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Abstract

It is known that a horizontally vibrated binary mixture in a tapered and inclined channel

segregates axially, with each of the two species moving to the opposite ends of the chan-

nel. In general, the parameters that affect the segregation process include the vibration

frequency and its amplitude, the constituents’ mass, size and their material properties, and

the channel’s taper and inclination. The ultimate goal is to locate those parameters that are

most significant to the segregation process, thereby providing control variables for practical

applications. However, owing to the complexity of the problem, as a first step to better

understand the physics behind this phenomenon, we undertake three dimensional discrete-

element simulations of a horizontally vibrated mono-disperse granular particles in a tapered

and inclined channel.

We have investigated the effect of the vibration amplitude and frequency, the channel’s

inclination angle and taper, and area fraction on the flow rates of granular particles.



Contents

1 Introduction 1

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature review 5

3 Simulation methodology 12

3.1 Molecular Dynamics simulation . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Discrete element method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Force laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Normal force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.2 Tangential force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Integration algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.1 Verlet algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.2 Leapfrog algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.3 Velocity Verlet algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Our simulation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Validation tests for DEM code 31

4.1 Acceleration of a particle rolling down an inclined plane . . . . . . . . . . . . 32

4.2 Particle-particle or particle-wall forces . . . . . . . . . . . . . . . . . . . . . 32

vi



vii

4.2.1 Zero damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2 Finite damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Vibrating channel with parallel side walls and zero inclination . . . . . . . . 36

4.4 Vibrating channel with parallel side walls and inclination . . . . . . . . . . . 37

5 Results and discussion 41

5.1 Amplitude variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Theta variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Area fraction variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Variation in the channel’s taper . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4.1 Zero inclination angle . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4.2 1o inclination angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Conclusions 56

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography 58



List of Figures

1.1 Top view of an actual vibrating channel . . . . . . . . . . . . . . . . . . . . . 3

1.2 Three-dimensional view of the vibrating channel . . . . . . . . . . . . . . . . 3

1.3 Top and side view of the vibrating channel . . . . . . . . . . . . . . . . . . . 4

2.1 Brazil-nut effect: Large ball rising to the top . . . . . . . . . . . . . . . . . . 6

2.2 (a). Initial position of large glass bead (b). Configuration after few taps (c).

Large glass bead reaches top after several taps, Knight et al. (1993) . . . . . 7

2.3 (a). Configuration of the glass beads after several taps. Black glass beads on

the right side of the container reaches bottom due to the roughness of the right

wall while the beads in contact with the left smooth wall doesn’t get affected.

(b). Positions of glass beads in a conical shaped container after several taps,

Knight et al. (1993) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Horizontal Segregation in a vertically vibrated granular bed for different den-

sity ratios, Duncan et al. (2004) . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Large particles segregates horizontally in vertically vibrated granular system,

Levanon & Rapaport (2001) . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Axial segregation of grains in a rotating cylinder, Rapaport (2002) . . . . . . 10

3.1 An algorithm of molecular dynamics simulation . . . . . . . . . . . . . . . . 13

3.2 Contact between two particles . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Schematic of force model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Lennard-Jones Potential with the distance between particles . . . . . . . . . 19

viii



ix

3.5 Variation of Lennard-Jones force with the distance between particles . . . . . 20

3.6 Coulomb friction model: A limiting friction force to prevent sliding occur

between particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7 Particle interaction with system’s boundary wall . . . . . . . . . . . . . . . . 24

3.8 Schematic of Verlet algorithm in simulation . . . . . . . . . . . . . . . . . . 26

3.9 Schematic of Leapfrog algorithm in a simulation . . . . . . . . . . . . . . . . 28

3.10 Schematic of Velocity Verlet algorithm in a simulation . . . . . . . . . . . . . 29

3.11 Three-dimensional view of particles arranged on top of the channel . . . . . 30

3.12 Top view of configuration of particles after dropping into the channel . . . . 30

4.1 Sphere rolling down an inclined channel (a) No damping in the system (b)

System with finite damping . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Height of particle from the surface vs time. Height is in multiples of particle

diameter and time is non-dimensionalized so that one unit of simulation time

approximately equals to 0.018 s. . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Normal elastic force on a particle by channel’s base vs time. Normal force is

also non-dimensionalized by the particle’s mass, and the acceleration due to

gravity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Height of particle from the channel’s base vs time. Particle come to rest after

collisions with the channel’s base in infinite time. . . . . . . . . . . . . . . . 35

4.5 Normal elastic force on a particle by the channel’s base vs time. . . . . . . . 35

4.6 Normal damping force vs time . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.7 Top and side view of a vibrating channel with parallel side walls and zero

inclination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.8 Fractional and net flow rate of particles in a vibrating channel with parallel

side walls and zero inclination . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.9 Top and side view of a vibrating channel with parallel side walls and inclination

θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



x

4.10 Density distribution of particles from simulation transverse to the direction

of vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.11 Density distribution of particles from experiment transverse to the direction

of vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.12 Density distribution of particles from simulation along the direction of vibration 40

4.13 Density distribution of particles from experiment along the direction of vibration 40

5.1 Top view of vibrating channel . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Effect of vibration amplitude on the downward flow rate of grains . . . . . . 43

5.3 Effect of vibration amplitude on the upward flow rate . . . . . . . . . . . . . 44

5.4 Effect of vibration amplitude on the net flow rate. . . . . . . . . . . . . . . . 45

5.5 Effect of inclination on the grains’ downward flow rate. . . . . . . . . . . . . 46

5.6 Effect of inclination on the upward flow rate. . . . . . . . . . . . . . . . . . . 47

5.7 Effect of inclination on the net flow rate. . . . . . . . . . . . . . . . . . . . . 47

5.8 Effect of area fraction on the grains’ downward flow rate . . . . . . . . . . . 48

5.9 Effect of area fraction on the upward flow rate . . . . . . . . . . . . . . . . . 49

5.10 Effect of area fraction on the net flow rate . . . . . . . . . . . . . . . . . . . 50

5.11 Effect of varying the channel’s taper on downward flow rate at zero inclination

angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.12 Effect of varying the channel’s taper on upward flow rate at zero inclination

angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.13 Effect of varying the channel’s taper on net flow rate at zero inclination angle 53

5.14 Effect of the taper on the downward flow rate in a channel inclined at 1o. . . 53

5.15 Effect of the taper on the upward flow rate in a channel inclined at 1o. . . . 54

5.16 Effect of the taper on the net flow rate in a channel inclined at 1o. . . . . . . 55



Chapter 1

Introduction

Granular materials are ubiquitous. In everyday life, we come across many things that count

as granular substances, like wheat, corn flakes, rice, coal etc. There are many natural and

industrial phenomenon that involves granular particles. Example of natural phenomenon

includes snow avalanches, sand dunes, and landslides. Industrial processes involving handling

of grains are hopper flows, milling, grinding, fluidized beds, segregation etc. The interaction

between the grains is highly dissipative due to inelastic collisions and friction. Therefore,

kinetic energy is not conserved in a granular system, and an external source of energy in

some form must be applied to sustain the motion of a system of granular particles.

These materials possess peculiar properties that are not displayed by conventional sub-

stances. Granular materials can behave like solids, liquids or gases depending upon applied

external conditions (Jaeger and Nagel 1996). Apart from these properties, there are many

other phenomena unique to these substances. It is observed that granular mixtures tend

to segregate into their constituent species, when shaken externally. A common example is

the ‘Brazil-nut effect’ (Rosato et al. 1987) in which a large particle, mixed with the smaller

particles, separates to the top when vibrated vertically. However, under different conditions

this big particle can sink to the bottom of the vertically shaking container, thereby demon-

strating the ‘Reverse Brazil-nut effect’ (Shinbrot and Muzzio 1998). It is not always the

case that particles segregate only in the shaking direction, horizontal segregation of grains

1



2

can also occur. There are systems, in which particles segregate in a direction transverse to

the shaking direction (Levanon and Rapaport 2001). This is also a feature of our system.

Because segregation plays a very important role in industry, particularly pharmaceutical

and agricultural industries, significant efforts have been invested into understanding this

phenomenon.

1.1 Problem statement

It is observed in the industry that a granular mixture segregates axially in a horizontally

vibrated channel, which is slightly inclined to the ground. This channel has a zigzag internal

profile as shown in Fig. 1.1. Typically, a mixture of grains such as wheat (heavy) and chaff

(light) is poured into the center of the channel, as shown in Fig. 1.1, which, as shown, is

shaken in a direction perpendicular to the channel’s axis. It is observed that the heavy and

light grains move towards the lower (A) and higher (B) ends, respectively. The separation

achieved is nearly faultless.

We begin by first conjecturing that the channel’s Christmas tree pattern is really a

concatenation of small trapezoidal chambers as shown in Fig. 1.1, with each chamber acting

as a micro-sorter. The sorting itself is hypothesized to be a result of the competition between

gravity, which pulls material down towards the lower narrow end of the trapezium, and the

collisional momentum transfer from the tapered walls that is biased upwards. To completely

understand the granular dynamics in whole segregating channel, we first concentrate our

study on one micro-sorting vibrating channel, as shown in Figs. 1.2 and 1.3.

1.2 Overview

A literature review of work related to segregation of granular materials is presented in Chap-

ter 2. In Chapter 3, various simulation methodologies are described, and a detailed discussion

on these techniques along with several force laws is presented. We validate our code in Chap-



3

Figure 1.1: Top view of an actual vibrating channel

Figure 1.2: Three-dimensional view of the vibrating channel

ter 4. Finally, in Chapter 5, some results are discussed. We conclude our work in Chapter

6, along with some thoughts for the future.
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Figure 1.3: Top and side view of the vibrating channel



Chapter 2

Literature review

A review of previous work related to segregation of granular materials is presented in this

chapter.

Many experimental and numerical studies have been performed to explore the various

parameters that cause a granular mixture to separate into its different components. Grains

segregates in the direction of the shaking as well as transverse to it. Segregation is accom-

plished in vertical and horizontal vibrating chambers, and rotating cylinders. As we will see,

majority of the segregation studies have been done in vertically vibrated system.

The most popular example of segregation of vertically vibrated granular materials is the

‘Brazil-nut effect’. When a box containing a number of small balls and one large ball is

vibrated vertically, the large ball rises to the top irrespective of its density compared to the

smaller ones as illustrated in Fig. 2.1 (Rosato et al. 1987). A horizontal Brazil-nut effect

also occurs in granular systems (Schnautz et al. 2005). In a rotating circular container, light

particles move towards the boundary of the container while heavier ones shift to the center.

For the Brazil-nut effect, many explanations have been proposed: percolation, convection,

container’s geometry, the effect of interstitial air, and density and size ratio of the big and

smaller particles. The percolation refers to the smaller particles pass through the holes

created by the larger ones. Rosato et al. (1987) suggested that large particle rise to the top

due to filling of voids, which are generated underneath the large particle by smaller ones in
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each vibrating cycle.

Figure 2.1: Brazil-nut effect: Large ball rising to the top

Knight et al. (1993) came up with the idea that convection drives size segregation in

vertically vibrated granular mixture. They conducted an experiment for investigating the

parameters that cause a single large glass bead to rise to the top through smaller glass

beads in a vertically vibrated cylindrical container as displayed in Fig. 2.2. The cylindrical

container was subjected to vertical taps in a time interval of one second. They observed

a convection current that goes downwards along the side walls and rises to the top in the

center of the cylindrical container. This convective force lift the large glass bead to the top

and keeps it there if the particle size is greater than the width of the downward convection

stream along the side wall. To check whether convection is induced because of the friction

at interaction with the boundary wall, they extended their study by making left side of the

cylinder smooth (see Fig. 2.3 (a)). It was observed that, there was no downward motion of

beads along the smooth side wall of the cylindrical column as shown in Fig. 2.3 (a). Thus, it

became clear that friction of the boundary walls causes a convection current in the vibrated

granular system. Convection is also observed in the horizontally vibrated granular material
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Figure 2.2: (a). Initial position of large glass bead (b). Configuration after few taps (c).

Large glass bead reaches top after several taps, Knight et al. (1993)

(Medved et al. 1999) and it also depends upon the roughness of the boundary wall and

geometrical dimensions, e.g., width, depth, and length of the shaker.

Effect of container geometry was also investigated by Knight et al. (1993) by employing

a conical shaped container (see Fig. 2.3 (b)). The large glass bead sink to the bottom due

to the reverse direction of convection current as compare to that in cylindrical container.

Initially, the small black beads were at the bottom of the conical container. Fig. 2.3 (b)

shows position of small black beads and large glass bead after many taps.

The effect of interstitial fluid, i.e., air, on the motion of the large particle has also been

investigated experimentally by Mobius et al. (2001, 2005). It was observed that air plays an

important role in the motion of large particle in a vertically vibrated granular bed. Mobius

et al. in their experiment observed that the rise time of the large particle does not have a

monotonic dependence on density which is in contradiction with the effect noticed earlier by
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Figure 2.3: (a). Configuration of the glass beads after several taps. Black glass beads on

the right side of the container reaches bottom due to the roughness of the right wall while

the beads in contact with the left smooth wall doesn’t get affected. (b). Positions of glass

beads in a conical shaped container after several taps, Knight et al. (1993)

Shinbrot and Muzzio (1998) and Hong and Quinn (2001). The rise time depends upon the

ratio of large particle’s density to the surrounding smaller particles. Mobius et al. (2005) also

investigated how the ambient pressure, initial position of the large particle, and convection

in the granular bed affect its motion in vertically vibrated chamber.

This is not always the case that the large particle segregates to the top of the vibrating

container. There are some observations for the reverse of this phenomena (Shinbrot and

Muzzio 1998; Hong and Quinn 2001). This is called Reverse Brazil-nut effect. When a large

grain in a deep bed of small grains is vibrated at high amplitude, the larger one sink to the

bottom of the bed (Shinbrot and Muzzio 1998). Inertia was observed to be important for this

effect to take place. It was also observed that, for the same granular system, tuning of some

parameters may cause the large particle to sink to the bottom. The explanation presented
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for the crossover from Brazil-nut effect to Reverse Brazil-nut effect was competition between

the percolation effect and condensation of granular particles (Hong and Quinn 2001).

Horizontal segregation of particles is observed in a vertically vibrated granular system.

It is observed that heavy grains in a mixture of small grains cluster spontaneously and

undergoes horizontal segregation (Sanders et al. 2004). Fig. 2.4 shows a snapshot of a

simulation in which eleven big particles of different density are vibrated with the smaller

particles. It is observed that particles of approximately the same density shows a collective

behavior. The high density particles sinks to the bottom, while low density particles rise

up to the surface. It was also observed that a stratified flow of particles in the horizontal

direction occurs when they are vibrated vertically with a base of sawtooth-shaped profile

(see Fig. 2.5) (Levanon and Rapaport 2001).

Figure 2.4: Horizontal Segregation in a vertically vibrated granular bed for different density

ratios, Duncan et al. (2004)

Segregation of grains also occur in long and slowly rotating cylinders with the cylinder

axis horizontal (Rapaport 2002, 2007) . This type of granular segregation has been studied

extensively in experiment, in which a horizontal cylinder, partially filled with a mixture of

grains, is rotated at a constant rate. Under appropriate conditions, the grains segregate into

different components along the axis of the cylinder as shown in Fig. 2.6.



10

Figure 2.5: Large particles segregates horizontally in vertically vibrated granular system,

Levanon & Rapaport (2001)

Figure 2.6: Axial segregation of grains in a rotating cylinder, Rapaport (2002)

We have reviewed vertical and horizontal segregation of grains in a vertically vibrated

granular system, and observed that there are many parameters that cause segregation. These

include: size, shape, density, and frictional properties of constituent particles, and their
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interaction with system’s boundary walls and effect of any interstitial fluid that may be

present. Convection also plays an important role. It is also noticed that segregation of

grains in different granular system is governed by some common parameters. By considering

this fact, we also expect the influence of above discussed phenomenon and parameters in our

system even with different container geometry.



Chapter 3

Simulation methodology

Granular dynamics is multi-particle dynamics. Therefore, it cannot be solved analytically.

Various simulation methodologies are available for numerically evaluating the behavior of

granular flows. These are: a) Molecular Dynamics (MD) simulation, b) Monte Carlo (MC)

simulation, and c) Discrete element method (DEM). A detailed description of these simula-

tion techniques is provided below.

3.1 Molecular Dynamics simulation

Molecular Dynamics simulation (Allen and Tildesley 1987; Frenkel and Smit 1996; Rapaport

2004; Poschel and Schwager 2005) is a computational experiment used primarily to study the

behavior of a molecular system consist of atoms and molecules. In this simulation technique,

Newton’s equations of motion are integrated to find the positions of particles at discrete time

intervals.

Fi = mi
d2ri

dt2
, (3.1)

where Fi is the total force acting on the ith particle, mi is its mass and ri is its position

at time t. Orientation and angular velocity of particles are calculated by using the Euler’s

equations (3.2).

τ = I α + ω × I ω , (3.2)

12
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where τ is total torque acting on a particle, I is the mass moment of inertia of a particle

about its center of mass, and α and ω are the angular acceleration and velocity, respectively.

In case of spheres, the inertia tensor I is isotropic, i.e., I = I 1, where 1 is an identity matrix.

So, ω × I ω = Iω × ω = 0, which reduces 3.2 to 3.3,

τ = I α . (3.3)

Above equations are numerically integrated by employing a suitable integration algorithm.

These algorithms will be discussed in detail later. A step-by-step simulation procedure is

explained schematically by the flow chart in Fig. 3.1. At the first step of a simulation,

Figure 3.1: An algorithm of molecular dynamics simulation

particle’s positions, velocities, and accelerations are initialized. There are several ways to

generate an initial configuration. They include:
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1. Arranging particles in a lattice, i.e., Face centered cubic (FCC), Body centered cubic

(BCC) etc.

2. Randomly distributing the particles in the given system’s domain.

Similarly, initial values of particles’ velocities and accelerations can be taken as zero or

random. It is important in Molecular Dynamics simulations to pick an integration time step

and that is small enough to sustain the numerical stability of the simulation. This type of

simulation method is also called force-based or time-driven simulation. Its applications are

mainly in the field of material science, chemical engineering, and bio-molecules.

Another type of Molecular Dynamics is the event-driven Molecular Dynamics simulation

(Poschel and Schwager 2005). The central idea of an event-driven Molecular Dynamics

simulation is that, at any instant of time, in the entire system there occurs at most one

collision of a very short duration. In contrast, multiple collisions are allowed in a force-

based Molecular Dynamics simulation. It is preferable to employ event-driven Molecular

Dynamics in those systems where the mean-free time of a particle is more than the collisional

time between two particles. Mean-free time is the time in which a particle persists without

interaction with either any other particle or with the system’s boundary walls. Therefore,

this technique is more useful in dilute systems like granular gases, where particles spend

most of their time in free flight.

3.2 Monte Carlo simulation

Monte Carlo simulation is a probabilistic computational technique. It is very popular in

molecular modeling. This method employs random numbers to generate successive config-

urations of system under analysis. Randomly generated configurations are accepted when

particles do not overlap with each other and with the system’s boundary walls. For detailed

description we refer the reader to Allen and Tildesley (1987) and Poschel and Schwager

(2005).
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3.3 Discrete element method

Discrete Element Method (DEM) or Distinct Element Method is, like Molecular Dynamics,

a deterministic technique that finds the trajectories of discrete particles. It is viewed as a

generalization of the Molecular Dynamics simulation technique, in which particles can have

an irregular geometrical shape. In the discrete element method, possible inelastic nature of

particles may be accommodated. This method was originally employed to solve problems

in rock mechanics by Cundall and Strack (1979). It is a simple, yet very useful, technique

to simulate granular flows in powder technology, mining, agriculture and food industries,

pharmaceutical, oil, and chemical industries.

The principle of discrete element method is to follow the trajectory and rotation of each

particle while stepping forward in time. From the current position and orientation of each

particle, forces and moments are calculated, that are then utilized as initial data for Newton’s

and Euler’s equations of motion (3.1 and 3.2) to find the particle’s subsequent positions and

velocities at the next time step. It is assumed that over one time step the forces acting

on the particle and, so the particle’s acceleration, remains constant; the particle’s velocity

varies linearly. This makes the selection of a suitable time step very important in a particular

simulation that maintains the stability and accuracy of the algorithm. Simulation algorithm

in the discrete element method is the same as in the case of molecular dynamics simulation

(see Fig. 3.1).

The advantage of discrete element method is its capability to simulate various phenomena

in granular flows. Its limitation is that it is computationally intensive. Significant compu-

tational power is required to analyze a process completely. Therefore, it restrict us to use

relatively few particles and/or small time durations.

Various types of force models are employed to model particle-particle and particle-wall

interactions. A detailed description follows.
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3.4 Force laws

In the present system, particles are of a spherical shape. Two particles are in contact with

each other if the distance between their centers is less than the sum of their radii as illustrated

in Fig. 3.2. Therefore, the mutual overlap between particles ith and jth is given by

ξ = Ri + Rj − |ri − rj| > 0 , (3.4)

where Ri, Rj are the radius, and ri, rj are the position vectors of ith and jth particle,

respectively. To illustrate clearly the contact between two colliding grains, a two-dimensional

picture is drawn, as shown, in the Fig. 3.2, where r̂ij is the unit vector along the line

Figure 3.2: Contact between two particles

connecting centers from jth to ith particle, t̂ is the unit vector along tangential direction, and

ωi and ωj are the angular velocities of particles. The advantage of using spherical particles

is that contact between two particles may be detected easily and efficiently.
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Because of the inelastic nature of the interactions between granular particles, a part

of their kinetic energy is lost as heat during a collision. This dissipated energy raises the

temperature of the particles that can, however, be neglected. This is because thermal energy

is usually much smaller than the gravitational potential energy required to lift a grain over

another grain (Kudrolli 2004). Therefore, change in grains’ properties due to temperature

variation cannot be observed. The deformation of the particles is taken to be small, and we

further assume there is no distortion in the shape of particles after many collisions.

During collision, particles experience forces in the normal r̂ij and tangential t̂ directions

as shown in the Fig. 3.2. A detailed description of normal and tangential forces follows next.

3.4.1 Normal force

Normal force on a particle has two components; one due to elasticity and the other one due

to dissipation (see Fig. 3.3 (a)). Thus,

Fn = Fn
el + Fn

diss , (3.5)

where Fn
el is the normal elastic force and Fn

diss is the normal dissipative force.

The normal force between two particles depends upon the type of force model employed in

the simulation. The commonly used force models for interactions are:

1. Linear spring dashpot force model

2. Hertzian contact force model with viscous damping

Normal elastic force and dissipative force for each force model are described separately in

next sections.

3.4.1.1 Normal elastic force

In linear spring force model, an interaction between two particles is assumed to be linear

elastic. Normal elastic force on the ith particle is thus,

Fn
el = kn ξ r̂ij , (3.6)
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Figure 3.3: Schematic of force model

where kn is the stiffness of a linear spring and ξ is the mutual compression of colliding

particles (3.4), and r̂ij is the unit vector along the line connecting centers from jth to ith

particle (see Fig. 3.2).

The Hertzian contact force model was derived by Heinrich Hertz (Johnson 1985) as a

function of ξ and the material parameters Young’s modulus Y and Poisson ratio ν. The

restoring normal elastic force between two contacting spheres of the same material is given

by

Fn
el =

2Y
√

Reff

3(1− ν2)
ξ3/2 r̂ij , (3.7)

where Reff is the effective radius of the two colliding spheres obtained by the relation

1

Reff
=

1

Ri

+
1

Rj

. (3.8)
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In case of particles of different materials, 3.7 will be modified to 3.9,

Fn
el =

4
√

Reff

3

(
1− ν2

i

Yi

+
1− ν2

j

Yj

)−1

ξ3/2 r̂ij , (3.9)

where Yi and Yj are Young’s modulus, and νi and νj are Poisson ration for the ith and jth

particle, respectively.

In addition to the above two force models, normal elastic force between two particles can

also be modeled through Lennard-Jones potential.

The repulsive force due to a Lennard-Jones potential (see Fig. 3.4) can also be imple-

mented as a short-range force (see Fig. 3.5) to model inter-particle interaction. It has been

used successfully by some researchers in their study of granular materials, e.g., Rapaport

(2004). A truncated Lennard-Jones force model is employed by introducing a cut-off range

to incorporate the fact that no interaction takes place between non-contacting grains. The

Lennard-Jones force within the cut-off range between particles located at ri and rj with

diameters σi and σj, respectively, is

Figure 3.4: Lennard-Jones Potential with the distance between particles

Fn
el =

48

rij

((
σij

rij

)12

− 0.5

(
σij

rij

)6
)

r̂ij , (3.10)
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Figure 3.5: Variation of Lennard-Jones force with the distance between particles

where rij = |ri − rj| is the distance between the center of two particles, σij = (σi + σj)/2

is the mean diameter of two particles, and r̂ij is the location of ith particle with respect to

jth particle. We take the cut-off distance to be rcut = 21/6σij, as it is clear from the Fig.

3.5 that the interaction force becomes negative, which indicates attraction between grains,

above this cut-off distance. As, grains do not attract, so, this cut-off distance allows the

particles to have only repulsive forces.

3.4.1.2 Normal dissipative force model

Here, we will discuss two dissipative force models; one has linear dependence on particles’

deformation rate and the other one has dependency on particles’ mutual deformation along

with their deformation rate.

In the first case, the normal dissipative force is assumed to be of the form,

Fn
diss = −γnmeff (vij .̂rij) r̂ij , (3.11)

where vij = vi − vj is the relative velocity of the ith particle with respect to the jth particle,

vij .̂rij is the component of relative velocity along the line connecting centers, γn is the normal
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damping coefficient, and meff = mi mj/(mi + mj) is the effective mass of two particles.

For inelastic collisions, the coefficient of restitution ε can be taken as a parameter for

energy loss. It is the ratio of normal relative velocity of particle just after and just before a

collision.

ε = −vafter/vbefore , (3.12)

where vbefore, vafter is the relative velocity of particle before and after collsion.

Because collsion do not create energy, the coefficient of restitution always lies between 0

and 1, where a unit value corresponds to energy-preserving perfectly elastic collision, and

zero value to the case when particles stick to each other post-collision. For the present force

model, normal damping coefficient γn and coefficient of restitution ε relate to each other

(Ristow 1994) by

γn ≈ − ln ε√
π2 + ln2 ε

. (3.13)

It is clear from the above equation that ε is independent of the impact velocity of colliding

particles. However, experimental investigations have suggested the dependence of coefficient

of restitution on the impact velocity. This is because of the non-linear damping. However,

we will for the moment overlook this non-linearity.

In the second dissipation force model, the normal dissipative force depends upon the

deformation ξ, and its rate ξ̇ of colliding particles. It is given by

Fn
diss =

2Y
√

Reff

3(1− ν2)
A
√

ξξ̇ r̂ij , (3.14)

where Y is Young’s modulus, Reff is the effective radius of two colliding particles and is

given by 3.8, ν is the Poisson ratio, A is dissipative constant and a function of material

viscosity (Brilliantov et al. 1996), and r̂ij is unit vector along the line connecting centers

from jth to ith particle.

For the particles having different materials, 3.14 will be modified to 3.15

Fn
diss =

4
√

Reff

3

(
Ai + Aj

2

)
ξ̇
√

ξ r̂ij , (3.15)

where Ai and Aj are dissipative constants for ith and jth particle.
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3.4.2 Tangential force

In an oblique collision, a tangential force acts between the particles in addition to their

normal interaction. This force depends on the surface properties of the granular particles.

Due to friction between the particle’s surfaces, a tangential force acts which in turn rotates

the particles. vt
ij is the component of relative velocity along the tangential direction t̂ as

illustrated in Fig. 3.2. This is given by

vt
ij = vij − (r̂ij.vij)r̂ij −

(
σi ωi + σj ωj

σi + σj

)
× rij , (3.16)

where ωi, ωj are angular velocity of ith and jth particle.

The tangential force is given by

Ft = −min(µ |Fn|, γt|vt
ij|) v̂t

ij , (3.17)

where min(a,b) is minimum of a and b, γt is the tangential damping coefficient, static friction

coefficient µ sets an upper bound proportional to |Fn| according to Coulomb’s law. The above

tangential force is simply a less singular version of the classical dry Coulomb friction model,

as shown in the Fig. 3.6

Though the above force law is used very widely, it has certain limitations. This law

is reliable in those granular flows where colliding particles have finite velocities. It is not

suitable for static granular systems because a zero relative tangential velocity will predict

zero tangential force, which may result in the collapse of the granular structure. Also,

an experimental investigation tells that the tangential elasticity exists that can reverse the

tangential velocity of particles. The model proposed by Cundall and Strack (1979) helps

to overcome this difficulty. When two particles comes into contact, a tangential spring acts

between their contact points, which can elongate and shorten while the particles are in

contact with each other (see Fig. 3.3 (b)). Its elongation or compression is given by

ζ(t) =

∫ t

t0

vij(t
′
)dt

′
, (3.18)

where t0 is the time at which two particles came into contact. This tangential force is again
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Figure 3.6: Coulomb friction model: A limiting friction force to prevent sliding occur between

particles

limited by the coulombs’ friction law.

Ft = −min
(
µ |Fn|, |kt ζ|

)
v̂t

ij . (3.19)

It is important to note that the system behavior does not depend on the type of force

model used. This is verified by us in our present vibrating granular system by comparing the

results from a Hertzian contact force model with those from a Lennard-Jones force model.

We are employing Hertzian contact force model (3.7) along with linear dissipative force

model (3.11) for interactions between particles in our simulation. Tangential forces are

implemented by using the model given by 3.17. These force laws are employed for both

particle-particle and particle-wall interactions. The particles’ interaction with the channel’s

walls is implemented in such a way that when a grain comes within the cut-off range of a

wall, a virtual granular particle is created at the foot of the perpendicular (see Fig. 3.7)

dropped from the colliding grain on to the wall.

This latter construction ensures that the radial force experienced by the incoming grain

is indeed normal to the wall, as should be the case. Here, we assume that this virtual
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Figure 3.7: Particle interaction with system’s boundary wall

particle has similar properties to the ones in the mixture. This is a simplifying, but not

necessary, assumption. The colliding grain now interacts with the wall particle according to

the collisional framework developed above for particle-particle interaction.

As dry granular particles do not attract each other, we set normal force to be zero whenever

it becomes negative (Poschel and Schwager 2005).

3.5 Integration algorithm

There are various integration algorithms for numerically integrating the equations of motions

of granular particles (Allen and Tildesley 1987). The popular algorithms for calculating

trajectories of particles are:

1. Verlet algorithm 2. Leapfrog algorithm, 3. Velocity Verlet algorithm

As Allen and Tildesley (1987) state, the desirable characteristics of a successful simulation

algorithm are:

1. “It should be fast, and require little memory.

2. It should premit the use of a long time step δt.
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3. It should duplicate the classical trajectory as closely as possible.

4. It should satisfy the known conservation laws for energy and momentum, and be time-

reversible

5. It should be simple in form and easy to program”.

We now describe the three algorithm listed above.

3.5.1 Verlet algorithm

The Verlet algorithm calculates the position of a particle at time t + δt by using its position

and acceleration at the present time t and the position at the previous time t− δt, where δt

is the integration time step. It does not make use of velocities. It is derived by using Taylor

expansion series to make forward and backward expansions in time of a particles’ position

coordinates r(t), viz.,

r(t + δt) = r(t) + v(t)δt +
a(t)δt2

2!
+ O(δt3) (3.20)

and r(t− δt) = r(t)− v(t)δt +
a(t)δt2

2!
−O(δt3) , (3.21)

where v and a are the velocity and acceleration of a particle. Adding the above two equations

yields the Eqn. 3.22, which is used in advancing positions of particles in Verlet algorithm.

r(t + δt) = 2r(t)− r(t− δt) + a(t)δt2 + O(δt4) . (3.22)

Velocities are calculated from the positions of particles at a previous and a future time step

by

v(t) =
1

2δt
[r(t + δt)− r(t− δt)] . (3.23)

Implementation of the above equations in a simulation is shown schematically by the flow

chart in Fig. 3.8.

Characteristics of the Verlet algorithm are:
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Figure 3.8: Schematic of Verlet algorithm in simulation

1. The Verlet algorithm is reversible in time, i.e., if we put −δt in place of δt in 3.22, the

same equation will come out. It shows that the particles’ trajectories can be retraced

backward in time

2. With large time steps, this algorithm shows good energy conservation properties

Limitations associated with this algorithm are:

1. Handling of velocities is not efficient because velocity at time t is calculated when

positions are available at time t + δt

2. Numerical imprecision is also associated because of addition of O(δt2) small and large

quantities O(1) as illustrated by 3.22.
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3.5.2 Leapfrog algorithm

The leapfrog algorithm is a modified version of the Verlet algorithm. Here, the position of a

particle at time t + δt is calculated from its position at time t and its velocity at time t + δt
2
,

i.e.,

v(t +
1

2
δt) = v(t− 1

2
δt) + a(t)δt (3.24)

and r(t + δt) = r(t) + v(t +
1

2
δt)δt . (3.25)

The velocity of particle at time t can also be computed by taking the average of the velocities

at time t + 1
2
δt and t− 1

2
δt:

v(t) =
1

2

[
v(t +

1

2
δt) + v(t− 1

2
δt)

]
. (3.26)

Implementation of the above equations in a simulation is shown schematically in the flow

chart of Fig. 3.9. Mathematically, this algorithm is equivalent to the Verlet algorithm. This

algorithm is time reversible and, also, velocities appear explicitly while updating positions of

particles. Numerical error is reduced because we do not take difference of two large quantities

to obtain a small one.

3.5.3 Velocity Verlet algorithm

The Velocity Verlet algorithm computes the particle’s position at a future time t+δt by using

its position, velocity and acceleration at only the present time t . The particle’s velocity at

time t + δt is updated from its velocity at time t and its acceleration at times t and t + δt,

viz.,

r(t + δt) = r(t) + v(t)δt +
1

2
a(t)δt2 (3.27)

and v(t + δt) = v(t) +
1

2
[a(t) + a(t + δt)] . (3.28)

The velocity Verlet algorithm is shown schematically in flow chart in Fig. 3.10
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Figure 3.9: Schematic of Leapfrog algorithm in a simulation

This algorithm updates velocities in an excellent way. Positions, velocities, and accelerations

are all stored at the same time t, which reduces the round-off error. We are employing velocity

Verlet algorithm in our simulation because of its advantages described above.

An algorithm for molecular dynamics simulation is illustrated in Fig. 3.1. A brief description

of each step is provides in next section.

3.6 Our simulation algorithm

Initialization:

The two different ways to generate an initial configuration of particles are discussed in Section
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Figure 3.10: Schematic of Velocity Verlet algorithm in a simulation

3.1. However, in our simulations, we generated an initial configuration by first arranging the

particles on the top of the vibrating channel (see Fig. 3.11) and then letting them fall into

it under gravity (Poschel and Schwager 2005). The configuration obtained as shown in the

Fig. 3.12 is used in simulations as the initial configuration. The initial values of particles’

velocities and accelerations can be taken as zero or random.

Contact detection and force calculation: The contact between two particles is identified

when the distance between their centers is less than the sum of their radii (Eqn. 3.2).

Updating particles’ positions and velocities: Particles’ positions and velocities are

updated by implementing velocity Verlet algorithm. This algorithm has been described in

detail in Section 3.5.
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Figure 3.11: Three-dimensional view of parti-

cles arranged on top of the channel

Figure 3.12: Top view of configuration of par-

ticles after dropping into the channel

Particle insertion: In our system, particles escape from the top and bottom of the inclined

channel. Particles are inserted randomly in a fixed volume above the base of the vibrating

channel. This randomly inserted particle is taken into the system if it does not overlap with

other particles and system’s boundary walls.

Time step selection: As Mishra (2003) state,“the time step for numerical integration

should be set smaller than a critical value to make the calculation stable. Based on the

characteristic natural frequency of a spring-mass oscillation system, the oscillation period

can be calculated as δt = 2π
√

m/K, where m is the mass and K is the stiffness of the

spring-mass system.” This is the critical time step for a given material of particles used in

DEM simulation. In order to resolve all collisions between particles, the time step employed

should not be greater than the critical time step. We have used the time step less than its

critical value. However, we haven’t compared the mean collision time with our assumed time

step.

In our system a particle can have contact with more than two particles at a time. However,

in case of event-driven simulation only one collision takes place in the entire system.

To check the code’s accuracy, some verification tests has been done. These tests are discussed

next.



Chapter 4

Validation tests for DEM code

Our three-dimensional DEM code is written in Fortran 90 language. We employ a Hertzian

contact force model (Eqn. 3.7) to idealize contact of particles in our system. During collision,

dissipation is accommodated by introducing a normal damping (Eqn. 3.11) and a tangential

force (Eqn. 3.17). This force model has been discussed in detail in the previous chapter.

These force laws are employed for both particle-particle and particle-wall interactions. For

integrating the equations of motion of particles, the velocity Verlet integration scheme has

been implemented. We have also made assumptions about our simulated granular system.

These are:

1. Particles are of a spherical shape

2. Shape of the grains remains conserved after collision

3. Temperature rise in the grains after collision is negligible

4. There is no effect of interstitial air on the dynamics of granular particles.

Various tests has been done to check the accuracy of the code. In addition, the outcome has

been compared with experimental data from previous research. These tests are discussed

next.

31
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4.1 Acceleration of a particle rolling down an inclined

plane

These are very basic tests for testing a granular dynamics code. In these tests, a particle is

allowed to move down an inclined plane under different damping conditions.

In the first case, all kind of damping and friction in the system is kept zero. In this

situation, when there is no damping in the system, only sliding motion of particle occurs.

Thus, the particle must slide down with an acceleration of g sin θ, where θ is the vibrating

channel’s inclination with the ground.

In the second test under this category, damping and frictional forces are switched on.

Due to friction, particle rolls down with an acceleration of 5g sin θ/7.

Figure 4.1: Sphere rolling down an inclined channel (a) No damping in the system (b) System

with finite damping

4.2 Particle-particle or particle-wall forces

This test simulates free falling particle’s interaction with the vibrating channel’s base. This

test is also conducted with different damping conditions. These validation tests are matched

with the results given by Asmar et al. (2004). In these tests, the vibrating channel is not
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inclined with the ground.

4.2.1 Zero damping

Figure 4.2: Height of particle from the surface vs time. Height is in multiples of particle

diameter and time is non-dimensionalized so that one unit of simulation time approximately

equals to 0.018 s.

In zero damping conditions, particle rebounds to same height after colliding with the

channel’s base (see Fig. 4.2). Also, as expected, the same normal force acts on the particle

during successive interactions (see Fig. 4.3).

4.2.2 Finite damping

When there is some damping present in the system, the particle loses a fraction of its kinetic

energy during a collision, and, so, does not rebound to the same height (see Fig. 4.4).

Therefore, the velocity with which a particle collides with the channels’ base decreases with

time, and so does the normal elastic force during a collision (see Fig. 4.5).
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Figure 4.3: Normal elastic force on a particle by channel’s base vs time. Normal force is also

non-dimensionalized by the particle’s mass, and the acceleration due to gravity.

The normal damping force experienced by the particle on successive interactions is shown

in Fig. 4.6. It is also observed in Fig. 4.6 that the normal damping force is negative. This

thing happens when particle starts separating from the surface because of positive r̂ij .vij

value in separation which gives negative damping force.
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Figure 4.4: Height of particle from the channel’s base vs time. Particle come to rest after

collisions with the channel’s base in infinite time.

Figure 4.5: Normal elastic force on a particle by the channel’s base vs time.
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Figure 4.6: Normal damping force vs time

4.3 Vibrating channel with parallel side walls and zero

inclination

In this test, vibrating channel’s side walls are made parallel, and there is no inclination with

the ground. This vibrating channel is open from both sides A and B as shown in the Fig.

4.7. When granular particles, in this geometrical arrangement, are vibrated horizontally ,

then same flow rate of particles is obtained from each side A and B.

Therefore, net flow rate of particles is zero at all vibration frequencies (see Fig. 4.8). Net

flow rate is the difference between the flow rate of the particles from each side A and B.

This test also gives us confidence in the accuracy of our code. It is observed from Fig. 4.8

that the flow rate from each side increases with the vibration frequency. The reason for this

needs to be investigated in detail.
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Figure 4.7: Top and side view of a vibrating channel with parallel side walls and zero

inclination

4.4 Vibrating channel with parallel side walls and in-

clination

In this test, vibrating channel also have some inclination θ with the ground, and vibrated in

an inclined direction as illustrated in Fig. 4.9. This geometrical set-up is similar with that

employed by Blair and Kudrolli (2003) in their experiment. The parameters, geometrical

dimensions of the vibrating channel, its inclination with the ground, size and shape of the

particles, vibration amplitude and frequency, are the same with those used in the experiment

mentioned above except material of the granular particles. In our simulation, we have

employed rubber balls instead of steel balls to avoid numerical instability because of steel’s

high stiffness.
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Figure 4.8: Fractional and net flow rate of particles in a vibrating channel with parallel side

walls and zero inclination

The density distribution of particles from simulations is compared with their experimental

counterpart. Because of different material properties of granular particles in the simulations,

we only expect a qualitative match with the experiment. The density distribution is calcu-

lated both along the direction of vibration (Z), and transverse (X) to it. Figures 4.10 and

4.11 illustrate density profiles in a direction transverse to the vibration obtained from our

simulation and from the experiment of Blair and Kudrolli (2003), respectively. Similarly,

Figs. 4.12 and 4.13 shows the density distribution along the direction of vibration obtained

from our simulation and by Blair and Kudrolli (2003), respectively. It is observed from

Fig. 4.12 that variation in density distribution is qualitatively similar to the experimental

observation shown in Fig. 4.13, except for the last case of 500 number of particles and 4o

inclination angle. This deviation may be due to statistical error; longer runs are required,

for calculating the particles’ density distribution.
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Figure 4.9: Top and side view of a vibrating channel with parallel side walls and inclination

θ
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Figure 4.10: Density distribution of particles

from simulation transverse to the direction of

vibration

Figure 4.11: Density distribution of particles

from experiment transverse to the direction of

vibration

Figure 4.12: Density distribution of particles

from simulation along the direction of vibra-

tion

Figure 4.13: Density distribution of particles

from experiment along the direction of vibra-

tion



Chapter 5

Results and discussion

In this chapter, various results for mono-disperse granular system are discussed. We explore

the effect of the vibration amplitude A, taper φ, the inclination angle θ, and the area fraction

η on the flow rates of particles from top and bottom ends of vibrating channel at various

vibration frequencies ν. We do not study the effect of friction and damping on the flow rates.

In the sections below, all results are non-dimensionalized with acceleration due to gravity g,

and the diameter and mass of the grains. As described before, one unit of simulation time

equals 0.018 s. Channel’s geometrical parameters, i.e., upper width (U), lower width (L), and

transverse width (H) are shown in Fig. 5.1. In our results, we plot how the fractional flow

rate varies with the vibration frequency by fixing all but a few of the remaining parameters.

The fractional flow rate in the upward Rup
f and downward Rdown

f direction is defined as the

ratio of the number of particles that escape from the system from the top and bottom exit,

respectively, per unit time to the total number of particles in the system, i.e.,

Rup
f = Number of particles escape from system from top/(N × t) (5.1)

and Rdown
f = Number of particles escape from system from bottom/(N × t) (5.2)

where N is the total number of particles in the system, and t is the total time.

The fractional net flow rate Rnet
f is the difference between the number of particles flowing

41
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upwards and the particles exiting from the bottom per unit time (Eqn. 5.3).

Rnet
f = Rup

f −Rdown
f . (5.3)

The area fraction η is the ratio of area occupied by the particles to the total area of the

vibrating channel, and is given by

η = N π σ2 tan(φ)/(U2 − L2) , (5.4)

where σ is the particle diameter.

Figure 5.1: Top view of vibrating channel

Finally in all our simulation results, the vibration frequency ν is varied between 1 Hz to

10 Hz.
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5.1 Amplitude variation

The channel’s vibration amplitude is varied while keeping all other parameters fixed. The

simulation parameters for this simulation study are: the amplitude A is varied from 1 particle

diameter to 2.5 particle diameter, the number of particles N are 250, the channel’s upper

U and lower widths L is kept at 30 and 8 particle diameter, respectively, and the channel’s

inclination θ and taper φ are 1o and 30o, respectively.

Figure 5.2: Effect of vibration amplitude on the downward flow rate of grains

In Fig. 5.2 we plot downward flow rate Rdown
f vs. the vibration frequency ν for different

amplitudes. It is clear from Fig. 5.2 that the downward flow rate of particles decreases when

increasing the frequency up to 2 Hz at higher amplitudes. The reduction in flow rate is

due to the particles’ collective motion at lower frequencies. Particles moves as a solid mass

at lower frequencies which increases jamming in the system. Jamming is a solid like state

when grains lock themselves and do not move as a single entity. At a vibration amplitude

of 1 particle diameter, the flow rate continues to reduce till vibration frequency of 3 Hz,

which also indicates the grains’ bulk motion. At higher frequencies, the system becomes
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fluidized and correspondingly the jamming effect decreases which enhances the downward

flow of particles. This bulk behavior may be verified by some auto-correlation tests that

should be done. At vibration amplitudes of 2.25 and 2.50 particle diameter, downward flow

rate of particles starts decreasing again at higher frequencies.

Figure 5.3: Effect of vibration amplitude on the upward flow rate

In Fig. 5.3 we plot upward flow rate Rup
f vs. the vibration frequency for different

amplitudes. It is observed from Fig. 5.3 that, at low vibration frequencies, there is negligible

flow of particles in the upward direction. However, the flow increases with an increase in the

frequency at a particular vibration amplitude. At low frequencies, the momentum transfer

due to the walls is dominated by the particles’ collective motion, which prevents the particles

from moving upwards. But, at higher frequencies, the collective motion of grains reduces,

and particles easily escape from the system. It is also noticed that at a vibration amplitude

of 1, the upward flow rate is almost zero till a frequency of 3 Hz. On the other hand, at

amplitudes of 2 and more, the frequency at which particles begin to move upwards lowers

to 2 Hz. This also indicates that the upward flow rate is a compromise between the grains’

bulk or solid behavior, and the momentum transfer from the channel’s walls.
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Figure 5.4: Effect of vibration amplitude on the net flow rate.

Figure 5.4 plots the fractional net flow rate Rnet
f vs. vibration frequency for different

amplitudes A. It is observed that the net flow rate of particles increases with the vibration

frequency. The frequency at which grains’ net flow rate vanishes is the critical frequency

at that vibration amplitude. It is also clear from the Fig. 5.4 that the critical frequency

decreases with growing amplitude. This makes physical sense, because the rate of upward

collisional momentum should increase as ν2A.

5.2 Theta variation

The channel’s inclination angle is varied to observe the gravity’s effect on the flow rate. The

simulation parameters for this study are: inclination angle θ is varied from 1o to 2o, the

amplitude A is kept fixed at 2 particle diameters, the number of particles N are 250, the

channel’s upper U and lower widths L are fixed at 30 and 8 particle diameters, respectively,

and the channel’s taper φ is kept fixed at 30o.

Apart from the jamming effect discussed above, it is clear from the graphs of Figs. 5.5 and
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Figure 5.5: Effect of inclination on the grains’ downward flow rate.

5.6 that increasing the inclination angle accelerates the particles’ downward flow rate, while,

correspondingly, decreasing their upward flow rate. This effect is easily explained, because

gravity dominates at higher inclination angles, thereby accentuating a grain’s tendency to

move down.

In Fig. 5.7 we plots the fractional net flow rate vs. vibration frequency for different

inclination. It is seen that the net flow rate increases with the frequency, which also suggests

the dominant effect of gravity on the flow rates.

5.3 Area fraction variation

The effect of varying the grains’ area fraction on their flow is investigated now. The area

fraction is varied by changing the number of particles in the system. The simulation para-

meters are: the amplitude A is kept fixed at 2 particle diameters, the number of particles

N are varied from 150 to 250, the channel’s upper U and lower widths L are kept 30 and 8

particle diameters, respectively, and the channel’s inclination θ and taper φ is maintained at
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Figure 5.6: Effect of inclination on the upward flow rate.

Figure 5.7: Effect of inclination on the net flow rate.

1o and 30o, respectively.

The area fraction η for different number of particles is given in the Tab 5.1.
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Table 5.1: Area fraction for different number of particles

Number of particles N Area fraction η

150 0.325

200 0.434

250 0.542

Figure 5.8: Effect of area fraction on the grains’ downward flow rate

Figure 5.8 plots the fractional downward flow rate vs. vibration frequency for different

number of particles. It is observed that at higher area fractions, the communication between

particles increases, which in turn accentuates jamming in the system. At lower area fractions,

jamming reduces. Also, as discussed in Sec. 1, the downward flow rate first decreases and

then increases with the vibration frequency. This trend is also seen in the graphs of Fig.

5.8. However, the frequency, up to which the downward flow rate decreases, increases at less

number of particles.

In Fig. 5.9, grains’ fractional upward flow rate is plotted against the vibration frequency

for different number of particles. As we observed in previous sections that the particles’
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Figure 5.9: Effect of area fraction on the upward flow rate

upward flow rate is zero at low frequencies, and grows with an increase in the vibration

frequency (see Figs. 5.3 and 5.6). At an area fraction corresponding to 150 particles, the

upward flow rate is not zero as in the case of 200 and 250 particles. This is because of its low

area fraction. As the density of the system is low, so is the effective viscosity, i.e., not many

particles are present to resist the motion of inserted particles. As a result, even at very low

frequencies, even the gentlest of collision with the system’s slanted walls causes a particle to

escape upwards. To check this phenomenon, we lowered the inserted height, but the results

we got were the same.

Figure 5.10 shows the variation of net flow rate with vibration frequency for different

number of particles. It is clear that the particles’ net flow rate increases with the vibration

frequency.
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Figure 5.10: Effect of area fraction on the net flow rate

5.4 Variation in the channel’s taper

Channel’s taper plays an important role in transferring upward momentum to the grains.

We have done two simulation studies in which the taper is varied. In the first case, the

channel’s inclination angle is kept zero, while in the second, the inclination angle is set to

1o.

In both cases, the simulation parameters are: the amplitude A is maintained at 2 particle

diameters, the channel’s lower width L is set to 8 particle diameter. The channel’s upper

width is varied with the taper and number of particles to keep the area fraction η and

transverse length H same. It is given in Tab. 5.2.

5.4.1 Zero inclination angle

In this case, the vibrating channel is not inclined with the ground. In Fig. 5.11 we plots

the particles’ fractional downward flow rate vs. the vibration frequency for different taper

values. It is observed that at a fixed frequency, increasing the channel’s taper decreases
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Table 5.2: Upper width of shaking channel for different taper values

No. of Particles Taper(in degree) Upper Width

105 0.0 8

168 15.0 18

250 30.0 30

360 45.0 46

540 60.0 74

Figure 5.11: Effect of varying the channel’s taper on downward flow rate at zero inclination

angle.

the particles’ downward flow rate. This may be due to the jamming in higher number of

particles. It is also clear that the downward flow rate first increases with frequency, and then

becomes constant at higher frequencies, except at zero taper, where the downward flow rate

of particles increases almost linearly with frequency. The reason for constant downward flow

rate at higher frequencies need to be investigated.

Figure 5.12 illustrates the variation in the fractional upward flow rate with the vibration
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Figure 5.12: Effect of varying the channel’s taper on upward flow rate at zero inclination

angle.

frequency. It is clear that the upward flow rate decreases with an increase in the taper at

a fixed frequency. This observed phenomena is in reverse of the expected behavior, because

increasing the taper angle enhances the upward flow rate. We think that some correlations

parameters, i.e., velocity auto-correlation function (VACF), root mean square displacement

(RMSD) may give some explanation for this surprising behavior.

In Fig. 5.13 we plots the fractional net flow rate vs. the vibration frequency for different

taper values. It is observed that the fractional net flow rate increases with the channel’s

taper. At zero taper, the net flow rate is zero, as illustrated in Sec. 4.3 of Chapter 4, but

at higher taper angles the net flow rate increases with frequency. At taper angles of 30o and

45o, it is observed that the net flow rate is same in a frequency region of 4 - 9 Hz and three

curves corresponding to taper of 15o, 30o and 45o meets at one point corresponding to 10

Hz vibration frequency. This suggests that at higher frequencies, the channel’s taper doesn’t

effect the net flow rate much.
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Figure 5.13: Effect of varying the channel’s taper on net flow rate at zero inclination angle

5.4.2 1o inclination angle

We now incline the channel at 1o to the ground.

Figure 5.14: Effect of the taper on the downward flow rate in a channel inclined at 1o.
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Figure 5.14 shows the variation of the fractional downward flow rate with the vibration

frequency. It is seen that the variation in downward flow rate is similar to the case of

zero inclination. However, the upward flow rate (see Fig. 5.15) the flow rate decreases

Figure 5.15: Effect of the taper on the upward flow rate in a channel inclined at 1o.

with increasing taper at a fixed frequency. The curve corresponding to zero taper does not

intersect other curves as it did when there was no inclination; cf., Fig. 5.12.

Figure 5.16 illustrates the variation in the fractional net flow rate with the vibration

frequency for different channel’s taper. It is clear that at zero taper, the net flow rate

increases with frequency up to 4 Hz, beyond which it starts decreasing. This shows that

at higher frequencies, the downward flow dominates upward flow. However, in other cases,

except when the taper equals 60o, the net flow rate increases with the vibration frequency.

At a 60o taper, the net flow rate is less compared to flow rates at taper values of 30o and 45o

beyond a frequency of 5 Hz.
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Figure 5.16: Effect of the taper on the net flow rate in a channel inclined at 1o.



Chapter 6

Conclusions

6.1 Conclusion

In this work, we focused on the effect of various parameters, i.e., the vibration amplitude

A, frequency ν, inclination (θ), taper (φ) and area fraction (η) on the flow rate of mono-

disperse grains vibrated in a slightly inclined and tapered channel displayed in Fig. 1.1.

We identified the presence of a critical frequency at which the flow of these grains reverses.

This critical frequency is seen to depend on the grains’ physical characteristics such as

inter-particle friction, its diameter and density etc. We believe that this difference in the

critical frequency for various species may be the mechanism that produces segregation in

binary mixtures, i.e., if the system is shaken at a frequency at which grains of one kind

preferentially move downwards, segregation may occur. This, of course, is to be tested, and

simulations to this end are being undertaken. We observed that the dynamics of the system

is very sensitive to inclination, indicating the need for its proper control.

We also investigated the effect of the area fraction on the particles’ flow rates and it is

observed that jamming reduces at low area fractions. Effect of the channel’s taper on the

particles’ flow rates is also observed, and the anomalous reduction of the upward flow rate

at higher taper angles was noted.

56
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6.2 Future work

In the present study, we concentrated our efforts on the dynamics of mono-disperse granular

particles. To gain more confidence in present simulation results, there is a need to conduct

an experimental study of mono-disperse granular system. Following work has to be done in

order to gain more understanding of the current segregation phenomenon.

1. Investigation of effect of particle diameter, and its density on the critical frequency

2. Effect of inter-particle friction on the flow rates .

3. Variation in flow rates of particles with friction between particle and channel’s surface

and side walls.

4. Critical vibration frequency at different vibration amplitude in shifted Christmas tree

type geometry of shaking channel in mono-disperse granular system.

5. Finally, we intend to simulate the dynamics of binary systems first in the trapezoidal

geometry of Fig. 1.2, and then in the more intricate shape displayed in Fig. 1.1. This

will test our earlier hypothesis regarding the geometry being simply a concatenation

of micro-sorting chambers
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