and Manzhirov (2008, p. 573). These, along with (3.22) and (3.23), are to be

solved for Ï̄, Ë̄, c̄ and ∆ for a given contact area A. The numerical algorithm employed

for this is discussed next.

3.4 Numerical solution

The dual integral equations (3.28) and (3.29) cannot be solved in closed form due to the

presence of complex kernels; cf. (3.18). We, therefore employ a numerical solution.

We begin by approximating the contact pressure Ï as

Ï (·̄) =
≠⁄Am

2“̂3L
+

1


(1 ≠ ·̄2)

N
ÿ

n=0

b2nT2n (·̄) for ≠ 1 Æ ·̄ Æ 1, (3.31)

where T2n (·̄) are Chebyshev polynomials of the first kind and b2n are constants that are

to be determined. Only even Chebyshev polynomials are considered as the indentation is

symmetric about ·̄ = 0. The constant term is chosen to account for the contact pressure

at the contact edge in the adhesive-zone model explicitly. Evaluating the integrals Ï̄ (Ê̄)
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and Ï̄0 (Ê̄) in (3.27) after employing (3.31) yields

Ï̄ (Ê̄) =
⁄Am

“̂3L

sin Ê̄

Ê̄
≠

N
ÿ

n=0

b2n–2n (Ê̄) and Ï̄0 (Ê̄) =
1

Ê̄
(≠ sin Ê̄ + sin Ê̄ c̄) , (3.32)

where

–2n (Ê̄) =

1
⁄

≠1

1


(1 ≠ ·̄2)
T2n (·̄) cos Ê̄·̄ d·̄ . (3.33)

The evaluation of the integrals –2n (Ê̄) at different n are available in Appendix D.

Next, we approximate the displacement of the bottom surface Ëb (·̂) in a series of the

natural mode shapes Sn (·̂) of the beam:

Ëb (·̂) = d0 +
M
ÿ

n=1

dn Sn (·̂) . (3.34)

We note that Sn (·̂) = cos (nfi·̂) and Sn (·̂) = sin {(2n ≠ 1) fi (·̂ + 1) /2} for clamped and

simply supported beams, respectively. After these approximations are made to satisfy

the beam’s end conditions, which gives d0 in the above, the curvature Ÿb of the beam is

calculated from Ëb. The details of these calculations are available in Appendix I. From

(I.15) we find that the Fourier transforms Ë̂b (Ê̂) and Ÿ̂b (Ê̂), for both clamped and simply

supported beams, may be written as

Ë̂b (Ê̂) =
M
ÿ

n=1

dn—̂n (Ê̂) and Ÿ̂b (Ê̂) =
M
ÿ

n=1

dnŸ̂n (Ê̂) , (3.35)

where the expressions for —̂n and Ÿ̂n are provided in Appendix I.

Substituting (3.32) and (3.35) in the integral equations (3.28) and (3.29) yields, respec-

tively,

∆ ≠ 1

2
x̄2A2 =

8“̂3

3fi

N
ÿ

n=0

b2nJ t
2n (x̄) ≠ 8⁄Am

3fiL
J t (x̄) +

1

fi“̂

M
ÿ

n=1

dnQt
n (x̄) (3.36)

and 0 =
8“̂3

3fi

N
ÿ

n=0

b2nJ b
2n (x̂) ≠ 8⁄Am

3fiL
J b (x̂) +

“̂

fi

M
ÿ

n=1

dnQb
n (x̂) , (3.37)
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where

J t
2n (x̄) =

Œ
⁄

0

–2n (Ê̄) Kt
1 (Ê̄, x̄) dÊ, J t (x̄) =

Œ
⁄

0

1

Ê̄
sin (Ê̄ c̄) Kt

1 (Ê̄, x̄) dÊ,

Qt
n (x̄) =

Œ
⁄

0

—̂n (Ê̂) Kt
2 (Ê̄, x̄) dÊ, Qb

n (x̂) =

Œ
⁄

0

Ÿ̂n (Ê̂) Kb
2 (Ê̂, x̂) dÊ,

J b
2n (x̂) =

Œ
⁄

0

–2n (Ê̄) Kb
1 (Ê̂, x̂) dÊ and J b (x̄) =

Œ
⁄

0

1

Ê̄
sin (Ê̄ c̄) Kb

1 (Ê̂, x̂) dÊ.

The above integrals may be evaluated at any x̄ or x̂ through the Clenshaw-Curtis quadra-

ture; see Press et al. (1992, p. 196).

Employing (3.31), the constraint (3.22) on the contact pressure at the ends of the contact

region provides

b0 + b2 + · · · + b2N = 0. (3.38)

Utilizing the approximations (3.32) and (3.35), the energy balance equation (3.23) yields

fi⁄L2

2m2

3

1

2
c̄2 A2 ≠ ∆ + Ëc

4

= 1, (3.39)

with

Ë (c̄) =
8“̂3

3fi

N
ÿ

n=0

b2nJ t
2n (c̄) ≠ 8⁄Am

3fiL
J t (c̄) +

1

fi“̂

M
ÿ

n=1

dnQt
n (c̄) , (3.40)

where ∆ is the displacement of the punch. We recall that the energy balance (3.39) is

redundant for the case of adhesionless contact or when the JKR approximation is invoked.

Finally, the total load acting on the punch becomes after employing (3.8) and (3.31):

P̄ = fib0 ≠ ⁄Am

“̂3L
c̄. (3.41)

3.5 Algorithm

We need to solve (3.36) – (3.39) for the N + M + 3 unknowns b2n, dn, ∆ and c̄ at any

given contact area A. These are solved through the collocation technique (Atkinson, 1997,

p. 135), which provides the necessary N + M + 3 algebraic equations.
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In the collocation method, (3.36) and (3.37) are required to hold exactly at, respectively,

N + 1 and M collocation points. The collocation points for (3.36) and (3.37) are selected

to be

x̄i = cos

;

(2i ≠ 1) fi

2 (N + 1)

<

for i = 1, · · · , N + 1,

and x̂k =
k ≠ 1

M
for k = 1, · · · , M,

respectively. Here, x̄i are the N + 1 zeros of the (Chebyshev) polynomials T2N+2(x̄i)

(Mason and Handscomb, 2003, p. 19), while x̂k are simply equally spaced points lying

between 0 and 1. At these collocation points (3.36) and (3.37) become, respectively,

∆ ≠ 1

2
x̄2

i A2 =
8“̂3

3fi

N
ÿ

n=0

b2nJ t
2n (x̄i) ≠ 8⁄Am

3fiL
J t (x̄i) +

1

fi“̂

M
ÿ

n=1

dnQt
n (x̄i) (3.42)

and 0 =
8“̂3

3fi

N
ÿ

n=0

b2nJ b
2n (x̂k) ≠ 8⁄Am

3fiL
J b (x̂k) +

“̂

fi

M
ÿ

n=1

dnQb
n (x̂k) , (3.43)

with i = 1, · · · , N + 1 and k = 1, · · · , M . Thus, we obtain N + 1 equations from (3.42)

and M equations from (3.43) for a total of N + M + 1 equations. Along with (3.38) and

(3.39), we finally obtain the required N +M +3 equations to solve for the N +1 unknowns

b2n, M unknowns dn, ∆ and c̄. This system of non-linear algebraic equations is solved for

any given contact area A through the following algorithm:

Step 1: For the given contact area A, we make an initial guess for c̄.

Step 2: We then write (3.42) and (3.43) in matrix notation as

∆ e ≠ f ≠ ⁄ = R a, (3.44)

where

e =
Ë

et, eb
ÈT

; f =
Ë

f t, f b
ÈT

; ⁄ =
Ë

⁄t, ⁄b
ÈT

; a =
Ë

at, ab
ÈT

; R =

C

J t Qt

J b Qb

D

,

(3.45)
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with

at
i = b2i≠2; ab

k = dk; et
i = 1; eb

k = 0; f t
i =

x2
i A2

2
; f b

k = 0;

⁄t
i = ≠8⁄Am

3fiL
J t (x̄i) ; ⁄b

k = ≠8⁄Am

3fiL
J b (x̂k) ; J t

i j =
8“̂3

3fi
J t

2j≠2 (x̄i) ;

Qt
i r =

1

fi“̂
Qt

r (x̄i) ; J b
k j =

8“̂3

3fi
J b

2j≠2 (x̂k) ; Qb
i r =

“̂

fi
Qb

r (x̂k) , (3.46)

for i, j = 1, 2, · · · , N + 1 and k, r = 1, 2, · · · , M . Thus, e, f , ⁄, a are column

vectors of size N + M + 1, and R is a matrix of size (N + M + 1) ◊ (N + M + 1).

Step 3: Note that the column vector a consists of the coefficients occurring in expressions

(3.31) for the contact pressure and (3.34) for the displacement. We now invert

(3.44) to find a in terms of ∆:

a = ∆E ≠ F ≠ Λ, (3.47)

where

E = R≠1 · e, F = R≠1 · f and Λ = R≠1 · ⁄ .

Step 4: Employing the end condition (3.38) for the contact pressure, we obtain the punch’s

displacement

∆ =
p0 +

qN+1
i=1 Fi +

qN+1
i=1 Λi

qN+1
i=1 Ei

, (3.48)

where

p0 =

Y

]

[

0 if there is no adhesion or an adhesive zone is present,

≠
1

m
Ô

6Am/2fiL2
2

(l/h)3 if the JKR approximation is invoked.

(3.49)

Step 5: Once ∆ is known, we evaluate a from (3.47) through

a =

A

p0 +
qN+1

i=1 Fi +
qN+1

i=1 Λi
qN+1

i=1 Ei

B

E ≠ F ≠ Λ. (3.50)

Step 6: Employing ∆ and a, we calculate the displacement of the beam’s top surface at c̄

from (3.40) and check whether (3.39) holds. If not, then we update c̄ employing the

Newton-Raphson method (Chatterjee, 2002). Steps 1-6 are repeated until (3.39)
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is satisfied. Steps 1 and 6 are required only when we employ an adhesive zone.

When the Hertzian or JKR approximations are invoked we may conveniently skip

this Step 6.

Step 7: We finally proceed to find the contact pressure distribution Ï (·̄) and the total

load P̄ from (3.31) and (3.41), respectively.

3.6 Finite element (FE) computations

Finite element (FE) computations are carried out for clamped and simply supported beams

for adhesionless contact. These are employed to validate our semi-analytical results.

The FE model is prepared in ABAQUS as described in Chapter 2: the beam is modelled

as a linear elastic layer of Young’s modulus E = 2000 MPa, Poisson’s ratio ‹ = 0.3,

thickness h = 4 mm, and half-span l = 40 mm. The rigid punch is modeled as a much

stiffer elastic material with Young’s modulus Ep = 2 ◊ 106 MPa and radius R = 225 mm.

Plane-strain elements are considered both for the beam and the punch. A concentrated

load is applied on the punch. Computations provide the contact pressure Ï, contact area

A, punch’s displacement ∆, and the displacement Ëb of the beam’s bottom surface.

3.7 Results: Non-adhesive (‘Hertzian’) contact

We now report results for the non-adhesive interaction of clamped and simply supported

beams with a rigid cylindrical punch.

For non-adhesive interaction, we set ⁄ = 0 in (3.36) and (3.37) to obtain

∆ ≠ 1

2
x̄2A2 =

8“̂3

3fi

N
ÿ

n=0

b2nJ t
2n (x̄) +

1

fi“̂

M
ÿ

n=1

dnQt
n (x̄) (3.51)

and 0 =
8“̂3

3fi

N
ÿ

n=0

b2nJ b
2n (x̂) +

“̂

fi

M
ÿ

n=1

dnQb
n (x̂) , (3.52)

respectively. In non-adhesive contact, the interacting surfaces detach smoothly at the

contact edges, so that the pressure vanishes at the contact edge, and (3.38) holds, i.e.

b0 + b2 + · · · + b2N = 0. (3.53)
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We proceed to solve (3.51) – (3.53) through the procedure of Sec. 3.5. We set N = 5 and

M = 50 in our computations. Initially to compare our results with FE computations we

employ the parameters of Sec. 3.6.

Figure 3.2 plots Ï (x̄) and ap (x̄), computed by solving (3.51) – (3.53) and from FE simu-

lations. Results for both clamped and simply supported beams are shown. These pressure
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Figure 3.2: The non-dimensional contact pressures Ï (x̄) and ap (x̄) /P during the non-
adhesive indentation of a clamped (a and b) and simply supported (c and d) beams. We
set h = 4 mm and l = 40 mm. Several contact areas a are investigated by varying a/h
ratio, which are noted next to then corresponding curves. The solid lines are results
obtained from the semi-analytical procedure of Sec. 3.4, while dashed line represent FE
computations.

profiles are plotted at different a/h ratios, by varying the contact area a, for a beam of

thickness h and half-span l. We observe that at low a/h ratios, the contact pressure is
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maximum at the center of the contact area and vanishes as we approach the contact edges.

Increasing a/h causes the contact pressure to decrease at the center of the contact area

and increase near its ends. This behavior was also observed in Chapter 2.

As in Chapter 2, we find that, at the same a/h, the contact pressure Ï in a simply

supported beam is smaller than that in a clamped beam, because the bending stiffness

of the former is lower. However, this difference is not reflected when we plot ap (x̄);

cf. Figs. 3.2(b) and 3.2(d) . We observe a close match between our predictions and FE

simulations for all a/h, except for a small deviation between the two at a/h = 2.5 in

the case of simply supported beams. We suspect that the latter may be due to the zero

displacement end condition at the bottom surface of the beam that was employed in the

theoretical analysis but can not be imposed explicitly in the FE model. We note that the

method of Chapter 2 does well untill a/h ¥ 1. With greater indentation, the a/h ratio

increases, and the contact pressure at the center of the contact patch becomes negative.

This reflects loss of contact1, which is observed in both theoretical predictions and FE

computations. For clamped beams, contact loss initiates at the center of the contact area

when a/h & 2.5. In simply supported beams contact loss is predicted for a/h & 2.5 by

our analytical model but for a/h & 2.25 by FE simulations.

Next, in Fig. 3.3 we compare our results for contact pressures ap (x̄) with those of Keer

and Miller (1983) for both clamped and simply supported beams. We find an extremely

close match between the two untill a/h ¥ 2. Beyond that, while the match remains close

for almost the entire contact area, a deviation is observed at the center of the contact

patch: we find negative pressures at the center of the contact patch, whereas Keer and

Miller (1983) report no negative contact pressure. From this, it appears that the earlier

formulations of Keer and Miller (1983) – also Sankar and Sun (1983), which we discuss

later – do not predict contact loss. Figure 3.3 confirms our previous observation that

contact pressures of clamped and simply supported beams do not vary much, when scaled

as ap(x̄)/P .

Next, in Fig. 3.4 we plot the variation of the contact area A with the total load P̄ on the

punch and the punch’s displacement ∆ for both clamped and simply supported beams. We

also compare with FE computations and results of Sankar and Sun (1983). The process is

1The current theoretical formulation is not valid after the contact loss.
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Figure 3.3: The non-dimensional contact pressures ap (x̄) /P during the non-adhesive
indentation of (a) a clamped and (b) a simply beam. The slenderness ratio of the beam
l/h = 10. Several contact areas a are investigated by varying a/h ratio, which are noted
next to then corresponding curves. The solid lines are results obtained from the semi-
analytical procedure of Sec. 3.4. Dots represent the predictions of Keer and Miller (1983).
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Figure 3.4: Non-adhesive contact of clamped (‘c’) and simply supported (‘s’) beams. The
contact area A is plotted as a function of (a) the total load P̄ acting on the punch and (b)
the punch’s displacement ∆. The beam’s slenderness ratio l/h=10. Solid lines are results
obtained from the semi-analytical procedure of Sec. 3.4. Filled circles correspond to FE
simulations of Sec. 3.6. Predictions of Sankar and Sun (1983) are shown by open circles,
when available.
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repeated for the variation of ∆ with P̄ in Fig. 3.5. Figure 3.4(a) shows that for the same

contact area A, the load P̄ required for a simply supported beam is small compared to a

clamped beam. This is because the simply supported beam bends more easily. This is also

why we observe greater displacements ∆ in these beams in Figs. 3.4(b) and 3.5. Finally,

Figs. 3.4 and 3.5 show a close match of our theoretical predictions with FE computations

and the results of Sankar and Sun (1983).

∆
=

δ
R
/l

2
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Figure 3.5: Non-adhesive contact of clamped (‘c’) and simply supported (‘s’) beams. The
displacement ∆ of the punch is shown as a function of the total load P̄ . See also the
caption of Fig. 3.4.

As in Chapter 2, we now set the Young’s modulus and Poisson’s ratio to E = 0.083

MPa and ‹ = 0.4, respectively, as representative of typical adhesives. We also use these

material parameters while studying the adhesive beams. The geometric parameters remain

unchanged, i.e. l = 40 mm, R = 225 mm. We show, by varying thickness, the convergence

of pressure profiles to that of an elastic half-space in Appendix F ; see Fig. F.1(b).

In Fig. 3.6, we plot the variation of the contact area A with respect to the total load P̄

acting on the punch and the punch’s displacement ∆ at several slenderness ratios l/h for

both clamped and simply supported beams. With increasing l/h, the beam’s resistance

to bending decreases and hence, we find smaller loads P̄ , or larger deflections ∆, at the

same contact area A. For the same reason the load P̄ required to achieve the same A in

simply supported beam is smaller than the ones for clamped beams. At the same time,

the displacements ∆ are higher for simply supported beams.

In Fig. 3.6, we observe that the curves change their slope abruptly. This is due to the
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Figure 3.6: Non-adhesive contact of clamped (top row) and simply supported (bottom
row) beams. Variation of contact area A with total load P̄ and punch’s displacement ∆

is shown. Different slenderness ratios l/h are considered and these are noted next to their
associated curves.
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beam wrapping around the punch rapidly with only a small increase in the load or the

punch’s displacement. However, the plots in Fig. 3.6 do not reflect this aspect well, as l

is a common parameter in A, P̄ , ∆ and l/h. At the end of this section we will employ an

alternative set of non-dimensional variables which will provide clearer insight.

Next, in Fig. 3.7 we plot the variation of ∆ with P̄ for various l/h for both clamped

and simply supported beams. In Chapter 2, we found that these collapsed onto a single

curve. This is not observed in Fig. 3.7. This collapse observed in Chapter 2 was driven

by the assumption that displacement at the bottom surface of the beam was given by the

displacement of an Euler-Bernoulli beam. The relationship between ∆ and P̄ for Euler-

Bernoulli beams with different l/h is self-similar. However, here, the displacement of the

bottom surface is found directly as a solution to the elasticity problem and is distinct from

that obtained in Chapter 2.
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Figure 3.7: Non-adhesive contact of (a) clamped and (b) simply supported beams. Varia-
tion of punch’s displacement ∆ with total load P̄ is shown. Several slenderness ratios l/h,
as noted next to their associated curves, are considered.

We return to explaining the sudden change of slope observed in the curves of Fig. 3.6. To

this end, we follow Maugis (1992) and employ the non-dimensionalized parameters

Â =
AL

m
= a

3

K

fiwR2

41/3

, P̂ =
P̄H3

Lm3
=

P

fiw
and ∆̂ =

∆L2

m2
= ”

A

K2

fi2w2R

B1/3

,

(3.54)

where H = h/R, instead of, respectively, A, P and ∆, to report our results. We set the
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adhesion energy w = 0.02 ◊ 10≠3 J/mm2. In the present case of non-adhesive contact w

serves only to facilitate non-dimensionalization.

We plot the variation of Â with P̂ and ∆̂ at several l/h in Fig. 3.8. Only clamped beams

are considered. The results for simply supported beams are qualitatively similar. The

rapid wrapping of the beam is reflected by the sudden increase in A in Fig. 3.8. As slender

beams bend easily, this wrapping happens at lower loads for such beams; see Fig. 3.8(a).

For the same reason, we observe more displacement in these beams in Fig. 3.8(b). We also

demonstrate how an elastic half-space results are obtained by varying the thickness of the

beam in Appendix F ; see Figs. F.2(c) and (d).
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Figure 3.8: Non-adhesive contact of clamped beams. Variation of contact area Â with (a)
total load P̂ and (b) punch’s displacement ∆̂ is shown. Different slenderness ratios l/h
are considered and these are noted next to their associated curves.

3.8 Results: Adhesive contact - JKR approximation

The JKR approximation is recovered when the scaled adhesive strength ⁄ æ Œ and

the adhesive zone vanishes, i.e. c̄ æ 1. Hence, equations (3.28) and (3.29) become,
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respectively,

∆ ≠ 1

2
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3fi
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The end condition on the contact pressure is determined by the Griffith criterion (3.24).

By substituting (3.31) in (3.24), we obtain

b0 + b2 + · · · + b2N = ≠ m

2fiL

3

l

h

43
Ô

6Am

L
. (3.57)

We now solve (3.55) – (3.57) through the algorithm of Sec. 3.5.

In Fig. 3.9 we plot the variation of the contact area Â with the load P̂ acting on the punch

and the displacement ∆̂ of the punch for both clamped and simply supported beams.

The slenderness ratio l/h is kept constant, but two different combinations of l and h are

investigated. We observe that the curves for same l/h are sensitive to l and h individually

and depend not only on the slenderness ratio. This was also observed in Chapter 2. This

may be traced back to the presence of L = l/R on the right hand side of (3.57). It is

easier to explore the dependence of h and l repeatedly by employing Â, P̂ and ∆̂ and we

do so in Figs. 3.10 and 3.11.

Curves in Fig. 3.10 are obtained for several l/h by varying h while keeping l = 40 mm.

Beams with high l/h ratio bend easily due to the adhesion, and we observe smaller negative

loads P̂ and larger negative displacements ∆̂ at a given contact area Â. Note that negative

loads and displacements indicate, respectively, tensile force on the punch and the upward

bending of beams. From Fig. 3.10 we observe that these slender beams wrap around – as

indicated by sudden slope changes in Â versus P̂ and ∆̂ curves – the punch earlier, i.e.

at smaller P̂ . For sufficiently slender beams, the wrapping occurs even when there is no

compressive (positive) load on the punch. In these beams the bending resistance is unable

to counterbalance adhesive forces. The above features, viz. extent of wrapping and the

response to adhesive forces, are, expectedly, heightened in the case of simply supported

beams, whose bending resistance is lower.

Finally, we plot the variation of the contact area Â with the load P̂ acting on the punch
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Figure 3.9: Adhesive contact of clamped (top row) and simply supported (bottom row)
beams with the JKR approximation. Variation of contact area Â with the total load P̂
are shown in (a) and (c), and the punch’s displacement ∆̂ are shown in (b) and (d). The
beam’s slenderness ratio l/h = 10. Solid lines correspond to l = 40 mm and h = 4 mm,
while the dashed line is for a beam with l = 80 mm and h = 8 mm.
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Figure 3.10: Adhesive contact of clamped (top row) and simply supported (bottom row)
beams with the JKR approximation. Left column, i.e. (a) and (c), reports the variation
of contact area Â with total load P̂ , while the right column, i.e. (b) and (d), plots the
change of Â with the punch’s displacement ∆̂. Results are obtained by setting l = 40 mm
and varying h as shown.
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Â
=

A
L
/m

∆̂ = ∆L2/m2

(d)

1

3

5

7

510
20

h=4 mm

= l/h

Figure 3.11: Adhesive contact of clamped (top row) and simply supported beams (bottom
row) with the JKR approximation. Left column, i.e. (a) and (c), reports the variation
of contact area Â with total load P̂ , while the right column, i.e. (a) and (c), plots the
change of Â with the punch’s displacement ∆̂. Results are obtained by setting h = 4 mm
and varying l as shown.



103

and the displacement ∆̂ for several slenderness ratios l/h. We change l and set h = 4

mm. The results for both clamped and simply supported beams are shown in Fig. 3.11.

Qualitatively Fig. 3.11 is similar in many respects to Fig. 3.10. From Fig. 3.11(c), we

observe that, for Â & 1.5 in a simply supported beam of l/h = 5, the load P̂ decreases

with the increase in contact area Â. At the same time, the punch’s displacement ∆̂

increases; see Fig. 3.11(d). This is explained by the presence of negative (tensile) stresses

at the center of the contact area in addition to the very large negative stresses allowed

in the contact pressure distribution at the contact edges. The contact area over which

these tensile stresses act also increases with the increase in contact area. Hence, the load

P̂ decreases with the increase in contact area Â.

3.9 Results: Adhesive contact with an adhesive zone model

Finally, we study the behaviour of adhesive beams indented by a rigid cylindrical punch

with the help of adhesive-zone models. In these models an adhesive force acts over an

adhesive zone of length d = c≠a outside the contact area. Here, we model the distribution

of the adhesive forces through the Dugdale-Barenblatt model, so that the normal traction

on the (extended) beam’s top surface is given by (3.9). The contact problem is resolved

by solving (3.36) – (3.39) following the solution procedure of Sec. 3.5.

For brevity, we report here the effect of only the adhesive strength ⁄ at a given l and h,

as the response to varying l/h is found to be the same as in Sec. 3.8.

In Fig. 3.12 we plot the variation of the contact area Â with the total load P̂ and the

displacement ∆̂ for several adhesive strengths ⁄. We observe that as ⁄ æ 0 the results

approach those obtained for non-adhesive interaction as in Sec. 3.7. At the same time,

increasing adhesive strength pushes our results towards those obtained for the JKR ap-

proximation in Sec. 3.8.

Next, we study the effect of adhesive strength ⁄ on the adhesive zone size d̄ = c̄ ≠ 1. For

this, we plot d̄ by varying Â for several adhesive strengths in Fig. 3.13. From Fig. 3.13, we

observe that with increasing ⁄, d̄ goes to zero. We also find that, due to the difference in

formulations, the results obtained in this article are quite different from those of Chapter 2

at low to moderate adhesive strengths. At high ⁄ there is not much difference between
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Â
=

A
L
/m 4

5

6

7

0.5 0.005

3

(a)

λ =

Â
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Figure 3.12: Adhesive contact of clamped (top row) and simply supported (bottom row)
beams with an adhesive zone model. Variation of contact area Â with the total load P̂ are
shown in (a) and (c), and the punch’s displacement ∆̂ are shown in (b) and (d). Different
adhesive strengths ⁄ are considered and these are indicated next to their associated curves.
The beam’s thickness h = 4 mm and l = 40 mm. Filled circles represent the JKR solution
for the corresponding beam; cf. Sec. 3.8
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the two. Finally, as seen in Chapter 2, varying the slenderness ratio l/h and constraints

imposed by end supports do not effect the adhesive zone size much.
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Figure 3.13: Variation of the adhesive zone size d̄ with the the contact area Â at different
adhesive strengths ⁄ for a clamped beam. We set l=40 mm and h = 4 mm. Solid lines
indicate the predictions of the formulation mentioned in this article, while the dotted lines
are those obtained from the formulation of the Chapter 2.

3.10 Comparison with Chapter 2

We now compare predictions of the formulation of this chapter with Chapter 2 for both

non-adhesive and adhesive contacts. For this, we plot the variation of the contact area Â

with variation in the total load P̂ acting on the punch for clamped and simply supported

beams as shown in Fig. 3.14. For the non-adhesive beams, we also plot FE results to

show the comparison better; see Fig. 3.14(a). From Fig. 3.14(a), we observe that both

the semi-analytical formulations predicts the behavior of the beams correctly for small

Â. However, with increasing Â, predictions of the current formulation are closer to the

FE simulations than those of Chapter 2. Finally, from Fig. 3.14(b), we observe that

both the formulations predicts the same behavior in the beams before wrapping in the

JKR approximation of the contact. However, for a large portion of the contact area the

results of both the formulations predicts the behaviour of the beams differently. Thus,

to establish the correctness of these formulations, we need to study the behaviour of the

beams experimentally. So, in the next section, we check the experimental feasibility for

the indentation in adhesive beams.
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Figure 3.14: The contact area A is plotted as a function of the total load P̄ acting on the
punch. (a) Non-adhesive contact of clamped (‘c’) and simply supported (‘s’) beams. The
beam’s slenderness ratio l/h=10. We set E = 2000 MPa and ‹ = 0.3. (b) Adhesive contact
of clamped (‘c’) and simply supported (‘s’) beams with JKR approximation. We set h = 4
mm, l = 40 mm, E = 0.083 MPa and ‹ = 0.4. Solid lines are results obtained from the
semi-analytical procedure of Sec. 3.4, while the dashed line are results from Chapter 2.
Filled circles correspond to FE simulations of Sec. 3.6.

3.11 Experimental validation feasibility for the adhesive con-

tact

In this section, we see the feasibility of conducting the JKR experiments for the beams

with our experimental set-up mentioned in Chapter 2. For this purpose, we first obtain

predictions for PDMS (poly-dimethyl- siloxane) samples employed in Chapter 2 utilizing

the formulations of this chapter and Chapter 2. The PDMS samples were prepared using

a 10:1 weight ratio mixture of Sylgard 184 silicone elastomer base and curing agent. We

consider clamped beams with fixed half-span l = 50 mm and vary the thickness h between

1 mm and 25 mm. The results are shown in Fig. 3.15.

In our experiments, the maximum value of the load P is limited by our micro-weighing

balance. From Fig. 3.15, we observe that with a 10:1 PDMS material, we can not clearly

distinguish the results obtained by the formulation of this chapter and that of Chapter 2.

The limitations of the load measuring capability of our micro-weighing balance used in

the experimental set-up makes differentiating between the predictions of our current and
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Figure 3.15: Variation of the contact area a (in mm) with the total load P (in g) for
adhesive clamped beams with half-span l = 50 mm at several thicknesses h, as noted next
to their curves. We set E = 1.237 MPa, W = 27.941 N/mm. The contact is modeled by
the JKR approximation of the contact. Solid lines correspond to theoretical predictions
of Chapter 2, while the asterisk represent those of current approach.

previous (Chapter 2) formulations hard. To achieve this with our current experimental

set-up requires a softer material with strong adhesive characteristics than PDMS.

3.12 Conclusions

The assumption made in the Chapter 2 about the vertical displacement of the beam’s bot-

tom surface limits the range of the corresponding semi-analytical analysis. In this chapter

we removed this constraint by solving for the vertical displacement directly, thereby ex-

tended the applicability of the formulation. The current formulation modeled the indention

of adhesive beam in terms of two coupled Fredholm integral equations of first kind. These

dual integral equations were solved through a collocation technique employing series ap-

proximations for the unknown contact pressure and bottom surface’s vertical displacement.

Care should be exercised when selecting the approximating series for the displacement.

We then compared our predictions with FE simulations and previously published results

for non-adhesive indentation, and found a satisfactory match for a wide range of inden-

tation. Next, we presented the results for JKR approximation and adhesive zone model

approximation of the contact. Finally, we studied the experimental feasibility to establish

the veracity of the current approach. However, for this we need a softer adhesive material
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than the PDMS – which we are in search of.





Chapter 4

Conclusions and future scope

4.1 Conclusions

We now briefly present the important conclusions from this study as listed below.

• Solving the boundary value problem for the two-dimensional, plane strain inden-

tation by a rigid circular punch with an adhesive elastic layer resting on its end

supports provides two coupled Fredholm integral equations of first kind. The adhe-

sion between the beam and the punch is modeled through an adhesive zone model,

that can be conveniently generalized. The coupled integral equations are solved,

employing Galerkin or collocation methods, for the unknown contact pressure distri-

bution, displacement of the punch, the adhesive zone size and vertical displacement

of the elastic layer’s bottom surface.

• When the contact area is not large, the displacement of the bottom surface may

be conveniently approximated by that of an Euler-Bernoulli beam’s, reducing the

problem to one integral equation.

4.2 Future scope

Looking further forward, we envisage:

1. Investigating the possibility of scaling relationships underlying adhesive contact of

beams.
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2. Formulation of a contact problem which accommodates the possibility of separation

under the punch.

3. Extending the contact problem to investigate material and geometric nonlinearities.

4. Modeling beam to beam contact with and without adhesion.

5. Adapting the present technique to three-dimensional axi-symmetric problems of adhe-

sive contact of thin plates.

6. Extensive experiments of adhesive contact of beams.



Appendix A

Calculations using beam theory

In this section, we find the displacement of an Euler-Bernouli beam subjected to a point

load at its center and resting on flexible supports, as shown in Fig. A.1.

kt

ksks

kt

x

P

l
y

h

l

Figure A.1: An Euler-Bernoulli beam on flexible supports acted upon at its center by a
concentrated force P .

From Euler-Bernoulli beam theory (Crandall et al., 2008, p. 165, 523, 543) we find

EI
d4vn (x)

dx4
= P ÈxÍ≠1, (A.1)

where vn (x) is the displacement of the neutral axis (dash-dot line in Fig. A.1) and

ÈxÍ =

I

x, x > 0

0, x Æ 0.
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The appropriate boundary conditions are:

vn|x=≠l =
P

2ks
, vn|x=l =

P

2ks
, (A.2a)

kt
dvn

dx

-

-

-

-

x=≠l
= EI

d2vn

dx2

-

-

-

-

-

x=≠l

and ≠kt
dvb

dx

-

-

-

-

x=l
= EI

d2vn

dx2

-

-

-

-

-

x=l

. (A.2b)

Identifying the displacement vb of the beam’s bottom surface with vn, as is done in beam

theory, and solving (A.1) and (A.2), provides

vb (x) =
P

EI

I

1

6
ÈxÍ3 ≠ 1

12
x3 ≠ x2l

8

3

1 +
EI

ktl + EI

4

+
1

24

3

l3 + 3l3
EI

ktl + EI
+ 12

EI

ks

4<

. (A.3)

As the displacement is symmetric in x, we henceforth employ vb (x) for x Ø 0 in our

calculations.

Non-dimensionalizing (A.3) following Sec. 2.3, we obtain

Ëb (·̂) =
4P̄

3Ī (1 ≠ ‹2)

I

È·̂Í3

6
≠ ·̂3

12
≠ ·̂2

8

1

1 + K≠1
t

2

+
1

24

1

1 + 3K≠1
t + 12K≠1

s

2

J

, (A.4)

where K≠1
t = EI/(ktl + EI) = (1 + kf

t )≠1 and K≠1
s = EI/ksl3 = kf

s
≠1

.

When we extended the beam to infinity – cf. Fig. 2.2(b) – the displacement of the overhang,

i.e. ·̂ > 1, is given by

Ëb (·̂) = Ëb (·̂)|·̂=1 +
dËb (·̂)

d·̂

-

-

-

-

·̂=1
(·̂ ≠ 1) . (A.5)

Calculating the displacement and slope at ·̂ = 1 from (A.4) and substituting in (A.5)

yields

Ëb (·̂) =
4P̄

3Ī (1 ≠ ‹2)

5

1

2Ks
≠ 1

4Kt
(·̂ ≠ 1)

6

, ·̂ > 1. (A.6)

Finally, the displacement of the extended beam’s bottom surface over its entire length

may be written as

Ëb (·̂) =
4P̄

3Ī (1 ≠ ‹2)
Ëp (·̂) , (A.7)
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where

Ëp (·̂) =

Y

]

[

Ó

·̂3/12 ≠ ·̂2
1

1 + K≠1
t

2

/8 +
1

1 + 3K≠1
t + 12K≠1

s

2

/24
Ô

, 0 Æ ·̂ Æ 1
Ó

K≠1
s /2 ≠ K≠1

t (·̂ ≠ 1) /4
Ô

, ·̂ > 1.

(A.8)

Finally, we evaluate the Fourier transform

Ë̂b (Ê̂) =

Œ
⁄

≠Œ

Ëb (·̂) cos (Ê̂·̂) d·̂ = 2

Œ
⁄

0

Ëb (·̂) cos (Ê̂·̂) d·̂ , (A.9)

which is required in (2.23). The above integrals are typically undefined, as Ë (·̂) is un-

bounded once the beam is extended to infinity, unless the beam is clamped. To overcome

this, we invoke St. Venant’s principle by which, displacement of the overhang, sufficiently

far away from the supports, may be modified without exerting any significant influence

on the displacement and stresses in the portion of the beam lying within the supports. To

this end, we modify the displacement of the beam’s bottom surface by introducing

ËM
b (·̂) = Ëb (·̂) · W (·̂) , (A.10)

with

W (·̂) =

Y

_

_

]

_

_

[

1, for ·̂ Æ l̂1,

w2 (·̂) , for l̂1 < ·̂ < l̂2

0, for ·̂ Ø l̂2,

, (A.11)

where

w2 (·̂) =
exp

;

≠1/
1

l̂2 ≠ ·̂
22

<

exp

;

≠1/
1

l̂2 ≠ ·̂
22

<

+ exp

;

≠1/
1

·̂ ≠ l̂1
22

< , (A.12)

and l̂1 and l̂2 locate points on the beam that are far away from its supports, i.e. l̂2 >

l̂1 ∫ 1 (see B). The function W (·̂) is a mollifier, see Muthukumar (2016), and is infinitely

differentiable everywhere.

The mollified displacement ËM
b (·̂) in (A.10) is now utilized in (A.9) to compute the Fourier

transforms. Thus,

Ë̂b (Ê̂) ¥ 2

Œ
⁄

0

ËM
b (·̂) cos (Ê̂·̂) d·̂ = 2

Œ
⁄

0

Ëb (·̂) W (·̂) cos (Ê̂·̂) d·̂ . (A.13)

Evaluating the above integral and replacing the total load P̄ from (2.28) in the resulting
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equation provides

Ë̂b (Ê̂) =

I

4fib0

3Ī (1 ≠ ‹2)
≠ 4⁄Amc̄

3“̂3ĪL (1 ≠ ‹2)

J

Ë̂p (Ê̂) , (A.14)

where

Ë̂p (Ê̂) = 2

Œ
⁄

0

Ëp (·̂) W (·̂) cos (Ê̂·̂) d·̂ . (A.15)

Setting kf
t æ Œ and kf

s æ Œ, we obtain results for a clamped beam, while those for a

simply supported beam are found by taking kf
t æ 0 and kf

s æ Œ.

Finally, we write

1

fi“̂
Ë̂b (Ê̂) =

I

4b0

3Ī (1 ≠ ‹2) “̂
≠ 4⁄Amc̄

3fi“̂4ĪL (1 ≠ ‹2)

J

Ë̂p (Ê̂) . (A.16)



Appendix B

Selection of l̂1 and l̂2

Here, we demonstrate convergence of our contact pressures, employing our theoretical

model of Chapter 2, for an indentation in a simply supported beam by varying l̂1 and l̂2.

In Fig. B.1, we plot contact pressure profiles for three different combinations of l̂1 and l̂2.

We observe that the variation in contact pressure profiles is negligible at our choices of l̂1

and l̂2. So, in all our theoretical models we employ l̂1 = 2 and l̂2 = 3.

x̄ = x/a

ϕ̂
(x̄
)
=

ϕ
(x̄
)H

3
/L

m
3
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0

0.5

1

1.5

2

2.5

3

3.5
x 10

4
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l̂1 = 7, l̂2 = 10

Figure B.1: The contact pressure profiles are plotted for a simply supported beam inden-
tation at a/h = 1.25. Three different combination of l̂1 and l̂2, as noted next to their
curves, are employed. The beam’s thickness h = 4 mm and half-span l = 40 mm. We set
E = 2000 MPa and ‹ = 0.3.
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Appendix C

Vertical displacement of the

beam’s top surface (V (ξ, 0)) and

normal traction at its bottom

surface (Syy (ξ, h)) in Fourier space

We begin with finding solutions to the Navier equations in Fourier space. The Navier

equations describing the plane strain indention are

2 (1 ≠ ‹)

1 ≠ 2‹

ˆ2u

ˆx2
+

ˆ2u

ˆy2
+

1

1 ≠ 2‹

ˆ2v

ˆxˆy
= 0 (C.1a)

and
ˆ2v

ˆx2
+

2 (1 ≠ ‹)

1 ≠ 2‹

ˆ2v

ˆy2
+

1

1 ≠ 2‹

ˆ2u

ˆxˆy
= 0, (C.1b)

where u and v represent the displacements in horizontal and vertical directions. Taking

the Fourier transform of the above with respect to x we obtain

d2U

dy2
≠ i ›

1 ≠ 2‹

dV

dy
≠ 2 (1 ≠ ‹)

1 ≠ 2‹
›2 U = 0 (C.2a)

and
2 (1 ≠ ‹)

1 ≠ 2‹

d2V

dy2
≠ i ›

1 ≠ 2‹

dU

dy
≠ ›2V = 0, (C.2b)
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where with

U (›, y) =

Œ
⁄

≠Œ

u (x, y) ei›xdx, V (›, y) =

Œ
⁄

≠Œ

v (x, y) ei›xdx,

We now guess the solutions to the above ordinary differential equations (ODE) as

U = A esy and V = B esy, (C.3)

where A and B are unknown constants. These may be obtained by satisfying the boundary

conditions. Substituting the above into the (C.2) yeilds

5

s2 ≠ 2 (1 ≠ ‹)

1 ≠ 2‹
›2

6

A ≠ i ›s

1 ≠ 2‹
B = 0 (C.4a)

and ≠ i ›s

1 ≠ 2‹
A +

5

2 (1 ≠ ‹)

1 ≠ 2‹
s2 ≠ ›2

6

B = 0, (C.4b)

From the above, for the non-trivial solutions to exist, we should have

-

-

-

-

-

s2 ≠ 2(1≠‹)
1≠2‹

›2 ≠ i ›s
1≠2‹

≠ i ›s
1≠2‹

2(1≠‹)
1≠2‹

s2 ≠ ›2

-

-

-

-

-

= 0. (C.5)

Now solving the above for s provides

s = ± › (C.6)

Here s = › and s = ≠› are repeated roots, and at these roots we obtain, respectively,

B+ = i A+ and B≠ = ≠i A≠. (C.7)

As we obtained the repeated roots for s, we now guess

U = C esy + D y esy and V = E esy + F y esy, (C.8)

where C, D, E and F are unknown constants, to be solutions for (C.2). Again substituting

these guess solutions into (C.2) and solving the resulting set of equations for E and F in
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terms of C and D at s = › and s = ≠› yields, respectively,

E+ = iC+ ≠ iŸ

›
D+, F + = iD+ (C.9a)

and E≠ = ≠iC≠ ≠ iŸ

›
D≠, F ≠ = ≠iD≠, (C.9b)

where Ÿ = 3 ≠ 4‹. Employing (C.3) and (C.8), the ode solutions may be written as

U =
1

A+ + C+ + D+y
2

e›y +
!

A≠ + C≠ + D≠y
"

e≠›y (C.10a)

and V =
1

B+ + E+ + F +y
2

e›y +
!

B≠ + E≠ + F ≠y
"

e≠›y (C.10b)

Employing (C.7) and (C.9) we modify (C.10) to

U = (a1 + a2y) e›y + (b1 + b2y) e≠›y (C.11a)

and V = (a3 + ia2y) e›y + (b3 ≠ ib2y) e≠›y (C.11b)

where

a1 = A+ + C+, a2 = D+, b1 = A≠ + C≠, b2 = D≠,

a3 = iA+ + iC+ ≠ iŸ

›
D+ and b3 = ≠iA≠ ≠ iC≠ ≠ iŸ

›
D≠. (C.12)

Writing a2 and b2 in terms of a1, a3 and b1, b3 give

a2 = (a1 + ia3)
›

Ÿ
and b2 = ≠ (b1 ≠ ib3)

›

Ÿ
. (C.13)

Employing the above, we may write (C.11) as

U (›, y) =

3

a1 + (a1 + ia3)
›y

Ÿ

4

e›y +

3

b1 ≠ (b1 ≠ ib3)
›y

Ÿ

4

e≠›y (C.14a)

and V (›, y) =

3

a3 + i (a1 + ia3)
›y

Ÿ

4

e›y +

3

b3 + i (b1 ≠ ib3)
›y

Ÿ

4

e≠›y. (C.14b)
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Rearranging the above we obtain the solutions for the horizontal and vertical displacement

in the Fourier space as

U (›, y) = (Ÿa1 + ›y (a1 + ia3)) e›y + (Ÿb1 ≠ ›y (b1 ≠ ib3)) e≠›y (C.15)

and V (›, y) = (Ÿa3 + i›y (a1 + ia3)) e›y + (Ÿb3 + i›y (b1 ≠ ib3)) e≠›y (C.16)

with unknown constants a1, a3, b1, and b3. These constants are obtained by applying the

boundary conditions, which in Fourier space are

at y = 0 : S›y= 0, Syy= P̄c(›), (C.17a)

at y = h : S›y= 0, V = v̄b(›), (C.17b)

with

S›y =
E

2 (1 + ‹)

3

d

dy
U ≠ i›V

4

,

Syy =
E

(1 + ‹)

3

d

dy
V +

‹

1 ≠ 2‹

3

≠i›U +
d

dy
V

44

,

P̄c(›) =

Œ
⁄

≠Œ

≠Pc (x) ei›xdx and v̄b(›) =

Œ
⁄

≠Œ

vb (x) ei›xdx.

With this, we find the vertical displacement of the top surface in Fourier space to be

V (›, 0) = ≠ 2 P̄c (›)

Eú

sinh2 › h

› (› h + sinh › h cosh › h)
+ v̄b (›)

sinh › h + › h cosh › h

› h + sinh › h cosh › h
,

and the normal traction at the bottom layer in Fourier space to be

Syy (›, h) = P̄c (›)
sinh › h + › h cosh › h

› h + sinh › h cosh › h
+ Eúv̄b (›)

›

2

sinh2 › h ≠ ›2 h2

› h + sinh › h cosh › h
,

where Eú = E/
!

1 ≠ ‹2
"

.



Appendix D

Evaluation of the integrals αn (ω̄)

We recall from (2.27) in Sec. 2.4 that

–n (Ê̄) =

1
⁄

≠1

1


(1 ≠ ·̄2)
Tn (·̄) cos (Ê̄·) d·̄ . (D.1)

We now compute these integrals explicitly. First, consider odd n. For this, the integrand

is an odd function so that

–2n≠1 (Ê̄) = 0. (D.2)

Next, evaluating (D.1) for even n we obtain the first few –n as

–0 (Ê̄) =fi J (0, Ê̄),

–2 (Ê̄) =fi J (0, Ê̄) ≠ 2 fi J (1, Ê̄)

Ê̄
,

–4 (Ê̄) =fi J (0, Ê̄) ≠ 8 fi J (1, Ê̄)

Ê̄
≠ 24 fi J (0, Ê̄)

Ê̄2
+

48 fi J (1, Ê̄)

Ê̄3

and –6 (Ê̄) =fi J (0, Ê̄) ≠ 18 fi J (1, Ê̄)

Ê̄
≠ 144 fi J (0, Ê̄)

Ê̄2
+

768 fi J (1, Ê̄)

Ê̄3

+
1920 fi J (0, Ê̄)

Ê̄4
≠ 3840 fi J (1, Ê̄)

Ê̄5
, (D.3)

where J (n, Ê̄) are the Bessel’s functions of the first kind of order n. Employing the

recurrence relation (Polyanin and Manzhirov, 2008, p. 1016),

J (n + 1, Ê̄) =
2n

Ê̄
J (n, Ê̄) ≠ J (n ≠ 1, Ê̄),
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we rewrite (D.3) as

–2 (Ê̄) = ≠fi J (2, Ê̄), –4 (Ê̄) = fi J (4, Ê̄) and –6 (Ê̄) = ≠fi J (6, Ê̄).

In general, it is possible to show that

–2n (Ê̄) = (≠1)n fi J (2n, Ê̄). (D.4)



Appendix E

Finite element model

In this work, we compared our theoretical predictions for non-adhesive indentation with

finite element (FE) computations. For this we employed the representative model shown

in Fig. E.1. As the indentation is symmetric about x = 0, we consider only the left half

of the beam with symmetric boundary conditions at x = 0. Thus, the load acting on the

punch is P/2. We have already discussed the FE model of the beam and the punch in

Secs. 2.5 and 3.6. The contact interaction between the punch and the beam is modeled

using the frictionless, hard-contact model in ABAQUS; see ABAQUS (2011).

We now discuss the FE modeling of the end supports. The end supports are modeled as

elastic layers, represented as B1 (bottom) and B2 (top) in Fig. E.1, with Young’s modulus

Eb = 200 ◊ 106 MPa and Poisson’s ration ‹b = 0.3. The length and thickness of the

support layer are considered as b = l/8 and h/16. One end of these layers interacts with

the beam, while the other end is rigidly fixed, i.e. horizontal and vertical displacements are

zero, and rotation is completely restricted. The interaction of these layers’ surfaces with

the beam’s top and bottom surfaces are modeled using frictionless, hard-contact model

in ABAQUS. Thus, these end supports act as smooth bearings for the beam at its ends.

While performing computations for clamped beam, we keep the top and bottom bearings,

and while modeling the simply supported beam, we remove the top bearing.

Finally, we discuss the details of the mesh that is employed in our FE computations.

Meshing is done using the in-built algorithms of ABAQUS. For this we have to specify the

details for seeding, mesh controls and element types.

For the beam seeding on the top and bottom edges are done using 600 elements with a
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Figure E.1: Finite element model of a non-adhesive beam indention by a cylindrical punch.

single bias ratio of 50, with the smaller elements being near the contact. The vertical edges

of the beam are seeded with 20 number of elements and single bias ratio, where the smaller

elements are nearer to the top surface of the beam, of five. Quadratic and structured mesh

is generated employing the Minimize the mesh control transition algorithm. For the punch

we start with seeding the part with an approximate global size of 5, curvature control

of 0.1 and the minimum size control is done by keeping the fraction of global size at

0.1. Quadratic and free mesh is generated using the advancing front algorithm. The end

supports are seeded with an approximate global size of 1 and the curvature control of 0.1.

The minimum size control is done by setting the fraction of global size to 0.1. The mesh

controls are kept the same as that of the punch. We used standard, quadratic plane strain

elements with reduced integration for beam, punch and end supports.



Appendix F

Additional results: 1

Here, we present our theoretical predictions of Chapter 2 and Chapter 3 for differently

thick non-adhesive clamped beams using the following non-dimensional parameters:

Â =
AL

m
= a

3

K

fiwR2

41/3

; P̂ =
P̄H3

Lm3
=

P

fiw
; ∆̂ =

∆L2

m2
= ”

A

K2

fi2w2R

B1/3

;

Ï̂ (·̄) = Ï (·̄)
H3

Lm3
=

a p (·̄)

fiw
; H =

h

R
.

The Young’s modulus and Poisson’s ratio of the beam are taken as E = 0.083 MPa and

‹ = 0.4, respectively. The beam’s length is fixed at l = 40 mm, and the radius of the

punch is considered as R = 225 mm.

The pressure profiles for various thicknesses H are shown in Fig. F.1. With increasing

thickness h, the beam’s bending stiffness (EI) increases. Thus, the pressure profiles shift

upwards with increasing H and, finally, approach the half-space solution. We note that

the difference in the pressure profiles for H = 1 and H = 10 is very small, and the

corresponding curves fall almost on top of the Hertzian solution found for an elastic half-

space.

Next the total load acting on the punch P̂ and the displacement ∆̂ of the punch are plotted

against the contact area Â in Fig. F.2 for clamped beams with different thicknesses H.

Increasing the thickness makes the beam more resistant to bending. Thus, thicker beams

require more load compared to thinner beams to achieve the same contact area. Hence,

the curves in Fig. F.2(a) bend rightwards until they coincide with the half-space solution.

Here again, the difference in the curves for H = 1, H = 10 and the half-space is very small.
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Figure F.1: Contact pressures in a clamped beam for different H (a) at Â = 1.384 (a = 4
mm) employing the procedure outlined in Chapter. 2 and (b) at Â = 3.46 (a = 10
mm) following the theoretical model of Chapter. 3. Black dots are the Hertzian solution
obtained for an elastic half-space.

Similarly, the punch’s displacement ∆̂ is less for thick beams, as they have more bending

stiffness. Therefore, the curves in Fig. F.2(b) shift leftwards with increasing thickness.

For small H, the contribution of the beam’s bending to ∆̂ is significant. However, this

contribution reduces as H increases. For H = 1 and H = 10 the curves are close to the

half-space solution–in which ∆̂ is estimated with respect to a point at a distance d = 2H

below the punch; see Dalmeya et al. (2012, Eq. 39c). The displacement due to bending in

H = 1 and H = 10 beams is negligible (vb ¥ 0). Hence, these beams respond in a manner

similar to a smooth, elastic, thick layer resting on a frictionless rigid surface (unbonded

elastic layer). This is confirmed by the close match in Fig. F.2(b) of the results for H = 1

and H = 10 with those of an unbonded elastic layer–these are obtained by taking vb = 0

in the integral equation.
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P̂ = P̄H3/Lm3
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Figure F.2: Non-adhesive contact of clamped beams. The variation of contact area Â
is plotted, following the procedure of Chapter 2 (top row) and Chapter 3 (bottom row),
by varying the total load P̂ and punch displacement ∆̂ for different H as noted on their
curves. Black dots represent Hertzian solution for an elastic half-space. The open circles
on H = 1 and H = 10 lines in Â versus ∆̂ plot represent the corresponding unbonded
layer results.



Appendix G

Additional results 2

Here we present our theoretical predictions for non-adhesive clamped beams with different

slenderness ratios using the following non-dimensional parameters:

Â =
AL

m
= a

3

K

fiwR2

41/3

; P̂ =
P̄H3

Lm3
=

P

fiw
; ∆̂ =

∆L2

m2
= ”

A

K2

fi2w2R

B1/3

.

We plot in Fig. G.1 the variation of contact area Â with the variation in total load P̂ and

punch’s displacement ∆̂. From Fig. G.1 we clearly observe that beams with higher l/h

Â
=

A
L
/
m

P̂ = P̄H3/Lm3
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Figure G.1: Non-adhesive contact of clamped beams. Variation of contact area Â with
(a) total load P̂ and (b) punch’s displacement ∆̂ is shown. Several slenderness ratios l/h
are considered and these are noted next to their associated curves.
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require less load P compared to lower l/h to achieve the same contact area a. We also

find that the punch’s displacement ∆̂ is high for more slender beams.



Appendix H

Adhesive elastic half-space

indentation by a rigid cylinder

We indent a thick PDMS sample with a cylindrical glass punch of radius R. During the

indentation, at load P , a rectangular contact patch of length 2a and width 2ls is observed.

In our experiments, we measure P from weighing balance, 2a is equal to the length of the

contact patch observed under the micro-scope and 2ls equals the width of PDMS sample.

The main aim of this experiment is to find Young’s modulus E of the PDMS, and the

work of adhesion w for the PDMS-glass surfaces. For adhesive interaction between the

PDMS half-space with a cylindrical punch, the relationship between P and a is given by

3fi

8

a3/2

R
=

1

K

3

P

lsa1/2

4

+

3

6fiw

K

41/2

, (H.1)

where K = 4E/3(1 ≠ ‹2) and Poisson’s ratio ‹ = 0.5; see Chaudhury et al. (1996). The

above equation represents a straight line when we plot 3fia3/2/8R versus P/lsa1/2. From

the slope and intercept of this straight line we obtain K and w, respectively.

We note that by measuring P in ‘N’, and a, R and ls in ‘mm’; and employing (H.1) we

get K and w in ‘N/mm2’ and ‘N/mm’, respectively.
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Appendix I

Displacement calculations for dual

integral equation formulation

I.1 Approximations for vertical displacement at the bottom

surface

We begin by approximating the vertical displacement at the beam’s bottom surface de-

pending on the type of end supports. In this section, we discuss suitable approximations

for clamped and simply supported beams’ bottom surface vertical displacement.

I.1.1 Clamped beam

We approximate the vertical displacement of the bottom surface in a beam that is clamped

at the ends as

Ëc
b (·̂) = dc

0 +
M
ÿ

n=1

dc
n cos (nfi·̂) . (I.1)

The above displacement filed is symmetric in ·̂ , i.e., Ëc
b (·̂) = Ëc

b (≠·̂). The slope conditions

at the ends, i.e., dËc
b/d·̂ = 0 at ·̂ = ±1, are automatically satisfied. We find the unknown

coefficient dc
0 in the displacement employing Ëc

b (±1) = 0, to obtain

dc
0 =

M
ÿ

n=1

dc
n (≠1)n+1 . (I.2)
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Combining (I.1) and (I.2) yields

Ëc
b (·̂) =

M
ÿ

n=1

dc
n

Ë

(≠1)n+1 + cos (nfi·̂)
È

. (I.3)

Differentiating the above twice with respect to ·̂ provides

Ÿc
b (·̂) = ≠fi2

M
ÿ

n=1

dc
nn2 cos (nfi·̂) . (I.4)

I.1.2 Simply supported beam

For a simply supported beam, we approximate the vertical displacement of the elastic

layer’s bottom surface in ≠1 Æ ·̂ Æ 1, which should be symmetric in ·̂ , as

Ës
b (·̂) = ds

0 +
M
ÿ

n=1

ds
2n≠1 sin

;

(2n ≠ 1) fi (·̂ + 1)

2

<

. (I.5)

The above displacement field also satisfies d2Ës/d·̂2 = 0 at ·̂ = ±1, as appropriate for

a simply supported beam. Satisfying Ës (±1) = 0, makes the unknown constant ds
0 = 0.

Hence, Ës
b (·̂) becomes

Ës
b (·̂) =

M
ÿ

n=1

ds
2n≠1 (≠1)n≠1 cos

;

(2n ≠ 1) fi·̂

2

<

. (I.6)

Differentiating the above twice we obtain the curvature Ÿs
b (·̂) in ≠1 Æ ·̂ Æ 1 as

Ÿs
b (·̂) = ≠

M
ÿ

n=1

ds
2n≠1 (≠1)n≠1

3

(2n ≠ 1) fi

2

42

cos

3

(2n ≠ 1) fi·̂

2

4

. (I.7)

Calculating the slope at the ends of the beam yields

dËs
b (·̂)

d·̂

-

-

-

-

·̂=1
= ≠

M
ÿ

n=1

ds
2n≠1

(2n ≠ 1) fi

2
. (I.8)

Finally, finding the displacement in 1 < ·̂ < Œ, by extending the beam along its slope at

the end supports, we obtain

Ës
b (·̂) =

dËs (·̂)

d·̂

-

-

-

-

·̂=1
(·̂ ≠ 1) . (I.9)
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I.2 Calculating ϑ̂b (ω̂) and κ̂b (ω̂)

In this work, we consider the beams as linear elastic layers of infinite length. Thus, we

employ mollifiers to find Ë̂b (Ê̂) and Ÿ̂b (Ê̂). Therefore, we write

Ë̂b (Ê̂) =

Œ
⁄

≠Œ

Ëb (·̂) W (·̂) cos Ê̂·̂ d·̂ (I.10)

and Ÿ̂b (Ê̂) =

Œ
⁄

≠Œ

d2

d·̂2
[Ëb (·̂) W (·̂)] cos Ê̂·̂ d·̂ , (I.11)

where the mollifier (Muthukumar, 2016)

W (·̂) =

Y

_

_

_

]

_

_

_

[

1 for |·̂ | Æ
-

-

-l̂1
-

-

- ,

w2 (·̂) for
-

-

-l̂1
-

-

- < |·̂ | <
-

-

-l̂2
-

-

-

0 for |·̂ | Ø
-

-

-l̂2
-

-

- ,

, (I.12a)

and w2 (·̂) =
exp

;

≠1/
1

l̂2 ≠ ·̂
22

<

exp

;

≠1/
1

l̂2 ≠ ·̂
22

<

+ exp

;

≠1/
1

·̂ ≠ l̂1
22

< , (I.12b)

with l̂1 and l̂2 locating portions of the beam that are far away from the ends with l̂2 >

l̂1 ∫> 1. The mollifier W (·̂) is infinitely differentiable, and alters the displacement far

from the beam’s ends and makes it integrable.

I.2.1 Clamped beam

For a clamped beam, finding Ë̂c
b (Ê̂) and Ÿ̂c

b (Ê̂), we obtain

Ë̂c
b (Ê̂) =

M
ÿ

n=1

dc
n—̂c

n (Ê̂) and Ÿ̂c
b (Ê̂) =

M
ÿ

n=1

dc
nŸ̂c

n (Ê̂) , (I.13)

where

—̂c
n (Ê̂) =

2 (≠1)n+1 sin Ê̂

Ê̂
+

2Ê̂ (≠1)n+1 sin Ê̂

n2fi2 ≠ Ê̂2
and Ÿ̂c

n (Ê̂) = ≠n2fi2 2Ê̂ (≠1)n+1 sin Ê̂

n2fi2 ≠ Ê̂2
.
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I.2.2 Simply supported beam

Evaluating Ë̂s
b (Ê̂) and Ÿ̂s

b (Ê̂) for a simply supported beam yields

Ë̂s
b (Ê̂) =

M
ÿ

n=1

d̃s
n —̂s

n (Ê̂) and Ÿ̂s
b (Ê̂) =

M
ÿ

n=1

d̃s
nŸ̂s

n (Ê̂) , (I.14)

where d̃s
n = ds

2n≠1,

—̂s
n (Ê̂) =

1
⁄

≠1

(≠1)n≠1 cos

3

(2n ≠ 1) fi·̂

2

4

cos Ê̂·̂ d·̂ ≠ (2n ≠ 1) fi

l̂2
⁄

1

(·̂ ≠ 1) W (·̂) cos Ê̂·̂ d·̂

and Ÿ̂s
n (Ê̂) = ≠

3

(2n ≠ 1) fi

2

42 1
⁄

≠1

(≠1)n≠1 cos

3

(2n ≠ 1) fi·̂

2

4

cos Ê̂·̂ d·̂

≠ 2 (2n ≠ 1) fi

l̂2
⁄

l̂1

dw2 (·̂)

d·̂
cos Ê̂·̂ d·̂ ≠ (2n ≠ 1) fi

l̂2
⁄

l̂1

(·̂ ≠ 1)
d2w2 (·̂)

d·̂2
cos Ê̂·̂ d·̂ .

Finally, employing (I.13) and (I.14), we may write Ë̂b (Ê̂) and Ÿ̂b (Ê̂), respectively, as

Ë̂b (Ê̂) =
M
ÿ

n=1

dn—̂n (Ê̂) and Ÿ̄b (Ê̂) =
M
ÿ

n=1

dnŸ̂n (Ê̂) . (I.15)
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