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Synopsis

The thesis discusses the dynamics of cables in the following two applications:

(A) The towing of a large, ring-shaped, underslung load a�ached by a heavy, flexible cable

is investigated. For surveying large areas in less time, a large ring-shaped Time Domain Elec-

tromagnetic (TDEM) mineral detector is suspended from a helicopter with the help of long

cable. For optimal operation the ring-shaped detector should be in the horizontal plane, i.e.

normal to gravity. The helicopter’s motion and aerodynamic forces a�ect the motion of the

cable and the detector. Further, these forces may misalign the detector or even destabilize it

during operating conditions. The dynamics of the cable and detector together as a system is

investigated during hovering, forward and maneuvered flight conditions. The cable is modeled

as a three-dimensional, geometrically exact (GE) beam, while the ring-shaped detector as a rigid

body. Thus, large rotation and deformation of the cable are incorporated. The aerodynamic

forces are computed exactly (up to quadrature), using the analytical equation for drag on cylinder

in cross-flow from the existing literature, on both the cable and the ring-shaped detector at any

instance. Given its much larger mass, the helicopter’s motion is assumed to be independent of

the cable and the underslung load.

(B) Traveling cables are fundamental driving mechanisms in elevators, conveyor belts, auto-

mobile chain-drives, cableways, etc. In these, all or part of the cable is inclined to gravity. During

operations the cable tends to oscillate transversely as it travels longitudinally. In this study, the

cable is modeled as a linear elastic beam that resists bending moment and shear, and as an

inextensible string which supports only tension. The dynamics of horizontally traveling (traveling

direction normal to gravity) beams and strings is well studied. We investigate the influence of

gravity on the stability of beams and strings which travel vertically, against gravity. It is found

that including gravity lowers the critical speed at which a traveling cable becomes unstable. In

contrast to the problem A, we restrict a�ention to small deformations in problem B.
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Problem A

Cable Towing Ring-shaped Underslung Load



Notations
The following list describes the notations that will be used in this part of the thesis.

1. Direct notation: all vectors are in lowercase bold le�ers, e.g. ω,κ,u,x,ϕ, etc., while all

tensors (second order) are in uppercase bold le�ers, e.g. R,T ,J ,J ,Π, etc.

2. Matrix notation: all column vectors are in lowercase monospaced and sans-serif le�ers, e.g.

f, f,η, ξ, q, p, etc., while all matrices are in uppercase monospaced and sans-serif le�ers,

e.g. M,M, G,G, etc.

3. Indicial notation: the indices i, j, or k take values 1, 2 and 3, while Greek indices α or β

take values 2 and 3.

4. Other indices/subscripts: e and n correspond to element numbers, while subscripts a and

b, respectively, denote the first and second nodes of element e.

5. �̇ =
d�
dt

Derivative with respect to time t.

6. �′ =
d�
ds

Derivative with respect to reference arc-length coordinate s or x1.

7. �∗ Any quantity related to the underslung load, e.g. `∗,ω∗, ü∗,M∗, M∗, f∗, etc.

8. � · � Dot Product or Contraction of two vectors, e.g. a · b, a tensor and a vector, e.g.

T · ϕ̇, and of tensors, e.g. Ṙ · J ·RT
.

9. �×� Cross Product of two vectors, e.g. a× b.

10. �⊗� Dyadic/Tensor Product of two vectors, e.g. a⊗ b, or ê1 ⊗ ê2.

11. |ϕ| = (ϕ ·ϕ)1/2
Euclidean norm of a vector ϕ.

12. â =
a

|a| Unit vector corresponding to a vector a.

13. a∼ = sk(a) Skew-symmetric tensor corresponding to a vector a, so that a∼ · b = a× b, for

any vector b.

14. ax(a∼) = a Axial vector of skew-symmetric tensor, so that a∼ · b = a× b, for any vector b.



Chapter 1

Introduction

We investigate the dynamics of a cable that is towing a ring-shaped underslung load beneath a

helicopter. Such systems, as shown in Fig. 1.1, find use in large-area mineral surveys. We propose

to model the cable as a beam, while including large rotations and large deformations. To this end,

we will utilize geometrically exact beam theory (GEBT or GE beam theory). The ring-shaped load

will be taken to be a rigid body with appropriate parameters, viz. geometry, mass, and moment of

inertia. Aerodynamic drag on the cable will be modeled employing models in available literature,

while that on the ring-shaped underslung load will be derived separately.

Figure 1.1: Photograph of a commercial helicopter towed TDEM (Time Domain Electro-Magnetic) system

(courtesy: SkyTEM).
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4 120 1.1. Underslung load systems

This part of the thesis covers three major objectives:

1. Finite-element formulation of the three-dimensional multibody dynamics model of the

towed underslung load system,

2. Implementations of three-dimensional wind drag on the heavy cable and the rigid ring-

shaped underslung load, and

3. Computing the transient response of the cable-underslung load system to di�erent flight

conditions and maneuvers of the towing point, while subjected to aerodynamic drag and

gravitational forces.

Before describing the multibody system in detail, we take an overview of typical models

considered in the existing literature.

1.1 Underslung load systems

Mechanics of cable-underslung load systems have been of major interest ever since the first

world war, when McLeod [1918] first studied the deformed equilibrium shapes of heavy towing

cables under the influence of wind drag. The underslung load was modeled as a lumped mass

subjected to a constant drag force, while the cable was modeled as a planar (2D) inextensible

string, which bears only tension, as shown in Fig. 1.2. Thus, the analysis of a cable-underslung

load system was essentially the study of the cable alone, wherein the underslung load provided

end conditions. This work was further developed by Glauert [1930] by deriving the conditions

of stability for massless inextensible strings in the absence of restoring/damping forces. Later

Glauert [1934] obtained family of static equilibrium curves of heavy strings towing lumped

masses. In Chap. 5, we will compare these curves with those obtained from our cable model

(Chap. 2) when subjected to the same aerodynamic loading.

Consideration of inertial and aerodynamic forces of underslung loads gained more a�ention

with Poll & Cromack [1973]’s linear stability analysis of blu� underslung loads, namely a box-

shaped and a cylindrical-shaped body (see Fig. 1.3), during steady and straight flight condition.

The mass of cable (string) and the rotor’s downwash on the underslung load were neglected

in the analysis. The cable was a�ached to the load at a single point, and only longitudinal (in

the direction of flight) and lateral (in the direction normal to both the flight and the gravity)

oscillations were studied. This work was extended by Feaster et al. [1977] by considering the
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Figure 1.2: Schematic of Glauert’s model of an inextensible string AB towing a lumped mass B of weight W
subjected to a constant drag force D. The figure is taken from Glauert [1930]

.

Figure 1.3: Schematic of Poll and Cromack’s helicopter towed box/cylinder-shaped underslung load model.

The figure is taken from Poll & Cromack [1973] and Feaster et al. [1977].

yaw (about the direction of gravity) and pitching moments as well. Motivated by the analogous

research on kites, tethered aerostats, aerial refueling hoses, towed sonar equipments, etc., Etkin

[1998] generalized the planar heavy cable model by considering aerodynamic forces, inertia,

extensibility and internal (viscous) damping. The cable was discretized into finite number of

cylinders as shown in Fig. 1.4 and then the li� and drag on each cylinder inclined in the cross-flow

was computed following the standard 2D model given in [Hoerner, 1992]. The underslung load

was a streamlined cylindrical rigid-body, while the driving vehicle was assumed to be a point

moving with a constant speed. They found that a�aching tail-fins to the given underslung load

marginally stabilized the system during the steady forward flight.

The Newton-Euler equations of motion for helicopters towing various slung loads via massless,

rigid or stretchable, links were compiled by Cicolani & Kanning [1992] for the purpose of trajectory

control. The links were modeled as constraints to the two-body equations of the helicopter-



6 120 1.1. Underslung load systems

Figure 1.4: Schematic of Etkin’s model of cable towing a streamlined underslung load. The figure is taken

from Etkin [1998].

Figure 1.5: Schematic of Stuckey’s model of helicopter towing a box/cylindrical underslung load (le�) and

pendulum-cart model (right). The figure is taken from Stuckey [2001].

underslung load system. Additionally, the aerodynamic forces on the links were also neglected.

Later, Stuckey [2001] implemented these equations in dynamic simulations of an entire helicopter

slung-load system. They compared the modes with those of a simple pendulum suspended under

a hovering cart as shown in Fig. 1.5. The link connecting the two bodies was massless and either

rigid or stretchable.

Bisgaard et al. [2009] derived the equations of a general two-body helicopter slung-load system

shown in Fig. 1.6 subjected to the same constraints as employed by Stuckey [2001], but using the

Udwadia & Kalaba [1992]’s approach, which is based on the Gauss’s principle of least constraints.

All the works above should be referred to for further references in this field. Therea�er, many

works (not cited here for brevity) have followed, more or less, the same models for simulating a

large variety of practical problems. For example, many of them have extensively studied di�erent

ways of suspending the underslung load to the helicopter, such as multi-point suspension, or

di�erent ways one load is suspended simultaneously under multiple helicopters (multi-li�), or
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Wire collapsed Wire taut

Figure 1.6: Schematic of Bisgaard’s model of a rigid body towing another. The figure is taken from Bisgaard

et al. [2009].

developing trajectory control systems for the helicopter, et cetera. We, however, focus only on the

dynamics of underslung loads suspended at a single point via a flexible cable under a helicopter

because of our interest in the model for towing of large ring-shaped mineral detectors.

1.2 Towed mineral detectors

Helicopter towed Time-Domain Electromagnetic (TDEM) systems, one such shown in Fig. 1.1,

survey large areas rapidly. They are mostly ring- or polygon-shaped instrumented structures

which detect the presence of subsurface water or other minerals when oriented parallel to the

surface. The size of the instrumented structure is large in comparison to the helicopter under

which these are suspended. Due to this the instrumented structure (underslung load) may

experience 3D aerodynamic forces, and depending on the magnitude and the net direction of

these forces it may undergo complex 3D (spatial) motion. Furthermore, as the flexible cable itself

is subjected to 3D aerodynamic forces, the coupled dynamics of the cable and the underslung

load may result in large spatial displacements and rotations in both.

Recently, Lahiri et al. [2012] presented a simplified model for this application. To the best of

our knowledge, it is still the only available mechanical model despite the existing, but generally

inaccessible, commercial TDEM technologies as mentioned in their work. Owing to the complexity

of the system to be modeled, the authors analyzed a simple pendulum model suspended by

massless link as shown in Fig. 1.7. The objective of their work was to compute the tension in the

cable at equilibrium during hover and forward flight.

Developing exact equations of motion for the cable, by considering its resistance to general



8 120 1.3. Present model

(a) (b)
Figure 1.7: (a) Schematic of Lahiri’s helicopter towed model of TDEM system which is subjected to (b) drag

during forward flight. These figures are taken from Lahiri et al. [2012].

bending, twisting and stretching, along with those for the given underslung load, is important

for simulating the correct response of the system to complex aerodynamic loads during various

flying conditions. Only then, we can determine the proper conditions for stability of the system

or the conditions when the instrumented structure will remain oriented within acceptable limits

with respect to the ground.

1.3 Present model

To incorporate all the e�ects mentioned above, this thesis proposes the multibody dynamics

model as shown in Fig. 1.8, in which the towing cable is modeled as a geometrically exact (GE)

beam while the underslung load is modeled as a rigid body. The cable is hinged (moment-free)

to the helicopter, while it is clamped to the massless rods of the underslung load. The torsional

sti�ness at bo�om (clamped) joint is tunable to facilitate calibration of the joint’s sti�ness to

match the actual when experimental data is made available in future. The massless rods of the

underslung load are rigidly connected to the ring.

This part of the thesis is structured as follows. The equations for 3D motion of the cable using

the GE beam theory [Antman, 2013; Ibrahimbegović, 1995; Simo & Vu-�oc, 1988] are derived in

Chap. 2, followed by the rigid body equations [Greenwood, 1988] of the slung load in Chap. 3.
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Helicopter (Hinge)

Cable
(GE Beam)

Underslung load
(Rigid Body)

Wind

Ring

Massless 
links

Figure 1.8: Schematic of the 3D multibody dynamics model of the towed slung load system.

The helicopter is only a hinge point whose motion is specified.

Aerodynamic forces, including the von Karman e�ect, on the cable is derived in Sec. 2.6.2 of

Chap. 2 based on the available model [Hoerner, 1992; Païdoussis et al., 2010] of a cylinder in

cross-flow. Furthermore, in absence of drag models for a ring in medium to high Reynold number

flows, we develop a di�erent approach to compute the net aerodynamic forces and moments in

Sec. 3.2 of Chap. 3.

The finite element formulation [Bathe, 2006; Ibrahimbegović & Mikdad, 1998] for simulating

the dynamics of the coupled cable-slung-load system is discussed in Chap. 4. The results of

numerical simulations are presented in Chap. 5, where we begin by validating and comparing

GE beam with those given in literature discussed in secs. 1.1 and 1.2. For example, we begin by

validating the solutions of the GE beam from various sample problems given by Simo & Vu-�oc

[1986b], then we compare the equilibrium shapes of the GE beam with Glauert [1930]’s towing

string that neglects bending sti�ness, and later we simulate the response of GE beam towed

mineral detector to aerodynamic load during various kinds of maneuvers. Finally, the conclusions

are summarized in Chap. 6, along with the scope for future work.





Chapter 2

Mathematical Model of Towing Cable

In this chapter we give a brief introduction to the geometrically exact (GE) beam theory which

we have used for modeling the towing cable. The nonlinear elastodynamic equations of GE beam

were given by Reissner [1981], and its nonlinear finite element (FE) formulation was developed

by several authors, such as Ibrahimbegović [1995]; Simo [1985]; Simo & Vu-�oc [1986b, 1988]

and Betsch & Steinmann [2002], to name a few. More references and discussions can be found in

Antman [2013]; Shabana [1997] and Meier et al. [2017]. We begin with the kinematics of the

GE beam, followed by the definition of its strain measures, constitutive relation, derivation of

the governing equations with its weak form, the aerodynamic force equations, and finally we

discuss boundary conditions.

2.1 Geometry and kinematics

The motion of the GE beam (or beam, for brevity) is not restricted to any particular plane, and

it can be a three-dimensional motion which will be observed in the spatially fixed coordinate

system ê1-ê2-ê3 centered at O; see Fig. 2.1. In the reference state, the beam of length ` is straight,

and its centroidal axis is aligned to the ê1 axis. A material point P0 in this configuration is defined

by the vector x:

x = xc + xcp = sê1 + (x2ê2 + x3ê3), (2.1.1)

where s ≡ x1 is the coordinate along the centroidal axis so that xc = sê1 locates the center C0

and xcp = x2ê2 + x3ê3 finds P0 relative to C0 on the cross-section whose plane is defined by

the unit vectors ê2 and ê3.

An identical coordinate system ê1-ê2-ê3, whose center O’ coincides with O at time t = 0,

remains a�ached to the beam at time t while the beam is translating on a prescribed trajec-

tory, which is defined by displacement u0(t), velocity u̇0(t) and acceleration ü0(t). In the

11 120
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Reference state

Current/Deformed state

Cross-section 
at

P C00

O

0C’ C
P

O’

C

P

Centroidal

Figure 2.1: Schematic of the GE beam in reference and current/deformed states is shown.

current/deformed state at t, the cross-section is defined by the orthonormal basis d̂2-d̂3, called

as directors, along with the normal d̂1 = d̂2 × d̂3 as shown in Fig. 2.1.

The special GE beam theory that we employ assumes that the beam’s cross-sections may

only rotate in a rigid manner without deforming. In other words, a circular cross-section in the

reference state remains circular in the current state, as shown in Fig. 2.1, while undergoing a

three-dimensional rigid body rotation. Thus, the cross-sectional deformations such as warping

or change in shape/size are disregarded, and the transformation/rotation of cross-section is

independent of the sectional coordinates x2 and x3.

Thus, the coordinate system d̂1-d̂2-d̂3 is a�ached to the cross-section and rotates with it. The

rotation of directors from the reference coordinate system is given by the rotation tensor

R(s, t) = d̂i(s, t)⊗ êi, (2.1.2)

where the indices i = 1, 2 and 3, while the operator ⊗ denotes the tensor/dyadic product. As

mentioned above, the rotation tensorR(s, t) is independent of the sectional coordinates x2 and

x3, while it depends only on the coordinate s ≡ x1 along the reference centroidal axis and the

time t. Therefore, we can now define the directors of cross-section as

d̂i = R · êi. (2.1.3)
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Note that, the rotation tensorR = 1 in the reference configuration (Fig. 2.1) and the directors

d̂i align with the reference coordinate system êi.

In the current state shown in Fig. 2.1, the material point P and the center C correspond to

points P0 and C0, respectively, of the reference state. The position of P is given by

x = xc + xcp, (2.1.4a)

where the position of C on the current centroidal curve

xc = sê1 + u(s, t) + u0(t), (2.1.4b)

where u + u0 is the total displacement of C from C0 in time t, while xcp is the position of P

with respect to C. Using (2.1.3), xcp can be obtained as a linear transformation/rotation of the

reference position vector xcp ,

xcp = R · xcp = x2d̂2(s, t) + x3d̂3(s, t). (2.1.4c)

Note that the unit normal d̂1 of the current cross-section may not be aligned with the tangent

x′
c

= dxc/ds, as shown in the inset of Fig. 2.1. The di�erence in these two vectors defines the

stretch in the centroidal line along with the shearing of the plane of the cross-section, and we

will discuss this in detail later in Sec. 2.3.

Now, we discuss more about the rotation tensor of a cross-section.

2.1.1 Rotation tensor

The rotation tensorR(s, t) is a three-dimensional orthogonal tensor with unit determinant. It

can be parameterized by a set of three independent parameters ϕi(s, t),

R = R (ϕ) ; we set ϕ = ϕiêi.

The choice of parameters ϕi adopted depends upon the application, existence of singularities,

computational advantage and physical interpretation of the motion. From Euler’s rotation

theorem, we know that a general three-dimensional rotation can be expressed in terms of the

rotation angle ϑ about the unit vector/direction of rotation â. Accordingly, the rotation tensorR

is represented by Rodrigues’ formula:

R = 1 + sinϑa∼ + (1− cosϑ)a∼2, (2.1.5)

where 1 is identity tensor and we denote the skew-symmetric tensor a∼ = sk (â) which is

associated to the vector â = aiêi. Note that this representation of R has four (not three)
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independent parameters, namely ϑ, a1, a2 and a3. However, by defining a vector

ϕ = ϑ â or ϕi = ϑai,

we can represent (2.1.5) in a modified form or as an exponential map, having just three independent

parameters,

R = 1 +
sin |ϕ|
|ϕ| ϕ∼ +

1− cos |ϕ|
|ϕ|2 ϕ∼2 = exp (ϕ∼) , (2.1.6)

where ϕ∼ = sk (ϕ), and the norm

|ϕ| =
(
ϕ2

1 + ϕ2
2 + ϕ2

3

)1/2
= ϑ.

Further discussion on the rotation tensor is available in Appendix 2.b.

Having defined the position and displacement of a material point and the rotation of cross-

section, we will now define the total velocity, total acceleration, angular velocity and angular

acceleration.

2.1.2 Velocity and acceleration

The velocity of a material point P is obtained by di�erentiating the position vector (2.1.4a),

ẋ = ẋc + ẋcp = u̇0(t) + u̇(s, t) + x2
˙̂
d2(s, t) + x3

˙̂
d3(s, t), (2.1.7)

where we denote �̇ ≡ d�/dt as the total time derivative, which implies ẋc = u̇0 + u̇ is the total

velocity of the centroid C of the cross-section, while the time-derivative of (2.1.3) is

˙̂di = Ṙ · êi = Ṙ ·RT · di for i = 1, 2 and 3. (2.1.8a)

The quantity Ṙ ·RT
is a skew-symmetric

1
tensor, called as the angular velocity of cross-section,

ω∼ = Ṙ ·RT. (2.1.8b)

The parametric representation of ω∼ as a function of ϕ and the extraction of its axial vector

ω = ax
(
Ṙ ·RT

)
is appended in Sec. 2.c.

Finally, the total velocity (2.1.7) of point P

ẋ = u̇0 + u̇+ ω∼ · xcp = u̇0 + u̇+ ω × xcp, (2.1.9)

while the acceleration of P is

ẍ = ü0 + ü+ ω̇∼ · xcp + ω∼2 · xcp = ü+ ω̇ × xcp + ω × (ω × xcp), (2.1.10)

1 Di�erentiating the orthogonality equationR ·RT = 1, we �nd that Ṙ ·RT = −R · ṘT is skew-symmetric.
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where ü0 + ü is the total linear acceleration of the centroid C, and the skew-symmetric tensor

ω̇∼ = sk (ω̇) is the angular acceleration tensor of cross-section.

In the next section, we balance the linear and angular momenta to obtain the governing

equations of the beam.

2.2 Di�erential/strong form of governing equations

The one-dimensional, arc-length based, governing di�erential equations of GE beam can be

derived through reduction from the three-dimensional continuum mechanics theory.

s1

s2

ê3

ê2

ê1

ê3

ê2

ê1

P

P

C1 C2

Ac|s2Ac|s1

V
L

Π · ν̂

ν̂

n(s1, t)

m(s1, t)

n(s2, t)

m(s2, t)

m̄

n̄

O

dA

Section S

Section S

O

Figure 2.2: A portion of the beam of length s2 − s1 occupying a volume V in its reference configuration is

shown. The area of cross-section Ac is enclosed by the contour L. An arbitrary section S (hatched) passing

through the material point P of the beam is shown. Zoomed-in view of the section S (top) shows the nominal

traction Π · ν̂ at point P, which is enclosed in a di�erential area dA whose unit normal is ν̂ . Here, the first

Piola-Kirchho� (nominal) stress tensor Π defines the state of stress at P.

Figure 2.2 shows a part of beam in reference configuration with arc-length s2 − s1 occupying

a volume V . The area of cross-section Ac is shown enclosed by the contour L. The total surface

area of this part of beam is

A = Ac|s1 +Ac|s2 +

s2∫
s1

L ds.

We begin with the governing equations of a three-dimensional elastic continua and then

reduce them to a one-dimensional (arc-length) form.
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Linear momentum balance: The state of stress at any point P inside volume V be defined by

the first Piola-Kirchho� stress tensor Π. The linear momentum balance across a small di�erential

volume dV and di�erential surface area dA, integrated over the entire portion beam, is∫∫
A

Π · ν̂ dA+

∫∫∫
V

b̄ dV =

∫∫∫
V

ρ0ẍ dV, (2.2.1)

where b̄ is body force per unit volume. Using (2.1.4a) and the definition (2.d.1a) of density ρ per

unit length, we have ∫∫∫
V

ρ0ẍ dV =

s2∫
s1

ρẍc ds.

Also, expanding

∫∫
A

Π · ν̂ dA =

∫∫
Ac

−(Π · ê1)|s1 dAc +

∫∫
Ac

(Π · ê1)|s2 dAc +

s2∫
s1

∮
L

Π · (ναêα) dLds,

where ναêα (for α = 2 and 3) is the vector field normal to the lateral contour L of the beam, the

closed integral of Π · (ναêα) is the total imposed traction on L, and

∫∫
Ac

−(Π · ê1)|s1 dAc +

∫∫
Ac

(Π · ê1)|s2 dAc =

s2∫
s1

∂

∂s

∫∫
Ac

Π · ê1 dAcds

is the total traction on the cross-sections at s = s1 and s2.

Further, by defining

n̄ :=

∮
L

Π · (ναêα) dL+

∫∫
Ac

b̄ dAc

as the total external load per unit length and

n(s, t) :=

∫∫
Ac

Π · ê1 dAc

as the resultant traction per unit length on the cross-section, simplifies (2.2.1) to

s2∫
s1

(
n′ + n̄− ρẍc

)
ds = 0.

Because s1 and s2 are arbitrary, by the principle of localization

n′ + n̄− ρ (ü0 + ü) = 0, (2.2.2)

where ẍc = ü0 + ü follows from di�erentiation of (2.1.4b) with respect to time.



Problem A Chapter 2. Mathematical Model of Towing Cable 17 120

Angular momentum balance about the origin O is given by∫∫
A

x×Π · ν̂ dA+

∫∫∫
V

x× b̄ dV =
d

dt

∫∫∫
V

ρ0x× ẋ dV. (2.2.3)

Using (2.1.4a) and (2.1.9) the right hand term in (2.2.3) becomes

d

dt

∫∫∫
V

ρ0x× ẋ dV =
d

dt

∫∫∫
V

ρ0(xc + xcp)× (ẋc + ω × xcp) dV

=
d

dt

s2∫
s1

xc × ẋc

∫∫
Ac

ρ0 dAc + xc ×

ω × ρ0

∫∫
Ac

xcp dAc

+ ρ0

∫∫
Ac

xcp dAc × ẋc

+

∫∫
Ac

(xcp · xcp)1− xcp ⊗ xcp ρ0dAc

 · ω ds,
Further, using the definitions of density and mass moment of inertia given in Sec. 2.d, thus,

simplifies

d

dt

∫∫∫
V

ρ0x×ẋ dV =

s2∫
s1

xc×ρẍc+

2∑
i=1

Ji{ ˙̂di(d̂i·ω)+d̂α(
˙̂
dα·ω)+d̂α(d̂α·ω̇)} ds

=

s2∫
s1

xc × ρẍc + ω ×
(

2∑
i=1

Jαd̂i ⊗ d̂i
)
· ω +

(
2∑
i=1

Jid̂i ⊗ d̂i
)
· ω̇ ds.

=

s2∫
s1

xc × ρẍc + ω × h+J · ω̇ ds =

s2∫
s1

xc × ρẍc + ḣ ds,

where, for a circular cross-section of radius r, the mass moment of inertia (per unit length of the

cable) in the reference and deformed configurations are, respectively,

[J ] =


J1 0 0

0 J2 0

0 0 J3

 = ρ
πr4

4


2 0 0

0 1 0

0 0 1

 , and J = R · J ·RT,

while the angular momentum of cross-section

h := J · ω, (2.2.4)

and the rate of change of angular momentum of cross-section is defined as

ḣ := ω × h+J · ω̇. (2.2.5)

Similarly, the le� side of (2.2.3) is expanded using (2.1.4a) and (2.2.2) as follows∫∫
A

x×Π · ν̂ dA+

∫∫∫
V

x× b̄ dV
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=

xc ×
∫∫
Ac

Π · ê1 dAc

s2
s1

+

s2∫
s1

xc ×
∮
L

Π · (ναêα) dLds+

s2∫
s1

xc ×
∫∫
Ac

b̄ dAcds

+

∫∫
Ac

(xcp ×Π · ê1) dAc

s2
s1

+

s2∫
s1

∮
L

xcp ×Π · (ναêα) dLds+

∫∫∫
V

xcp × b̄ dV

=

s2∫
s1

d

ds
(xc × n)ds+

s2∫
s1

xc × n̄ ds

+

s2∫
s1

 d

ds

∫∫
Ac

(xcp ×Π · ê1) dAc +

∮
L

xcp ×Π · (ναêα) dL+

∫∫
Ac

xcp × b̄ dAc

 ds

=

s2∫
s1

x′
c
× n ds+

s2∫
s1

xc × (n′ + n̄) ds

+

s2∫
s1

 d

ds

∫∫
Ac

(xcp ×Π · ê1) dAc +

∮
L

xcp ×Π · (ναêα) dL+

∫∫
Ac

xcp × b̄ dAc

 ds.

Further, by introducing

m̄ :=

∮
L

xcp ×Π · (ναêα) dL+

∫∫
Ac

xcp × b̄ dAc

as the external/applied moment and

m(s, t) :=

∫∫
Ac

xcp ×Π · ê1 dAc

as the internal/reaction moment, and following the localization argument, we obtain

m′ + x′
c
× n+ m̄ = ḣ. (2.2.6)

Finally, the linear momentum balance equation (2.2.2) and the angular momentum balance

about the origin (2.2.6) are rewri�en in the following simple form:

n′ + n̄ = ρ (ü0 + ü) (2.2.7a)

and m′ + x∼′
c
· n+ m̄ = J · ω̇ + ω∼ ·J · ω, (2.2.7b)

where x∼′
c

= sk(x′
c
).

Next, we define the strain measures, followed by the constitutive equation relating strain

measures to internal force and moment.
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2.3 Strain measures

The gradient of deformation of the GE beam shown in Fig. 2.1 is defined as

F :=∇x =
∂x

∂x
=
∂x

∂xi
⊗ êi, (2.3.1)

where x is the reference position vector and x is the current position. Using (2.1.1), (2.1.4a) and

(2.1.2), we simplify (2.3.1) as follows:

F =
{
xc(s, t) + xαd̂α(s, t)

}′
⊗ ê1 +

∂

∂xβ

{
xc(s, t) + xαd̂α(s, t)

}
⊗ êβ

=
{
x′

c
(s, t) + xαd̂

′
α(s, t)

}
⊗ ê1 +

{
0 + δαβd̂α(s, t)

}
⊗ êβ

= (x′
c

+ xαd̂
′
α)⊗ ê1 + (d̂2 ⊗ ê2 + d̂3 ⊗ ê3), (2.3.2)

where the greek indices α, β = 2, 3, and we denote �′ ≡ ∂�/∂x1 ≡ ∂�/∂s, while the kronecker

delta δij=1 when i=j otherwise δij=0. The derivative of d̂i(s, t) with respect to s ≡ x1 is

analogous to its time derivative (2.1.8),

d̂′i = R′ ·RT · d̂i = κ∼ · d̂i, (2.3.3)

where the skew-symmetric tensor,

κ∼ = R′ ·RT (2.3.4)

is called as the curvature tensor. It governs the spatial rate of change of the cross-section, in

contrast to the angular velocityω∼ which governs its temporal rate. The equation of corresponding

axial vector κ = ax
(
R′ ·RT

)
is obtained similar to ω described in Sec. 2.b.

Using (2.3.4), (2.1.2) and (2.1.4c) in (2.3.2), we get

F = (x′
c

+ κ∼ · xcp)⊗ ê1 + (d̂i ⊗ êi − d̂1 ⊗ ê1),

= (γ + κ∼ · xcp)⊗ ê1 +R, (2.3.5)

where we define the spatial strain vector

γ := x′
c
− d̂1 = γid̂i (2.3.6)

as the di�erence between the tangent x′
c

to the centroidal line at C and the normal d̂1 to

the cross-section centered at C. In contrast to the classical beam theories, the tangent to the

centroidal line and the normal to the cross-section are not necessarily the same, which implies

that (2.3.6) is generally nonzero. The component γ1 defines the stretch of the elastic line, while

γ2 and γ3 define the shearing of the plane of the cross-section.
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The component κ1 of the spatial curvature vector κ is the twist or torsion, while κ2 and κ3

are the bending of the cross-section.

Together γ and κ are the spatial strain measures of the GE beam. The corresponding material

strain measures are obtained by a pull-back operation,

κ = RT · κ = κiêi and γ = RT · γ = γiêi. (2.3.7)

The Green-Lagrange strain tensor

The Polar decomposition of deformation gradient (2.3.2) yields

F = R ·
(
RT · ε⊗ ê1 + 1

)
, (2.3.8)

where for brevity we denote the spatial strains by

ε = γ + κ∼ · xcp.

The deformation gradient (2.3.8) is decomposed as finite rigid rotation R of the cross-section

followed by the right stretch tensor RT · ε ⊗ ê1 + 1, where the components of the material

strains are

εi = êi ·RT · ε = γi + (εij2 κjx2 + εij3 κjx3), (2.3.9)

with the Levi-Civita symbol εijk = 1 for all positive permutations of the indices {i, j, k}, εijk =

−1 for the negative permutations and εijk = 0 for the remaining permutations.

The Green-Lagrange strain tensor

2E = FT · F− 1

= RT · ε⊗ ê1 + ê1 ⊗ ε ·R+ (ε · ε)ê1 ⊗ ê1

= εkêk ⊗ ê1 + ê1 ⊗ εkêk + (εkεk)ê1 ⊗ ê1. (2.3.10)

In components,

2Eij = êi ·E · êj = εiδ1j + εjδ1i + (ε2
1 + ε2

2 + ε2
3)δ1iδ1j . (2.3.11)

where ε1, ε2 and ε3 are given by (2.3.9), so that in matrix form,

E = [E] =
1

2


2ε1 + ε2

1 + ε2
2 + ε2

3 ε2 ε3

ε2 0 0

ε3 0 0

 . (2.3.12)
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Using (2.3.9), we can separate E11 into five parts:

E11 = γ1 +
1

2
γ2

1 + (κ2x3 − κ3x2) +
1

2
(κ2x3 − κ3x2)2 +

1

2

(
γ2

2 + γ2
3

)
+

1

2
κ2

1

(
x2

2 + x2
3

)
+ (γ1κ2x3 − γ1κ3x2 − γ2κ1x3 + γ3κ1x2)

=: Eextn

11 + Ebend

11 + Eshear

11 + Etor

11 + E
coup

11 ,

where

Eextn

11 = γ1 +
1

2
γ2

1 (2.3.13a)

is due to linear and nonlinear stretching/extensional components,

Ebend

11 = (κ2x3 − κ3x2) +
1

2
(κ2x3 − κ3x2)2 (2.3.13b)

is from linear and nonlinear bending strain components,

Eshear

11 =
1

2

(
γ2

2 + γ2
3

)
(2.3.13c)

has nonlinear shear strain components,

Etor

11 =
1

2

(
x2

2 + x2
3

)
κ2

1 (2.3.13d)

has a nonlinear torsional strain component, and finally,

E
coup

11 = γ1κ2x3 − γ1κ3x2 − γ2κ1x3 + γ3κ1x2 (2.3.13e)

is a nonlinear quantity having coupled torsion, bending, shear and extensional strain terms.

We highlight following important points:

(1) E12 = E21 measures both the torsion κ1 and the shear γ2. Similarly, E13 = E31 measures

both κ1 and γ3;

(2) The stretch measured by E in (2.3.13a) has an extra nonlinear γ2
1/2 term over the preferred

measure which is just γ1;

(3) Both the bending measures κ2 and κ3 appear together in the Green-Lagrange strain

component (2.3.13b);

(4) E has a separate nonlinearly coupled contribution (2.3.13e) of extension, shear, bending

and torsion over the prescribed strain measures.

The above analysis suggests that the Green-Lagrange strain tensor E, although a general choice

to measure finite deformation in a three dimensional elastic continuum, results in nonlinear and

coupled expressions of the individual strains: extension, shears, bending and torsion. At the
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same time the prescribed strain measures κ and γ are linear and uncoupled in these strains,

which makes them a preferred choice in this reduced one dimensional formulation.

We will now define the constitutive relationship between the strain measures (2.3.6) and (2.3.4)

with the internal force n and momentm introduced in the previous section.

2.4 Constitutive relations

A hyperelastic material model [Ibrahimbegović, 1995; Simo, 1985; Simo & Vu-�oc, 1986b, 1988]

is used, for which the strain energy density is

ws(γ,κ) =
1

2
(γ · Cn · γ + κ · Cm · κ), (2.4.1)

where Cn and Cm are the second-order spatial elasticity tensors. The tensors Cn and Cm are

related to the material elasticity tensors Cn and Cm through

Cn = R ·Cn ·RT
and Cm = R ·Cm ·RT. (2.4.2)

In the reference configuration,

[Cn] = diag(EA, k2GA, k3GA) and [Cm] = diag(GI1, EI2, EI3), (2.4.3)

where E is the Young’s modulus, G is the shear modulus, A is the cross-sectional area, k2 and

k3 are the Timoshenko’s shear correction factors, which have the values 9/10 for circular and

5/6 for a rectangular cross-section [Budynas et al., 2011, pg. 190], and I1, I2 and I3 are the

cross-sectional area moment of inertias relative to each of the principal axes. The term EA is

called as axial sti�ness, k2GA and k3GA are the shear sti�nesses, GI1 is the torsional rigidity

along the ê1 axis, andEI2 andEI3 are bending rigidity about the ê2 and the ê3 axis, respectively.

The resulting constitutive relationships between the internal force n and momentm and the

strain measures γ and κ, respectively, are obtained as

n =
∂ws

∂γ
= Cn · γ andm =

∂ws

∂κ
= Cm · κ. (2.4.4)

2.5 Integral/weak form of governing equations

The governing equation in strong (di�erential/local) form were derived in (2.2.7a) and (2.2.7b).

Their weak (integral) forms are obtained in this section. Letµ(s) andφ(s) be admissible functions

corresponding to the linear and angular momenta, respectively. The weak form is then obtained
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as

w =

`∫
0

{
µ · (ρü0 + ρü− n′ − n̄) + φ · (J · ω̇ + ω∼ ·J · ω −m′ − x∼′

c
· n− m̄)

}
ds = 0

=

`∫
0

{
µ · (ρü0 + ρü− n̄) + µ′ · n+ φ · (J · ω̇ + ω∼ ·J · ω − x∼′

c
· n− m̄) + φ′ ·m

}
ds

−
∣∣∣µ · n+ φ ·m

∣∣∣`
0

= 0,

where we have used integration by parts on µ ·n′
and φ ·m′

. The above weak form can be split

into the inertial, external, internal and the boundary conditions:

w = winer + wint − wext − wbc = 0 (2.5.1a)

which are defined as, respectively,

winer :=

`∫
0

{
µ · ρ (ü0 + ü) + φ · (J · ω̇ + ω∼ ·J · ω)

}
ds, (2.5.1b)

wext :=

`∫
0

{
µ · n̄+ φ · m̄

}
ds, (2.5.1c)

wint :=

`∫
0

{
µ′ · n+ φ′ ·m− φ · x∼′

c
· n
}
ds, (2.5.1d)

and

wbc =
∣∣∣µ · n+ φ ·m

∣∣∣`
0
. (2.5.1e)

In matrix notation,

winer =

`∫
0

ηTfiner ds, wext =

`∫
0

ηTfext ds, wint =

`∫
0

(
η′

T

fI

int
+ ηTfII

int

)
ds and wbc =

∣∣∣ηTf
∣∣∣`
0
,

(2.5.1f)

where we have introduced the 6× 1 column vector ηT(s) := [µ φ] of the admissible functions,

with derivative η′, while

finer :=

 ρ (ü0 + ü)

J · ω̇ + ω∼ ·J · ω

 , fI

int
:=

n
m

 , fII

int
:=

 0

−x∼′
c
· n

 , and fext :=

 n̄
m̄

 ,
(2.5.1g)

are the 6× 1 column vectors of the inertial, the internal, and the external forces and moments,

respectively. Note that the column vector of the internal force and moment is split into fI

int
and
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fII

int
, where the former consists of internal force n and the local internal momentm, while the

la�er is the moment x′
c
× n. The external force and moment vector, fext, is a combination of

gravitational and aerodynamic loads on the cable system, and we discuss these in the following

section. The boundary conditions wbc are discussed in Sec. 2.7.

2.6 External forces

The external forces (per unit length) due to gravitational and aerodynamic forces are discussed

here. In a 6× 1 column vector notation, we represent

fext =

 n̄
m̄

 = fgrav + faero (2.6.1)

2.6.1 Gravitational force

Figure 1.8 shows the acceleration due to gravity g along the ê1 direction. The column vector of

gravitational force

fgrav =



ρg

0

0

0

0

0


. (2.6.2)

2.6.2 Aerodynamic force

The aerodynamic force depends on three kinematic quantities, namely the air velocity vair, local

velocity of the cable u̇0(t) + u̇(s, t) and the local unit tangent x̂′
c

= x′
c
/|x′

c
| along the cable,

assuming that the cable element (Fig. 2.3) is a cylinder which is inclined in cross-flow [Hoerner,

1992; Païdoussis et al., 2010].

The velocity of air relative to the cable element is

v = vair − u̇0 − u̇ = vtêt + vnên, (2.6.3)

where vt = v · êt is tangential velocity and vn = v · ên is the normal velocity, while the unit

tangent, unit bi-normal and unit normal are, respectively,

êt =


−x̂′c if v · x̂′c < 0

x̂′c if v · x̂′c ≥ 0

, êb =
êt × v
|êt × v|

and ên = êb × êt. (2.6.4)
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0

Figure 2.3: Schematic of the beam element which is assumed to be a cylinder in 3D cross-flow (bo�om), with

von Karman vortex shedding (top).

The choice above ensures that êt - ên is the plane in which air/wind flow takes place. The

aerodynamic force and moment on the cylinder (cable element) of radius r are wri�en in the

following column vector notation:

faero =

 n̄cyl

aero

m̄
cyl

aero

 =

ctρairπrv
2
t êt

0

+

cnρairrv
2
nên

0

+

ckρairrv
2
n sin (ωkt) êb

0

 , (2.6.5)

where the aerodynamic coe�icients cn ≈ 1.0 – 1.3 and ct ≈ 0.01cn – 0.03cn [Hoerner, 1992] for

a cylinder in cross-flow. The von Karman coe�icient and frequency are, respectively,

ck ≈ 0 – 1.0 and ωk =
St π|vair|

r
,

where the Strouhal number St = 0.22 for a cylinder over a wide range of cross-flows [Den Hartog,

2013, pp. 305-306]. In (2.6.5), the first term (along êt) is the tangential/skin drag, the middle term

(along ên) is the normal/pressure drag and the third term is the oscillating von Karman force

(per unit length) acting along êb direction.

2.7 Boundary conditions

The weak form of boundary conditions to the beam is discussed here. The translating hinge

point (helicopter), as mentioned in Chapter 1, specifies a displacement-trajectory and o�ers a

moment-free condition at s = 0 in the frame a�ached to the cable at the hinge:

u0(t) + u(0, t) = u0(t) or u(0, t) = 0, µ(0) = 0 and m(0, t) = 0,

where the admissible variation µ satisfies the same condition as u at s = 0.
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Helicopter (Hinge)

Cable
(GE Beam)

Underslung load
(Rigid Body)

Wind

o
o’

Figure 2.4: Schematic showing the reaction force and moments at the point of connection between the towing

cable and the underslung load.

At the s = ` end of the cable in Fig. 2.4, the connection with the slung load (rigid body) o�ers

equal and opposite reaction force and moment to the cable,

n(`, t) = n̄`(t) and m(`, t) = m̄`(t),

where the reaction force and moment from the slung load to the cable at the point of connection:

f` =

 n̄`
m̄`

 ,
is computed in Sec. 3.3 of Chapter 3.

With these boundary conditions, we may rewrite (2.5.1e) as follows:

wbc = µ(`) · n(`, t) + φ(`) ·m(`, t)− µ(0) · n(0, t)− φ(0) ·m(0, t)

= µ(`) · n̄`(t) + φ(`) · m̄`(t) = ηT(`)f∗` (t). (2.7.1)

2.8 Planar (2D) GE beam

When the beam’s motion is restricted to the ê1-ê2 plane, the governing equations (2.2.7a) and

(2.2.7b) reduce to, respectively,

n′ + n̄ = ρ (ü0 + ü) (2.8.1a)

and m′3ê3 + x′
c
× n+ m̄3ê3 = J ω̇ = J ϕ̈3ê3, (2.8.1b)

where u0 + u = (u01 + u1)ê1 + (u02 + u2)ê2 is the total displacement of the centoidal axis,

x′
c

= (1 + u′1)ê1 + u′2ê2 is the tangent, n = n1ê1 + n2ê2 in the internal force, ρ is the mass
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density (per unit length) and J = J = ρI is the polar mass moment of inertia. The equations

(2.8.1a) and (2.8.1b) can be wri�en in the following matrix form:

finer =
(
fI

int

) ′ − fII

int
+ fext, (2.8.2)

where finer =


ρ (ü01 + ü1)

ρ (ü02 + ü2)

J ϕ̈3

 , fI

int
=


n1

n2

m3

 , fII

int
=


0

0

u′2n1 − (1 + u′1)n2



and fext =


ρg

0

0

+ faero.

In (2.8.2), the aerodynamic load vector

faero = ctρairπrv
2
t [êt] + cnρairrv

2
n [ên] , (2.8.3)

where êt =


−x̂′c if v · x̂′c < 0

x̂′c if v · x̂′c ≥ 0

, ên = ê3 × êt, vt = v · êt and vn = v · ên.

The rotation tensor (2.b.4) is defined by a planar rotation by angle ϕ3(s, t) about the ê3 axis,

[R] =


cosϕ3 − sinϕ3 0

sinϕ3 cosϕ3 0

0 0 1

 ,
and the strain measures are 

γ1

γ2

κ3

 =


1 + u′1 − cosϕ3

u′2 − sinϕ3

ϕ′3

 .
The material and spatial elasticity tensors are, respectively,

[C] = diag ([EA, kGA,EI]) and [C] = [R ·C ·RT].

Thus, the constitutive relationship is
n1

n2

m3

 = [C]


γ1

γ2

κ3

 = [C]


1 + u′1 − cosϕ3

u′2 − sinϕ3

ϕ′3

 . (2.8.4)

Di�erentiating the above relations we obtain
n1

n2

m3


′

= [C]′


1 + u′1 − cosϕ3

u′2 − sinϕ3

ϕ′3

+ [C]


u′1

u′2

ϕ′3


′

+ ϕ′3 [C]


sinϕ3

cosϕ3

0

 , (2.8.5)
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where

[C]′ = (EA− kGA)ϕ′3


−2 sinϕ3 cosϕ3 cos2 ϕ3 − sin2 ϕ3 0

cos2 ϕ3 − sin2 ϕ3 2 sinϕ3 cosϕ3 0

0 0 0


Substituting (2.8.4) and (2.8.5) into (2.8.2), we obtain the final form of governing equations:

ρ (ü01 + ü1)

ρ (ü02 + ü2)

J ϕ̈3

 = [C]′


1 + u′1 − cosϕ3

u′2 − sinϕ3

ϕ′3

+ [C]


u′1

u′2

ϕ′3


′

+ ϕ′3 [C]


sinϕ3

cosϕ3

0

+


ρg

0

0

+ faero

+


0

0

[(1 + u′1) sinϕ3 − u′2 cosϕ3][(EA− kGA){(1 + u′1) cosϕ3 + u′2 sinϕ3} − EA]

 .
(2.8.6)
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Appendix

2.a Useful vector and tensor identities

Here we give proofs of the vector and tensor identities used at various places in this work.

1. â⊗ â− (â · â)1 = a∼2

For any arbitrary three dimensional vector v,

{â⊗ â− (â · â)1} · v = â⊗ â · v − (â · â)v

= (â · v)â− (â · â)v

= â× (â× v)

= a∼2 · v, (2.a.1)

where as per our notation a∼ is the skew-symmetric spin tensor corresponding to the unit

vector â.

2. a∼3 = −a∼, a∼4 = −a∼2, a∼ · ȧ∼ · a∼ = a∼ · ȧ∼ · a∼2 = O, and ȧ∼ · a∼3 = −ȧ∼ · a∼

Let v be any three dimensional vector. Then,

a∼3 · v = â× [â× (â× v)]

= â× [(â · v)â− (â · â)v]

= (â · v)â× â− (1)â× v

= (â · v)0− (1)a∼ · v

= −a∼ · v,

which implies that

a∼3 = −a∼. (2.a.2a)

Multiplying the above by a∼, we deduce that

a∼4 = −a∼2. (2.a.2b)

Now, the remaining three identities are proved while observing that the rate (derivative)

of a unit vector is orthogonal to that unit vector, i.e., â · ˙̂a = 0,

a∼ · ȧ∼ · a∼ · v = â× [ ˙̂a× (â× v)]
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= â× [( ˙̂a · v)â− ( ˙̂a · â)v]

= ( ˙̂a · v)â× â− (0)â× v = 0,

where 0 is the zero vector. As v is arbitrary, we deduce

a∼ · ȧ∼ · a∼ = O, (2.a.2c)

where O is the zero tensor.

Post-multiplying the above by a∼, we obtain the relation

a∼ · ȧ∼ · a∼2 = O. (2.a.2d)

Finally, pre-Multiplying (2.a.2a) by ȧ∼, we obtain

ȧ∼ · a∼3 = −ȧ∼ · a∼. (2.a.2e)

3. ax(a∼ · ȧ∼ − ȧ∼ · a∼) = a∼ · ȧ

For any three arbitrary vectors v, y and z, we have

(y∼ · z∼ − z∼ · y∼) · v = y × (z × v)− z × (y × v)

= (y × z)× v

= (y∼ · z∼) · v.

Therefore, se�ing y = â and z = ˙̂a the above relation, we deduce

a∼ · ȧ∼ − ȧ∼ · a∼ = (a∼ · ˙̂a
∼

),

whose axial vectors are

ax(a∼ · ȧ∼ − ȧ∼ · a∼) = a∼ · ˙̂a. (2.a.3)

4. ϑ ˙̂a = −a∼2 · ϕ̇ = −ϑa∼2 · ˙̂a

From the derivative of ϕ = ϑâ (2.b.3), we obtain

ϑ ˙̂a = ϕ̇− ϑ̇â,

which is pre-multiplied by −a∼2
on both the sides to obtain the desired identity,

−ϑa∼2 · ˙̂a = −a∼2 · (ϑ ˙̂a) = −a∼2 · (ϕ̇− ϑ̇â)

= −â× [â× (ϑ ˙̂a)] = −a∼2 · ϕ̇+ ϑ̇a∼2 · â

= −ϑ(â · ˙̂a)â+ (â · â)(ϑ ˙̂a) = −a∼2 · ϕ̇+ ϑ̇â× (â× â)

= −ϑ(0)â+ (1)(ϑ ˙̂a) = −a∼2 · ϕ̇+ ϑ̇0

= ϑ ˙̂a = −a∼2 · ϕ̇. (2.a.4)
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2.b Rotation tensor

We now discuss the properties of the rotation tensorR and its parameterization into a minimum

independent set of parameters.

All three-dimensional rotation tensors belong to the Special Orthogonal or the SO(3) group.

The determinant of the members of this group is 1. A group is defined as a set which contains

the product and the inverse of its members. For example, ifR and T belong to the group SO(3)

then it implies thatR · T , T ·R,R−1
, and T−1

, also belong to the SO(3) group. Similarly, all

skew-symmetric tensors belong to another kind of group known as the so(3) group. According to

Hall [2015], so(3) is the Lie Algebra of the rotation group SO(3). That is, when a skew-symmetric

tensor ϕ∼ = −ϕ∼T
belongs to the so(3) group, then its exponential exp(ϕ∼) is an orthogonal tensor

belonging to the SO(3) group. Thus, exp(ϕ∼) is a rotation tensor.

Since eigenvalues of a skew-symmetric tensor are 0 and ±iϑ, where ϑ is a real number, then

the eigenvalues of its exponential will be 1 and exp(±iϑ). This means that the rotation tensor

R = exp(ϕ∼) is a proper orthogonal tensor which satisfies the following relations:

R−1 = RT, RT ·R = R ·RT = 1, (2.b.1a)

where 1 is an identity tensor. The determinant (third invariant) of R is the product of its

eigenvalues,

det(R) = 1 exp(iϑ) exp(−iϑ) = 1. (2.b.1b)

The trace (first invariant) ofR is given by the sum of its eigenvalues,

tr(R) = 1 + exp(iϑ) + exp(−iϑ) = 1 + 2 cosϑ, (2.b.1c)

which defines the angle of rotation

ϑ := arccos
tr(R)− 1

2
. (2.b.1d)

Let â be the unit eigenvector ofR corresponding to the unit eigenvalue,

R · â = â. (2.b.2a)

Then the rotation or transformation of any vector is quantified as a rotation of that vector by an

angle ϑ about the axis vector â, which allows the rotation tensor R to be represented by the

following axis-angle formula [Bea�y, 2013; Spencer, 2012]:

R = cosϑ1 + sinϑa∼ + (1− cosϑ) â⊗ â,
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= cosϑ1 + sinϑa∼ + (1− cosϑ) (â⊗ â− 1 + 1),

= (cosϑ+ 1− cosϑ)1 + sinϑa∼ + (1− cosϑ) [â⊗ â− (â · â)1]

= 1 + sinϑa∼ + (1− cosϑ) [â⊗ â− (â · â)1] , (2.b.2b)

where a∼ is the skew-symmetric spin tensor associated with the unit vector â. Using (2.a.1) in

(2.b.2b) we obtain the following expression of the rotation tensor:

R = 1 + sinϑa∼ + (1− cosϑ)a∼2. (2.b.2c)

By expanding (2.b.2c) in series of ϑ and simplifying using (2.a.2), we get

R = 1 +

(
ϑ− ϑ3

3!
+
ϑ5

5!
− . . .

)
a∼ +

(
1− 1 +

ϑ2

2!
− ϑ4

4!
+ . . .

)
a∼2

= 1 +

(
ϑa∼ − ϑ3

3!
a∼ +

ϑ5

5!
a∼ − . . .

)
+

(
ϑ2

2!
a∼2 − ϑ4

4!
a∼2 + . . .

)
= 1 +

(
ϑa∼ +

ϑ3

3!
a∼3 + . . .

)
+

(
ϑ2

2!
a∼2 +

ϑ4

4!
a∼4 + . . .

)
= 1 + ϑa∼ +

ϑ2

2!
a∼2 +

ϑ3

3!
a∼3 +

ϑ4

4!
a∼4 + . . . = exp(ϑa∼), (2.b.2d)

which is the exponential map of ϑa∼.

Now, if we define a rotation vector

ϕ = ϑâ, (2.b.3)

so that ϑ = (ϕ ·ϕ)1/2
, â = ϕ/ϑ, and ϕ∼ = sk (ϕ), then (2.b.2c) can be wri�en as

R = 1 +
sinϑ

ϑ
ϕ∼ +

1− cosϑ

ϑ2
ϕ∼2, (2.b.4)

which is commonly known as the Rodrigues’ formula [Simo & Vu-�oc, 1986a], and (2.b.2d) can

be expressed as the exponential map of ϕ∼:

R = exp(ϕ∼). (2.b.5)

Alternatively, the exponential map (2.b.5) may also be obtained by solving the di�erential equa-

tion:

dxcp

dϑ
=

(
d

dϑ
R

)
· xcp =

(
d

dϑ
R

)
·RT · xcp, (2.b.6)

which is obtained by di�erentiating (2.1.4c) with respect to ϑ. Here it is easily verified using

(2.b.2c) and (2.a.2) that(
d

dϑ
R

)
·RT =

(
cosϑa∼ + sinϑa∼2

)
·
[
1− sinϑa∼ + (1− cosϑ)a∼2

]
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=
(
cosϑa∼ + sinϑa∼2

)
− sinϑ

(
cosϑa∼2 + sinϑa∼3

)
+ (1− cosϑ)

(
cosϑa∼3 + sinϑa∼4

)
=
(
cosϑa∼ + sinϑa∼2

)
− sinϑ

(
cosϑa∼2 − sinϑa∼

)
+ (1− cosϑ)

(
− cosϑa∼ − sinϑa∼2

)
= (cosϑ+ sin2 ϑ− cosϑ+ cos2 ϑ)a∼

+ (sinϑ− sinϑ cosϑ− sinϑ+ cosϑ sinϑ)a∼2 = a∼. (2.b.7)

Thus, (2.b.6) reads

dxcp

dϑ
= a∼ · xcp, with xcp = xcp when ϑ = 0. (2.b.8)

The solution to this linear di�erential equation is

xcp = exp(ϑa∼) · xcp = exp(ϕ∼) · xcp. (2.b.9)

Thus, by comparing (2.b.9) and (2.1.4c) we can confirm thatR = exp(ϕ∼) is the exponential map

given by (2.b.5). This completes the discussion on the representation of rotation tensor as an

exponential map, and in the next section we discuss its di�erentiation.

2.c Derivatives of rotation tensor

The rotation parameters ϑ and â, or the vector ϕ = ϑâ, are functions of both the space

coordinate s and the time t. The derivatives of the rotation tensor R with respect to s and t

are important when calculating the angular velocity, angular acceleration, curvature, and other

similar quantities. The di�erentiation of the orthogonality relation (2.b.1a) yields skew-symmetric

tensors,

Ṙ ·RT = −R · ṘT, or R′ ·RT = −R ·R′T, (2.c.1)

where we denote �̇ ≡ d�/dt and �′ ≡ d�/ds. The tensor quantity Ṙ ·RT =: ω∼ is called as the

angular velocity, whileR′ ·RT =: κ∼ is the curvature. In this section, we derive the parametric

forms of these quantities in terms of ϑ and â, or ϕ.

The parametric form of Ṙ in terms of ϑ and â is obtained upon di�erentiation of (2.b.2c),

Ṙ = ϑ̇ cosϑa∼ + sinϑ ȧ∼ + ϑ̇ sinϑa∼2 + (1− cosϑ)
(
ȧ∼ · a∼ + a∼ · ȧ∼

)
, (2.c.2)

where a∼ = sk(â) and ȧ∼ = sk( ˙̂a). The parametric form ofR′
is analogous to (2.c.2), where the �̇

is replaced by the �′
.
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Angular velocity is obtained in terms of the parameters ϑ and â by using (2.c.2) and (2.a.2),

ω∼ = Ṙ ·RT = ϑ̇a∼ + sinϑ ȧ∼ + (1− cosϑ)
(
a∼ · ȧ∼ − ȧ∼ · a∼

)
, (2.c.3)

and whose axial vector

ω = ax (ω∼) = ϑ̇â+ sinϑ ˙̂a+ (1− cosϑ)a∼ · ˙̂a, (2.c.4)

where we used (2.a.3).

However, to represent the ω in terms of parameter ϕ, we replace the term ϑ̇â in (2.c.4) by

ϑ̇â = ϕ̇+ a∼2 · ϕ̇, (2.c.5)

which is obtained by di�erentiating (2.b.3) and using (2.a.4). Then (2.c.4) simplifies as follows,

ω = ϕ̇+ a∼2 · ϕ̇− sinϑ

ϑ
a∼2 · ϕ̇+

1− cosϑ

ϑ
a∼ · ϕ̇ = T · ϕ̇, (2.c.6)

where the linear transformation

T = 1 +
1− cosϑ

ϑ2
ϕ∼ +

ϑ− sinϑ

ϑ3
ϕ∼2, (2.c.7)

is called as the tangent tensor.

Angular acceleration is then calculated by di�erentiating the angular velocity (2.c.6) with

respect to t,

ω̇ = Ṫ · ϕ̇+ T · ϕ̈, (2.c.8)

where Ṫ is the time derivative of (2.c.7)

Also, analogous to (2.c.6), we obtain the curvature as a linear transformation of ϕ′
:

κ = T ·ϕ′. (2.c.9)

2.d Moment of inertia

The beam is homogeneous and isotropic with uniform mass density ρ0 per unit volume, and the

density per unit length is

ρ =

∫∫
Ac

ρ0 dxαdxβ, (2.d.1a)

where Ac is the area of cross-section, while the greek indices α, β = 2, 3. As the centroidal axis

coincides with the principal axis ê1 in the reference configuration, the distribution of area about

the centroidal axis, i.e. the first moment of area, vanishes:∫∫
Ac

xα dxαdxβ = 0, (2.d.1b)
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while the second moment of Ac is

Iαβ =

∫∫
Ac

xαxβ dxαdxβ =

 0, α 6= β

Iα, α = β
. (2.d.1c)

Therefore, the area moment of inertia tensor is diagonal:

I =

∫∫
Ac

(xcp · xcp)1− xcp ⊗ xcp dxαdxβ =
3∑
i=1

Ii êi ⊗ êi, (2.d.1d)

where 1 = êi ⊗ êi is the identity tensor, while the components I2 and I3 are the principal

moment of inertia about ê2 and ê3 axes, respectively, and I1 = I2 + I3 is the polar moment of

inertia about the centroidal axis ê1.

Mass moment of inertia per unit length

J =

∫∫
Ac

(xcp · xcp)1− xcp ⊗ xcp ρ0dxαdxβ =

3∑
i=1

Ji êi ⊗ êi, where Ji = ρIi. (2.d.1e)

The spatial mass moment of inertia tensor J (per unit arc-length) can be obtained by a push-

forward transformation:

J = R · J ·RT =

3∑
i=1

Ji d̂i ⊗ d̂i. (2.d.1f)

The rate of change of spatial inertia tensor (2.d.1f) with respect to time is given by

J̇ = Ṙ · J ·RT +R · J · ṘT = ω∼ ·J −J · ω∼, (2.d.1g)

where Ṙ ·RT = ω∼ was defined in (2.1.8b).

2.e Energetics

The total energy of the GE beam

wtot = ws + wg + wk, (2.e.1)

where ws is the strain energy density, which was given by (2.4.1):

ws(γ,κ) =
1

2
(γ · n+ κ ·m) , (2.e.2)

while wg is the gravitational potential per unit length, which is defined as

wg := ρg · xc, (2.e.3)

where g = gê1 is the acceleration due to gravity.
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The kinetic energy density (per unit length) wk of the beam

wk :=
1

2

3∑
α=2

3∑
β=2

∫∫
Ac

ẋ · ẋ ρ0dxαdxβ, (2.e.4a)

where, from (2.1.9), we obtain

ẋ · ẋ = ẋc · ẋc + 2ẋc · (ω × xcp) + (ω × xcp) · (ω × xcp),

= ẋc · ẋc + 2(ẋc × ω) · xcp + ω ·
[
(xcp · xcp)1− xcp ⊗ xcp

]
· ω.

Finally, using (2.d.1b) and (2.d.1f), we can rewrite the kinetic energy density (2.e.4a) as

wk =
1

2

3∑
α=2

3∑
β=2

{
ẋc · ẋc

∫∫
Ac

ρ0dxαdxβ + 2(ẋc × ω) ·
∫∫
Ac

xcp ρ0 dxαdxβ

+ ω ·
∫∫
Ac

{(xcp · xcp)1− xcp ⊗ xcp} ρ0dxαdxβ · ω
}

=
ρ

2
(u̇0 + u̇) · (u̇0 + u̇) +

1

2
ω ·J · ω, (2.e.4b)

where ẋc = u̇0 + u̇ is obtained by di�erentiating (2.1.4b).



Chapter 3

Mathematical Model of Underslung Load

As discussed in Chapter 1, the underslung load, which is being towed by the cable, is a large,

rigid, ring-shaped structure that is firmly connected to the cable by rigid rods. In this chapter, we

model the underslung load as a three dimensional (3D) rigid body with six degrees of freedom

[Greenwood, 1988]. Further, we derive the exact equations of the aerodynamic load acting on the

underslung load due to the wind/cross-flow. In literature [Cox, 1996; Thaokar et al., 2007], the

exact hydrodynamic drag for a ring or torus are obtained only in the case of axisymmetric and very

low Reynolds number (≤ 1) flows. However, we typically encouter winds/cross-flows of Reynolds

number in the range of 3000 to about 30000 during towing operations. Therefore, we rely on

the equations of drag on cylinder [Hoerner, 1992; Païdoussis et al., 2010], and calculate the total

drag by approximating the ring by a large number of small rigidly connected cylinders. Lastly,

we discuss how equations governing the underslung load enter as natural boundary conditions

for the governing equations of the towing cable. We begin with the governing equations of the

underslung load.

3.1 Equations for the underslung load

The underslung load shown in Fig. 3.1 is modeled as a 3D rigid body, which is a ring-shaped

structure of mass m∗ connected to the cable by massless rigid rods. The moment of inertia of the

underslung load is then approximately that of a torus
1

with a mean radius r∗ and cross-sectional

radius r∗
cs

:

[J∗] = m∗


r∗2 +

3

4
r∗2

cs
0 0

0
1

2
r∗2 +

5

8
r∗2

cs
0

0 0
1

2
r∗2 +

5

8
r∗2

cs

 .
1 http://mathworld.wolfram.com/Torus.html
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Wind

End Section

Cable

Underslung 
load

Section
Cross-

Figure 3.1: Free body diagram of the underslung load which is connected to the end-section of the cable.

The underslung load is rigidly fixed to the end-section of the cable at s = `. The equations of

motion of the underslung load wri�en about its center of mass C
∗

are

−n̄` + m∗g + n̄∗
aero

= m∗ü∗ (3.1.1a)

and −m̄` − `∗ × n̄` + m̄∗
aero

= J∗ · ω̇∗ + ω∗ ×J∗ · ω∗, (3.1.1b)

where g = gê1 and we have

`∗ = `∗d̂∗1, d̂∗i (t) = d̂i(`, t), for i = 1, 2, 3; ω∗(t) = ω(`, t), ω̇∗(t) = ω̇(`, t),

J∗(t) = R∗(t) · J∗ ·R∗T(t), R∗(t) = R(`, t), u̇∗(t) = u̇0(t) + u̇(`, t) + ω∗(t)× `∗(t),

and ü∗(t) = ü0(t) + ü(`, t) + ω∗(t)× {ω∗(t)× `∗(t)}+ ω̇∗(t)× `∗(t), (3.1.2)

−n̄` and −m̄` are, respectively, the force and moment on the underslung load by the towing

cable at the point of a�achment, as shown in Fig. 3.1, while the aerodynamic force n̄∗
aero

and

moment m̄∗
aero

on the underslung load are computed in the next section.

3.2 Aerodynamic force on the underslung load

We consider the aerodynamic force acting on the ring only, while the aerodynamic force on the

massless and slender connecting rods is ignored because it is small compared to the aerodynamic

forces on the ring.

To calculate the drag on the ring, we assume that the rigid circular ring is comprised of many

cylinders of length r∗dθ, where θ is measured from the d̂∗2 axis, and the cross-sectional radius r∗
cs

in 3D cross-flow (wind) as shown in Fig. 3.2. The tangent, bi-normal and normal unit vectors
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Wind

o

Figure 3.2: Schematic of the underslung load in 3D cross-flow.

local to each cylindrical element are, respectively,

ê∗t (θ, t) =


−ê∗θ if v∗ · ê∗θ < 0

ê∗θ if v∗ · ê∗θ ≥ 0

, ê∗b(θ, t) =
êt × v∗
|êt × v∗|

and ê∗n(θ, t) = ê∗b × ê∗t , (3.2.1)

which are functions of the relative velocity of the element,

v∗(θ, t) = vair − u̇∗ − ω∗ × r∗, (3.2.2)

where the radial vector r∗ = r∗ê∗r , while

ê∗θ = cos θ d̂∗3 − sin θ d̂∗2, and ê∗r = cos θ d̂∗2 + sin θ d̂∗3. (3.2.3)

The aerodynamic force on a cylindrical element is

n̄∗cyl

aero
(θ, t) = ctρairπr

∗
cs

(v∗ · ê∗t )2 ê∗t + cnρairr
∗
cs

(v∗ · ê∗n)2 ê∗n, (3.2.4)

where the first term (along ê∗t ) is tangential/skin-friction drag and the second term (along ê∗n) is

the normal/pressure drag on the cylindrical element. Note that, in contrast to the drag model

on the cable (Sec. 2.6.2), we assume that there is no oscillating von Karman force on the ring

because the wake-cu�ers present on the circumference of the ring wipe out any vortices formed

a�er the flow separates.

Similarly, the aerodynamic moment on the element is

m̄∗cyl

aero
(θ, t) = r∗ × n̄∗cyl

aero
. (3.2.5)
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The total aerodynamic force and moment on the center of the ring are then computed by

integrating the elemental quantities over the ring’s circumference,

n̄∗
aero

(t) =

2π∫
0

n̄∗cyl

aero
(θ, t) r∗dθ (3.2.6a)

and m̄∗
aero

(t) =

2π∫
0

m̄∗cyl

aero
(θ, t) r∗dθ. (3.2.6b)

Finally, we discuss how the underslung load equations are the natural boundary conditions

for the equations of the towing cable.

3.3 Natural boundary condition to towing cable’s equations

As discussed in Sec. 2.7, the reaction force n̄` and reaction moment m̄` from the underslung load

to the cable, and vice versa, are communicated via the point of a�achment; see Fig. 3.1. These

force and moments actually couple the dynamics of the towing cable and the underslung load,

while holding them together. The governing equation (3.1.1) of the underslung load become the

natural boundary conditions to the governing equations (2.2.7) of the towing cable at the tail-end

(s = `). Alternatively, n̄` and m̄` are impedance force and moment from the underslung load to

the towing cable. Accordingly, we set (3.1.1) in the form of an external force vector (Sec. 2.7) or

impedance to the towing cable’s tail-end (s = `),

f` =

 n̄`
m̄`

 = −f∗
iner

+ f∗
grav

+ f∗
aero

, (3.3.1a)

where

f∗
iner

=

 m∗ü∗

J∗ · ω̇∗ + ω∗ ×J∗ · ω∗ + `∗ ×m∗ü∗

 (3.3.1b)

f∗
grav

=

 m∗g

`∗ ×m∗g

 (3.3.1c)

and f∗
aero

=

2π∫
0

 n̄
∗cyl

aero(θ, t)

(r∗ + `∗)× n̄∗cyl

aero(θ, t)

 r∗dθ. (3.3.1d)
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Nonlinear �nite element formulation

The cable’s coupled di�erential equations (2.2.7) or their integral/weak form (2.5.1a) are nonlinear

in the displacement measures u(s, t) and ϕ(s, t). To solve them computationally using the

nonlinear finite element (FE) method [Bathe, 2006; Ibrahimbegović, 1995; Simo & Vu-�oc,

1986b], we linearize the weak form (2.5.1a) about the base configuration. A�er linearization, we

will solve the same nonlinear equations of the cable for the increments ∆u(s, t) and ∆ϕ(s, t) in

the displacement measures u(s, t) and ϕ(s, t), respectively.

4.1 Linearized weak form of the cable’s governing equations

The linearization of (2.5.1a) about base configuration, which is defined by the column vector

q(s, t) := [u(s, t) ϕ(s, t)]T, is:

w(q, q̇, q̈) + ∆winer + ∆wint −∆wext −∆wbc = 0, (4.1.1)

where ∆winer =

`∫
0

ηT∆finer ds, ∆wint =

`∫
0

η′
T

∆fI

int
+ ηT∆fII

int
ds,

∆wext =

`∫
0

ηT∆fext ds and ∆wbc = ηT(`)∆f∗` (`, t).

The incremental force vectors ∆finer, ∆fI

int
, ∆fII

int
and ∆fext are derived in Sec. 4.4, followed by

the increment of the boundary condition (reaction) force vector ∆f∗` (`, t) exerted by the slung

load on the cable in Sec. 4.5, and finally the finite element formulation in Sec. 4.6.

However, before that, we derive the incremental forms of kinematic quantities (Sec.4.2) and

strain measures (Sec.4.3) that are essential in the derivation of the incremental forces.

41 120
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4.2 Incremental angular velocity and angular acceleration

We saw in (2.c.6) that the angular velocity ω is a function on ϕ and ϕ̇. Linearizing ω and using

(4.a.1), we obtain

∆ω =
∂ω

∂ϕ
·∆ϕ+

∂ω

∂ϕ̇
·∆ϕ̇,=

(
Ṫ − ω∼ · T

)
·∆ϕ+ T ·∆ϕ̇. (4.2.1)

The derivative of (4.2.1),

∆ω̇ =
(
T̈ − ω̇∼ · T − ω∼ · Ṫ

)
·∆ϕ+

(
2Ṫ − ω∼ · T

)
·∆ϕ̇+ T ·∆ϕ̈. (4.2.2)

4.3 Incremental curvature and strain

Analogous to (4.2.1) and utilizing (2.3.4), the increment in the axial vector κ of the curvature

tensor is given by

∆κ =
(
T ′ − κ∼ · T

)
·∆ϕ+ T ·∆ϕ′. (4.3.1)

The increment of the strain is obtained from (2.3.6):

∆γ = ∆x′
c −∆d̂1 = ∆u′ − (T ·∆ϕ)
∼· d̂1, (4.3.2)

where the director d̂1’s increment ∆d̂1 = (T ·∆ϕ)
∼· d̂1 is found by using its derivative (2.3.3)

and utilizing (2.3.4).

4.4 Incremental force vectors

Using the incremental forms of angular velocity (4.2.1), angular acceleration (4.2.2), and the strain

measures (4.3.1) and (4.3.2), we now calculate the incremental force vectors.

4.4.1 Incremental inertial force vector ∆finer

The increment of the inertial force vector (2.5.1g),

∆finer =

ρ∆ü

∆ḣ

 ,
where the increment of the angular momentum rate is found from (2.2.5),

∆ḣ = (∆J ) · ω̇ +J ·∆ω̇ − h∼ ·∆ω + ω∼ · (∆J ) · ω + ω∼ ·J ·∆ω,

where we obtain

(∆J ) · ω = (J · ω∼ − h∼) · T ·∆ϕ and (∆J ) · ω̇ = (J · ω̇∼ −J · ω̇∼) · T ·∆ϕ,
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from (4.b.1d) and (4.b.1e), respectively, while ∆ω is given by (4.2.1), and ∆ω̇ is given by (4.2.2).

Therefore,

∆finer = M∆q̈ + G∆q̇ + Kiner∆q, (4.4.1a)

where ∆qT = [∆u ∆ϕ], ∆q̇T = [∆u̇ ∆ϕ̇] and ∆q̈T = [∆ü ∆ϕ̈] are the increments in the state

vectors q, q̇ and q̈, respectively, while

M =

ρ1 O

O J · T

 , G =

O O

O 2J · Ṫ + J̇ · T − h∼ · T

 , (4.4.1b)

and Kiner =

O O

O J · T̈ + J̇ · Ṫ − h∼ · Ṫ − ˙
h
∼ · T

 ,
are called the mass matrix, the gyroscopic matrix and the inertial tangent sti�ness matrix,

respectively, where O is the zero tensor, h
∼

= sk(h) and

˙
h
∼

= sk(ḣ).

4.4.2 Incremental internal force vectors ∆fI

int
and ∆fII

int

The increment of the first internal force (2.5.1g) is

∆fI

int
=

∆n

∆m

 =

 (∆Cn) · γ

(∆Cm) · κ

+

Cn · (∆γ)

Cm · (∆κ)

 ,
where the incremental strain ∆γ and incremental curvature ∆κ are given by (4.3.2) and (4.3.1),

respectively, while the increments in the elasticity tensors

(∆Cn) · γ = (Cn · γ∼ − n∼) · T ·∆ϕ and (∆Cm) · κ = (Cm · κ∼ −m∼) · T ·∆ϕ,

are given in Appendix 4.b.1. Therefore,

∆fI

int
= KI

q∆q + KI

q′∆q′, (4.4.2a)

where ∆qT = [∆u ∆ϕ], ∆q′T = [∆u′ ∆ϕ′], while

KI

q =

O (Cn · x∼′c − n∼) · T

O Cm · T ′ −m∼ · T

 and KI

q′ =

Cn O

O Cm · T

 , (4.4.2b)

where O is three dimensional zero tensor.

Similarly, the increment of the second internal force vector (2.5.1g),

∆fII

int
= −

 0

∆x∼′
c
· n+ x∼′

c
·∆n

 =

O O

n∼ O


∆u′

∆ϕ′

−
O O

x∼′
c

O

∆fI

int
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= KII

q∆q + KII

q′∆q′ (4.4.3a)

where

KII

q =

O O

O x∼′
c
· (n∼ − Cn · x∼′c) · T

 and KII

q′ =

 O O

n∼ − x∼′
c
· Cn O

 . (4.4.3b)

4.4.3 Incremental external force vector ∆fext

The incremental form of the external force vector (Sec. 2.6) is

∆fext =

∆n̄

∆m̄

 = ∆fgrav + ∆faero = ∆faero, (4.4.4a)

where the incremental external gravitational force is zero because the direction and magnitude of

the gravitational force remain unchanged, while the incremental aerodynamic force is calculated

next.

The incremental aerodynamic force

∆faero =

∆n̄
cyl

aero

0

 (4.4.4b)

where the increment of (2.6.5) is

∆n̄cyl

aero
= ctρairπrvt (2∆vtêt + vt∆êt) + cnρairrvn (2∆vnên + vn∆ên)

+ ckρairr sin (ωkt) vn (2∆vnêb + vn∆êb) , (4.4.4c)

while we compute the following quantities by linearizing (2.6.3), (2.1.4b) and (2.6.4):

∆vt = ∆v · êt + v ·∆êt, ∆vn = ∆v · ên + v ·∆ên, ∆v = −∆u̇,

∆êt =


−∆x̂′c if v · x̂′c < 0

∆x̂′c if v · x̂′c ≥ 0

, ∆x̂′c =
|x′c|∆x′c − x′c∆|x′c|

|x′c|2
,

∆x′c = ∆u′, ∆|x′c| =
x′c ·∆x′c
|x′c|

= x̂′c ·∆u′,

∆êb = ∆
êt × v
|êt × v|

=
(∆êt × v + êt ×∆v) |êt × v| − (êt × v) ∆|êt × v|

|êt × v|2
,

∆|êt × v| =
(êt × v) ·∆ (êt × v)

|êt × v|
= êb · (∆êt × v + êt ×∆v) ,

and ∆ên = ∆ (êb × êt) = ∆êb × êt + êb ×∆êt.

Simplifying the algebra, we obtain

∆n̄cyl

aero
= Gcyl

aero
·∆u̇+Kcyl

aero
·∆u′,
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where

Gcyl

aero
= cnρairrvn

(
x̂
∼′
c − ên ⊗ êb

)
· x̂∼′c − 2 ctρairπrvt

(
x̂′c ⊗ x̂′c

)
− ckρairr sin (ωkt) vn (1 + êb ⊗ êb) · x̂

∼′
c

and Kcyl

aero
= cnρairrvn

[
(ên ⊗ êb)v∼ + x̂′c ⊗ v + (v · x̂′c)1

]
· x̂
∼′
c · x̂
∼′
c

|x′c|

− ctρairπrvt
[
2 x̂′c ⊗ v + (v · x̂′c)1

]
· x̂
∼′
c · x̂
∼′
c

|x′c|

+ ckρairrρairr sin (ωkt) vn (1 + êb ⊗ êb) · v∼ ·
x̂
∼′
c · x̂
∼′
c

|x′c|
.

Finally, the incremental external force vector

∆fext = ∆faero = Kaero∆q′ + Gaero∆q̇, (4.4.4d)

where the aerodynamic sti�ness and damping matrices are, respectively,

Kaero =

Kcyl

aero O

O O

 and Gaero =

Gcyl

aero O

O O


4.5 Linearized form of slung-load’s equations

The slung load’s governing equations (3.1.1) appear as the natural boundary conditions to the

cable’s equations at s = `, given by (3.3.1). Being nonlinear in state vectors at s = `, they are

linearized about the base state resulting in the following incremental form:

∆f` = −∆f∗
iner

+ ∆f∗
grav

+ ∆f∗
aero

, (4.5.1a)

where

∆f∗
iner

=

 m∗∆ü∗

∆ (J∗ · ω̇∗ + ω∗ ×J∗ · ω∗) + ∆ (`∗ ×m∗ü∗)

 , (4.5.1b)

∆f∗
grav

=

 0

∆`∗ ×m∗g

 (4.5.1c)

and ∆f∗
aero

=

2π∫
0

 ∆n̄
∗cyl

aero(θ, t)

∆
{

(r∗ + `∗)× n̄∗cyl

aero(θ, t)
}
 r∗dθ. (4.5.1d)

The increments of the various quantities appearing above are now discussed.

The increments in velocity, angular velocity, angular acceleration are obtained using (3.1.2):

∆ω∗ = ∆ω(`, t), ∆ω̇∗ = ∆ω̇(`, t), ∆u̇∗ = ∆u̇(`, t) + ∆ (ω∗ × `∗) , ∆`∗ = `∗∆d̂∗1,
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∆r∗ = r∗∆ê∗r and ∆ü∗ = ∆ü(`, t) + ∆ [ω∗ × (ω∗ × `∗) + ω̇∗ × `∗] ,

where ∆ω(`, t) and ∆ω̇(`, t) are, respectively, the quantities (4.2.1) and (4.2.2) evaluated at the

boundary s = ` while, as noted in Sec. 4.3, the directors’ increments

∆d̂∗i = (T ∗ ·∆ϕ∗)∼· d̂∗i , where ϕ∗ = ϕ(`, t) and T ∗ = T (ϕ∗).

The increment in the drag force (3.2.4) acting on a cylindrical element of the ring is

∆n̄∗cyl

aero
(θ, t) = ctρairπr

∗
cs

(v∗ · ê∗t ) {2∆ (v∗ · ê∗t ) ê∗t + (v∗ · ê∗t ) ∆ê∗t }

+ cnρairr
∗
cs

(v∗ · ê∗n) {2∆ (v∗ · ê∗n) ê∗n + (v∗ · ê∗n) ∆ê∗n} , (4.5.2)

where, from (3.2.1), (3.2.2), and (3.2.3), we compute

∆v∗ = −∆u̇∗ −∆ (ω∗ × r∗) ,

∆ê∗r = cos θ∆d̂∗2 + sin θ∆d̂∗3

∆ê∗t =


−∆ê∗θ if v∗ · ê∗θ < 0

∆ê∗θ if v∗ · ê∗θ ≥ 0

,

∆ê∗θ = − sin θ∆d̂∗2 + cos θ∆d̂∗3,

∆ê∗n = ∆ê∗b × ê∗t + ê∗b ×∆ê∗t ,

∆ê∗b =
∆ (ê∗t × v∗) |ê∗t × v∗| − (ê∗t × v∗) ∆|ê∗t × v∗|

|ê∗t × v∗|2
,

and ∆|ê∗t × v∗| =
(ê∗t × v∗) ·∆ (ê∗t × v∗)

|ê∗t × v∗|
= ê∗b · (∆ê∗t × v∗ + ê∗t ×∆v∗) ,

Finally, simplifying (4.5.1), we obtain

∆f∗
iner

= M∗∆q̈ + G∗∆q̇ + K∗
iner

∆q, (4.5.3a)

∆f∗
grav

= K∗
grav

∆q (4.5.3b)

and ∆f∗
aero

= G∗
aero

∆q̇ + K∗
aero

∆q, (4.5.3c)

where the column vectors ∆qT = [∆u ∆ϕ], ∆q̇T = [∆u̇ ∆ϕ̇] and ∆q̈T = [∆ü ∆ϕ̈], while

the matrices

M∗ =

m∗1 −m∗`∗∼ · T ∗

m∗`∗
∼
J∗ · T ∗ −m∗`∗

∼2 · T ∗

 ,
G∗ =

O G∗12

O 2J∗ · Ṫ ∗ +
(
J̇∗ − h∼∗

)
· T ∗ + `∗

∼ ·G∗12

 ,
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K∗
iner

=

O K∗12

O J∗ · T̈ ∗ +
(
J̇∗ − h∼∗

)
· Ṫ ∗ − ˙

h
∼∗ · T ∗ +K∗22

 ,
K∗

grav
=

O O

O −(m∗g
∼

) · `∗∼ · T ∗

 ,

G∗
aero

=

2π∫
0

 −G∗cyl

aero G
∗cyl

aero · `∗r
∼ · T ∗

−`∗r
∼ ·G∗cyl

aero `∗r
∼ ·G∗cyl

aero · `∗r
∼ · T ∗

 r∗dθ

and K∗
aero

=

2π∫
0

O K
∗cyl

aero

O sk
(
n̄
∗cyl

aero

)
· `∗r
∼ · T ∗ + `∗r

∼ ·K∗cyl

aero

 r∗dθ,
where we denote

G∗12 = −m∗
{
`∗
∼ ·

(
2Ṫ ∗ − ω∼∗ · T ∗

)
+
(
ω∼∗ · `∗∼ + ω∼∗ · `∗∼

)
· T ∗

}
,

K∗12 = −m∗
{
`∗
∼ ·

(
T̈ ∗ − ω∼∗ · Ṫ ∗ − ω̇∼∗ · T ∗

)
+
(
ω̇∼∗ + ω∼∗2

)
· `∗∼ · T ∗

+
(
ω∼∗ · `∗∼ + ω∼∗ · `∗∼

)
·
(
Ṫ ∗ − ω∼∗ · T ∗

)}
,

K∗22 = m∗ü∼∗ · `∗∼ · T ∗ + `∗
∼ ·K∗12,

`∗r = r∗ + `∗, `∗r
∼

= sk (`∗r) ,

G∗cyl

aero
= cnρairr

∗
cs

(v∗ · ê∗n)
(
ê∗n ⊗ ê∗n + d̂∗1 ⊗ d̂∗1 + ê∗r ⊗ ê∗r

)
+ 2 ctρairπr

∗
cs

(v∗ · ê∗t ) (ê∗t ⊗ ê∗t ) ,

and K∗cyl

aero
= G∗cyl

aero
·
(
`∗r
∼ · Ṫ ∗ + ω∼∗ · `∗r
∼· T ∗

)
− cnρairr

∗
cs

(v∗ · ê∗n)

[(
d̂∗1 ⊗ v∗

)
· d̂∗1
∼

+ (ê∗r ⊗ v∗) · ê∗r
∼

+ {(ê∗n ⊗ v∗) + (v∗ · ê∗n) 1} · ê∗n
∼] · T ∗

− ctρairπr
∗
cs

(v∗ · ê∗t ) {2 (ê∗t ⊗ v∗) + (v∗ · ê∗t ) 1} · ê∗t
∼ · T ∗.

Using these definition we now formulate the finite element equation.

4.6 Linearized Finite Element (FE) Equation

The geometrically exact beam equations (2.2.7a) and (2.2.7b) and its weak form (2.5.1a) are

formulated in terms of the state vector qT(s, t) = [uT(s, t) ϕT(s, t)], which comprises of the

displacement u(s, t) of the centroidal line and rotation ϕ(s, t) of the rigid cross-sections, both of
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which are functions of material arc-length parameter s and time t. The method of finite elements

is implemented to solve the linearised weak form (4.1.1) by discretizing the cable of initial length

` into N elements, where each element has an initial length h. Then, the elemental state vector

is approximated as

qe(s, t) = N(s)pe(t),

where the 6× 12 linear interpolation matrix

N(s) =

Na(s)1 O Nb(s)1 O

O Na(s)1 O Nb(s)1


stores the shape functions, Na(s) = 1− s/h and Nb(s) = s/h, for a two-node element of length

h and nodes a and b, while pT

e(t) = [pT

a(t) pT

b(t)] is a 12× 1 vector of time varying values at

each node identified by the subscripts. Note that for a choice of element with more nodes the

order of the shape function polynomial and the size of N and pe are accordingly higher; see

for example [Bathe, 2006, Chap. 5]. We use the two-node element with linear shape functions

defined above.

The derivatives of qe assume the forms:

q′e = N′(s)pe(t), q̇e = N(s)ṗe(t), and q̈e = N(s)p̈e(t),

while their increments are represented as

∆qe = N(s)∆pe(t), ∆q′e = N′(s)∆pe(t),

∆q̇e = N(s)∆ṗe(t), and ∆q̈e = N(s)∆p̈e(t), (4.6.1)

where �′
denotes the derivative with respect to s, while �̇ and �̈ represents the first and the

second time derivatives, respectively. Similarly, the admissible weight functions that appear in

the weak formulation are interpolated as follows:

ηe(s) = N(s)ξe, and η′e(s) = N′(s)ξe.

Using the above interpolation in the linearized weak formulation (4.1.1), we assemble all the

elemental forms of the force vectors given in (2.5.1g) and their increments given in Sec. 4.4 as

follows:

n∑
e=1

ξT

e


h∫

0

NT (finer + ∆finer)e ds+

h∫
0

N′
T
(
fI

int
+ ∆fI

int

)
e

+ NT
(
fII

int
+ ∆fII

int

)
e
ds
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−
h∫

0

NT (fext + ∆fext)e ds

− ξT

n
NT(h) (f` + ∆f`) = 0.

For arbitrary/nontrivial values of the weights ξe, we have for each element

0 =

h∫
0

NT (finer + ∆finer)e ds+

h∫
0

N′
T
(
fI

int
+ ∆fI

int

)
e

+ NT
(
fII

int
+ ∆fII

int

)
e
ds

−
h∫

0

NT (fext + ∆fext)e ds

=

[ h∫
0

(
NTfiner + N′

T

fI

int
+ NTfII

int

)
e
ds−

h∫
0

NT (fext)e ds

]
+

[ h∫
0

{
NTKinerN

+ N′
T

KI

qN + N′
T

KI

q′N
′ + NTKII

qN + NT
(
KII

q′ − KII

aero

)
N′
}
e
ds

]
∆pe

+

[ h∫
0

NT (G− Gaero)e N ds

]
∆ṗe +

[ h∫
0

NT (M)e N ds

]
∆p̈e,

which can be rewri�en as the matrix equation

Me∆p̈e + Ge∆ṗe + Ke∆pe = fext,e − fe, (4.6.2)

where

Me =

h∫
0

NT (M)e N ds, Ge =

h∫
0

NT (G− Gaero)e N ds,

Ke =

h∫
0

{
N′

T

KI

qN + N′
T

KI

q′N
′ + NTKII

qN + NT
(
KII

q′ − Kaero

)
N′
}
e
ds,

fext,e =

h∫
0

NT (fext)e ds, and fe =

h∫
0

(
NTfiner + N′

T

fI

int
+ NTfII

int

)
e
ds,

are the elemental mass matrix, damping matrix, tangent sti�ness matrix, external force vector

and unbalanced force vector, respectively. For each element e, the forces finer, f
I

int
, and fII

int
are

given by (2.5.1g); the external force fext is given by (2.6.1); the inertial matrices Kiner, G and M are

given by (4.4.1); the internal sti�ness matrices KI

q and KI

q′ are given by (4.4.2b), KII

q and KII

q′ are

given by (4.4.3b); the aerodynamic damping Gaero and sti�ness Kaero are provided by (4.4.4).

Additionally, for nontrivial value of the weight ξn, we have the following boundary condition

at the last node, i.e. node-b of the n
th

element:

f`(t) + ∆f`(t) = 0 (4.6.3)
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where the reaction/impedance from the slung load f` is given by (3.3.1) and its increment ∆f`

given by (4.5.1). Using (4.5.3) we can now rewrite ∆f` as:

∆f` = −M∗∆p̈n,b − (G∗ − G∗
aero

) ∆ṗn,b −
(
K∗

iner
− K∗

grav
− K∗

aero

)
∆pn,b.

Finally, we assemble the elemental equations (4.6.2) and the boundary conditions (4.6.3) into the

following global form:

M∆p̈ + G∆ṗ + K∆p = fext − f. (4.6.4)

The FE equation (4.6.4) is then solved for the incremental nodal quantities ∆p, ∆ṗ and ∆p̈ at

each time-step by employing the Newmark-β time integration technique, which we now discuss.

4.6.1 Numerical integration of FE equations: Newmark-β method

The Newmark-β method, [Bathe, 2006; Mäkinen, 2008; Newmark, 1959; Simo & Vu-�oc, 1986b,

1988], is an implicit time-integration scheme for solving the transient equations of motion of the

form (4.6.4). We begin by evaluating (4.6.4) at a future time step t+ ∆t:

M∆p̈(t+ ∆t) + G∆ṗ(t+ ∆t) + K∆p(t+ ∆t) = fext(t+ ∆t)− f(t+ ∆t), (4.6.5)

where ∆t is the increment in time t. In the Newmark-β method, we employ truncated Taylor

series expansion of p(t+ ∆t) and ṗ(t+ ∆t) about the current time t, while assuming linear p̈

within the time increment ∆t:

p(t+ ∆t) = p(t) + (∆t) ṗ(t) +
(∆t)2

2
p̈(t) + β(∆t)3 p̈(t+ ∆t)− p̈(t)

(∆t)

and

ṗ(t+ ∆t) = ṗ(t) + (∆t) p̈(t) + τ(∆t)2 p̈(t+ ∆t)− p̈(t)

(∆t)
,

where β and τ are Newmark’s parameters, generally taken as β = 0.25 and τ = 0.5.

When these are linearized and then replaced in (4.6.5) we obtain[
1

β(∆t)2
M(t+ ∆t) +

τ

β∆t
G(t+ ∆t) + K(t+ ∆t)

]
∆p(t+ ∆t)

= fext(t+ ∆t)− f(t+ ∆t). (4.6.6)

To add numerical damping of (say) ζ%, which is common for structural dynamics problems, we

set τ = 0.5 + ζ/100 and β = 0.25(1 + ζ/100)2
[Hilber et al., 1977].

Equation (4.6.6) is solved for ∆p at time t+∆t by calculating M, G, K, fext and f at the predicted

state vectors. Using ∆p, the predictions are then corrected, and the convergence is checked. If
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the convergence criterion is satisfied then we repeat the above procedure to compute the state

vectors at the next time step. However, if the convergence criterion is not satisfied then we

recompute ∆p from (4.6.6) by recalculating M, G, K, fext and f at the corrected state vectors. This

process is repeated until converged solution is obtained for that time step. The entire procedure

is summarized in Algorithm 4.1.

Algorithm 4.1: The Newmark-β numerical time-integration algorithm

Input: Initial conditions at t = 0: p(0), ṗ(0) and p̈(0).

while t+ ∆t ≤ tmax do %Time marching loop

Predictions at t+ ∆t:

p̈(t+ ∆t) =

(
1− 1

2β

)
p̈(t)− 1

β(∆t)
ṗ(t)

ṗ(t+ ∆t) = ṗ(t) + (∆t) {(1− τ) p̈(t) + τ p̈(t+ ∆t)}

p(t+ ∆t) = p(t)

repeat %Newton-Raphson loop

Compute M, G, K, fext and f using p̈(t+ ∆t), ṗ(t+ ∆t) and p(t+ ∆t).

Compute ∆p(t+ ∆t) from (4.6.6).

Corrections at t+ ∆t:

p̈(t+ ∆t)←− p̈(t+ ∆t) +
1

β(∆t)2
∆p(t+ ∆t)

ṗ(t+ ∆t)←− ṗ(t+ ∆t) +
τ

β(∆t)
∆p(t+ ∆t)

p(t+ ∆t)←− p(t+ ∆t) + ∆p(t+ ∆t)

Re-compute fext and f using the corrected p̈(t+ ∆t), ṗ(t+ ∆t) and p(t+ ∆t).

Check for convergence.

until max {abs (fext − f)} < 10−8 % Convergence criterion

Update time: t←− t+ ∆t
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Appendix

4.a The tangent tensor, its derivative and angular velocity

In this Appendix, we derive a useful relationship between T , Ṫ and ω∼ given by

Ṫ =
∂ω

∂ϕ
+ ω∼ · T . (4.a.1a)

First, we define the basis vectors ti of the tangent tensor T by ti = T · êi, for i = 1, 2, 3. We

may thus express T as

T = ti ⊗ êi.

Then the definition of angular velocity (2.c.6) can be wri�en as

ω = T · ϕ̇ = ti ⊗ êi · ϕ̇ = ϕ̇iti, (4.a.1b)

where ϕ̇i are components of ϕ̇ along êi.

Alternatively, the definition (2.c.3) can be modified using the notationR,i ≡
∂R

∂ϕi
, for brevity,

ω = ax(Ṙ ·RT) = ϕ̇i ax(R,i ·RT). (4.a.1c)

Now, comparing (4.a.1b) and (4.a.1c) we deduce that

ti = ax(R,i ·RT), or ti
∼

= R,i ·RT, (4.a.1d)

where ti
∼

is the skew-symmetric tensors corresponding to ti.

Second, using (4.a.1d) in (2.a.3) we obtain

ti
∼ · tj
∼

= ti
∼ · tj
∼ − tj

∼ · ti
∼

= tj
∼ · ti
∼

T − ti
∼ · tj
∼

T

= (R,j ·RT) · (R,i ·RT)T − (R,i ·RT) · (R,j ·RT)T

= R,j ·RT

,i −R,i ·RT

,j

= (R,ji ·RT +R,j ·RT

,i)− (R,ij ·RT +R,i ·RT

,j)

=
∂(R,j ·RT)

∂ϕi
− ∂(R,i ·RT)

∂ϕj
, (4.a.1e)

whereR,ij = R,ji = ∂2R/∂ϕi∂ϕj . The axial vector of (4.a.1e) is extracted using (4.a.1d):

ti
∼ · tj =

∂ tj
∂ϕi
− ∂ ti
∂ϕj

. (4.a.1f)

Further, the tensor product of (4.a.1f) with the reference basis êj ,

ti
∼ · tj ⊗ êj =

∂ (tj ⊗ êj)
∂ϕi

− ∂ ti
∂ϕj
⊗ êj ,
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results in the relation

ti
∼ · T =

∂ T

∂ϕi
− ∂ ti
∂ϕ

. (4.a.1g)

Finally, the product of (4.a.1g) with ϕ̇ gives the following relation

ti
∼ · T · ϕ̇ = ti

∼ · ω =
∂ T

∂ϕi
· ϕ̇− ∂ ti

∂ϕ
· ϕ̇ =

∂ ω

∂ϕi
− d ti

dt
,

whose tensor product with êi results in the desired identity:

ω∼ · ti ⊗ êi = ω∼ · T =
d ti
dt
⊗ êi −

∂ ω

∂ϕi
⊗ êi = Ṫ − ∂ ω

∂ϕ
. (4.a.1h)

4.b Incremental inertia and elasticity tensors

In this Appendix, we derive the incremental forms of the spatial inertia tensor J and the spatial

elasticity tensors Cn and Cm. The product of the rate of inertia tensor (2.d.1g) with an arbitrary

vector v is

J̇ · v = (ω∼ ·J −J · ω∼) · v = ω∼ ·J · v −J · ω∼ · v

= −(J · v∼) · ω +J · (v∼ · ω) = (J · v∼ −J · v∼) · ω

= (J · v∼ −J · v∼) · T · ϕ̇. (4.b.1a)

Since J̇ = lim
∆t→0

∆J /∆t and ϕ̇ = lim
∆t→0

∆ϕ/∆t, we can deduce the incremental form

(∆J ) · v = (J · v∼ −J · v∼) · T · (∆ϕ), (4.b.1b)

so that when v = ω, we have

(∆J ) · ω = (J · ω∼ −J · ω∼) · T · (∆ϕ), (4.b.1c)

and when v = ω̇ we obtain

(∆J ) · ω̇ = (J · ω̇∼ −J · ω̇∼) · T · (∆ϕ). (4.b.1d)

Furthermore, as the material elasticity tensors (2.4.3) are diagonal in the reference basis êi,

the incremental forms of the spatial elasticity tensors (2.4.2) are analogous to the incremental

spatial inertia tensor (4.b.1c):

(∆Cn) · γ = (Cn · γ∼ − Cn · γ
∼

) · T · (∆ϕ), (4.b.1e)

and

(∆Cm) · κ = (Cm · κ∼ − Cm · κ
∼

) · T · (∆ϕ). (4.b.1f)





Chapter 5

Results and Discussions

In this chapter, we discuss the dynamics of our cable-towed underslung load system by simulating

various practical situations with our FE solver. We begin by comparing and validating our GE

beam solutions with those given in the literature. For all the computations we use the Newmark

parameters β = 0.25 and τ = 0.5, unless otherwise specified.

5.1 Comparison of GE beam results

Reliability of our GE beam solver is checked by comparing our results with some common

examples given in the existing literature, as well as by verifying the conservation of total energy

and global angular momentum at every time step.

5.1.1 Pure bending of cantilevered beam

In this example [Simo & Vu-�oc, 1986b], a planar cantilever beam of unit length and bending

rigidityEI = 2 (dimensionless) rolls up into a circle when a bending momentm3 = 2πEI = 4π

is applied at the free end as shown in Fig. 5.1. The same figure also shows two di�erent deformed

shapes of the beam’s centroidal axis which are obtained from the FE computations using 10 and

100 two-node elements, respectively. According to the classical Euler’s beam bending theory,

the radius of curvature of the beam under pure bending is EI/m3 = 1/π. The FE solution

using 100 elements is closest to the exact circle when the convergence criterion in Algorithm 4.1

is tightened to 10−14
. The moment of 4π was applied directly in the first iteration while the

converged solution was obtained within four iterations.
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Figure 5.1: Pure bending of a cantilever beam.

5.1.2 Damped oscillation of cantilevered beam

This example [Simo & Vu-�oc, 1986a] demonstrates the vibration of a planar cantilever beam

which is initially excited by a concentrated end force as shown in the inset of Fig. 5.2. The

free oscillations of the planar beam are damped (see Fig. 5.2) due to the inclusion of velocity

proportional viscous damping.

The properties of the beam are: ` = 10 m, EI = 103
Nm

2
, kGA = EA = 106

N, ρ = 1

kg/m and J = ρI = 10 kg-m
3
, while the viscosity of damping is 0.1ρ, i.e. the damping matrix

G = 0.1M in (4.6.4). The end force n̄2 = 37.5 N is applied initially for 1.5 s, where the amplitude

of n̄2 grows linearly from 0 to 37.5 N in the first 0.75 s and then reduces to 0 over the next 0.75

s.
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Figure 5.2: Top inset shows the schematic of a cantilevered beam subjected to vertical force at the tip/free end.

The damped free oscillations of the tip, represented by solid line, for a period of 100 s (with ∆t) match well

with those from [Simo & Vu-�oc, 1986a, Ex. 2.5], represented by small circles. In this reference the beam was

meshed with 4 quadratic elements in contrast to 10 linear elements in our simulation.
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5.1.3 Flying spaghe�i

A free-ended planar beam, shown at the top of Fig. 5.3, is subjected to an end moment about

the negative ê3 direction and a planar force which is inclined at tan−1(8/6) rad to the ê1 axis

for a period of 2.5s. This example should be compared with [Simo & Vu-�oc, 1986a, Ex. 2.2.1]

where the beam was initially inclined instead of the force. As expected, the beam goes ‘flying’

along a direction which is at tan−1(8/6) rad to the ê1 axis. The deformed shapes of the beam’s

centroidal axis at various time steps during the first 15 s of free flight are shown in Fig. 5.3. In

these 15 s the beam undergoes two complete revolutions.

The properties of the beam are: ` = 10 m, EI = 500 Nm
2
, kGA = EA = 104

N, ρ = 1 kg/m

and J = ρI = 10 kg-m
3
. The end moment m̄(0, t ≤ 2.5) = −80ê3 Nm and the inclined end

force n̄(0, t ≤ 2.5) = −8 cos{tan−1(8/6)}ê1 − 8 sin{tan−1(8/6)}ê2 N is applied for the initial

2.5 s, and then removed suddenly.
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Figure 5.3: Motion of a free beam due to combined load of force and moment at one end. For FE simulation

the number of elements was 10 with the time-stepping of ∆t = 0.1 s.

5.1.4 Single blade rotor

In this example, a beam with one end free and other end fixed to a rotor that is free to rotate

about the ê3 axis is shown at the top of Fig. 5.4. The properties of the beam are: ` = 10 m,

EI = 1.4× 104
Nm

2
, kGA = 107

N, EA = 2.8kGA N, ρ = 1.2 kg/m and J = ρI = 6× 10−4

kg-m
3
. The rotor is prescribed the following rotation [Simo & Vu-�oc, 1988]:
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Figure 5.4: Top figure is a schematic of the clamped rotating beam with an end-force that is applied initially

for 1 s. Le� figure is a 3D plot showing the tip displacement of the rotating beam along with configuration

of the beam at arbitrary chosen time steps. Right figure shows all three components of tip displacement as

functions of time.

ϕ(0, t) =


π

15

{
t2

2
−
(

15

2π

)2(
1− cos

2πt

15

)}
ê3 rad if 0 ≤ t ≤ 15 s,

π(t− 7.5)ê3 rad if t > 15 s,

(5.1.1)

which is also plo�ed in the Fig. 5.5(a). The rotor is smoothly accelerated and decelerated within
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Figure 5.5: (a) Angular rotation (5.1.1), (b) angular velocity and (c) angular acceleration prescribed to the

rotor over a period of 30 s.

the initial 15 s as shown in Fig. 5.5(c), so that a constant angular velocity of π rad/s is maintained
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for the remaining period as shown in Fig. 5.5(b). Additionally, the free end of the beam is initially

subjected to a force:

n̄(`, t) =


80t N if 0 ≤ t ≤ 0.5 s,

80(1− t)ê3 N if 0.5 < t ≤ 1 s,

0ê3 N if t ≥ 1 s,

(5.1.2)

which displaces the tip of the beam normal to the plane of rotation as shown in Fig. 5.4. The

magnitude of force (5.1.2) grows linearly till 0.5 s and then reduces to zero over the next 0.5 s.

A�er n̄(`, t) vanishes, only the external moment which is supplied to the rotor for controlling

ϕ(0, t) (5.1.1) governs the motion of the beam. Thus, the beam oscillates freely in the ê3 direction

for t > 1 s, as shown by the time history of x3(`, t) in Fig. 5.4, while rotating in the ê1-ê2 plane

as shown by the periodic oscillations of x1(`, t) and x2(`, t) in Fig. 5.4. The total energy of the
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Figure 5.6: Evolution of total energy of the rotating beam.

beam shown in Fig. 5.6 grows smoothly for the first 15 s before a�aining a constant value. The

‘s’-shaped curve of total energy in Fig. 5.6 is similar to, and a signature of, the prescribed angular

velocity shown in Fig. 5.5(b). Further, the rate of angular momentum about the rotating center

matches well with the total torque supplied to the rotor, as shown in Fig. 5.7. In the same figure,

the ê3 components ḣ03 and m̄03 of the angular momentum rate and the total external moment,

respectively, grow and diminish in the initial 15 s. This phenomenon captures the profile of the

prescribed angular acceleration shown in Fig. 5.5(b). Also, the small inertial oscillations of ḣ03 in

Fig. 5.7 are a signature of the beam’s out-of-plane oscillations x3(`, t) shown in Fig. 5.4. Thus,

the energy and angular momentum rate in Figs. 5.6 and 5.7, respectively, capture the e�ects of

the beam’s rotational motion, and this demonstrates the accuracy of our computations.

5.1.5 Cable towing a lumped mass in 2D cross-flow

In this example, we compute the equilibrium solution of massless GE beam towing a lumped mass

in cross-flow. Figure 5.8 shows the equilibrium shapes of massless beams of di�erent diameters
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Figure 5.7: Evolution of net rate of angular momentum ḣO and net external moment m̄O about O shows a

decent match confirming that angular momentum is conserved.

compared with the shape of a massless string by Glauert [1930], when these are subjected to a

normal drag of 10 N/m in their reference states while towing a lumped mass of 20 kg which itself

is subjected to a horizontal drag force of 10 N. The other properties of the beams are: ` = 1 m

and E = G = 4× 109
N/m

2
. We note that as the diameter of the beam reduces the equilibrium

shape approaches to that of the string. Figure 5.9 compares the equilibrium shapes of the 6 mm

diameter beams with that of the string – all of which are subjected to same drag as above but

tow a di�erent lumped mass. We observe that the match between the beam and the string is

best when the shapes have shallow curvatures, i.e. when the lumped mass is low (< 5 kg) or

high (> 40 kg), while for other cases the match is good. The li�le di�erence in the curvatures is

because the string doesn’t resist bending moment.

5.2 Simulations with ring-shaped underslung load

In this section, we simulate some common hover conditions and flight maneuvers of cables towing

ring-shaped underslung loads. Unlike the lumped mass model of underslung loads discussed

in previous section, the complete 3D rigid-body model (Chap. 3) is considered in this section.

However, the examples discussed here are only for the purpose of demonstrating: the steady

state shapes of a cable while towing a lighter and a heavier mass, the time taken to achieve

steady state in the cases of steady and accelerated flights at di�erent speeds, the trajectory

followed by the underslung load during maneuvers, and the optimum trajectory for keeping

the ring as parallel to the ground as possible. Therefore, the physical parameters of the cable,
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Figure 5.8: Equilibrium shapes of massless nylon GE beams of di�erent diameters towing a 20 kg mass and

subjected to the same aerodynamic pressure (normal) drag are shown. They are compared with Glauert’s

solution for a massless-string which bears only tension. We find that the GE beam of 6 mm diameter is the

best approximation to a string. Length of cable is 1 m. Nylon’s elastic and shear moduli are E = G = 4 GPa.
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Figure 5.9: Equilibrium shapes of massless GEBT ( —) nylon cables towing various lumped masses, subjected

to aerodynamic pressure (normal) drag are shown. They are compared with Glauert’s ( ◦ ) massless-string

which bears only tension. Length and diameter of cable are 1 m and 6 mm respectively. The normal drag on a

vertical hanging (reference) cable is taken as 10 N/m, while that on the hanging mass is 10 N. Nylon’s elastic

and shear moduli are E = G = 4 GPa.

underslung load, wind, helicopter motion, etc., are taken only for the purpose of illustrating

these objectives. An example with much more practical values of physical parameters will be
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discussed in Sec. 5.3.

For all the FE simulations considered here, the cable is discretized/meshed into n = 100 linear

elements and a time step of ∆t = 0.01 s along with a numerical damping ζ = 10-20%, which is

common for structural dynamics problems, is employed.

5.2.1 Hovering

We simulate a situation when the helicopter hovers at a fixed location, while the wind drags

the cable and the underslung load as shown in Fig. 5.10. Following conditions are set for the

simulation. Wind direction is 45o in the X2-X3 plane and has a speed of 40 m/s. The Nylon Cable

is 10 m long with circular cross-section of radius r = 1 cm, while the underslung load of 10 kg is

smaller in dimension, as shown in the inset (zoomed-in view) of Fig. 5.10. It has a mean radius

r∗ = 8 cm, sectional radius r∗
cs

= 0.25 cm and the distance between its center and the point

of a�achment `∗ = 0.8 m. The von Karman coe�icient ck = 0.6, while the drag coe�icients

cn = 1.3 and ct = 0 (all dimensionless). The steady state is achieved in the underslung load’s

displacement and angular displacement a�er aerodynamically damped oscillations for 50 s,

as shown in Fig. 5.11. The x∗2 and x∗3 components of displacement x∗ in Fig. 5.11(a) are equal

because the direction of wind is 45o
in X2-X3 plane, as shown in Fig. 5.10. For the same reason

the ϕ∗2 and ϕ∗3 components of angular displacement ϕ∗ in Fig. 5.11(b) are equal and opposite,

which can also be verified from the orientation of the ring in the inset of Fig. 5.10. The steady

state shape of the cable is significantly curved, as shown in Fig. 5.10, due to the aerodynamic

drag, as well as the weight of the underslung load.

5.2.2 Steady forward flight

The steady flight may be simulated as a special case of hover (Sec. 5.2.1) by taking the relative

wind velocity as vair − u̇0. We will discuss a more general forward flight that starts from rest in

the next section.

In contrast to the previous example, we consider a low relative wind velocity of vair − u̇0 =

−5ê2 − 20ê2 = −25ê2 m/s acting on the towed system, where the wind velocity vair is purely

along the −ê2 direction unlike oriented 45o
to it. Moreover, the underslung load of 50 kg is

heavier and the ring of r∗
cs

= 0.05 m and r∗ = `∗ = 1 m is larger, while the 10 m long nylon

cable with cross-sectional radius r = 0.5 cm is thinner than earlier. Thus, we may expect more

aerodynamic drag on the ring and less on the cable in comparison to the previous example.

Figures 5.12 and 5.13, respectively, show the steady state of the cable and the evolution of linear
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Wind
40 m/s

Figure 5.10: FE solution at the end of 50 s when steady state is achieved. The orientation of the ring (detector)

at steady state is shown in the right inset zoomed-in view of the underslung load. Note that, although a detailed

structure of the underslung load is shown with the ring detector connected to the cable via rigid links, the FE

model of the underslung load assumes no contribution from links, as discussed in Chap. 3.
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Figure 5.11: Time evolution of (a) displacement and (b) angular displacement of the small underslung load

during hover.

(x∗) and angular (ϕ∗) displacements of the underslung load. Contrasting Fig. 5.13 with Fig. 5.11,

we note that since the drag on the underslung load is more due to its large size, the underslung

load displaces (x∗1 and x∗2) farther, and tilts (ϕ∗3) more, than before despite being subjected to a

lower wind velocity. However, the initial oscillations damp out quickly and the steady state is

achieved faster in Fig. 5.13 than in Fig. 5.11. This is also because the weight and the aerodynamic

damping of the underslung load are more. Thus, the resulting shape of the cable is less curved

(almost straight) in Fig. 5.12 than in Fig. 5.10.

When the wind velocity is increased to 40 m/s in −ê2 direction, the same underslung load

displaces even farther and almost aligns with the wind direction as shown in Figs. 5.14 and
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Figure 5.12: FE solution at the end of 100 s when steady state has already been achieved is shown on the le�,

while the underslung load’s orientation is shown by a zoomed-in view on the right.
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Figure 5.13: Time evolution of (a) displacement and (b) angular displacement of the underslung load during

−25ê2 m/s steady forward flight.

5.15, while the shape of the cable is nearly straight. The evolution of displacements is shown

in Fig. 5.15. Note that since the higher wind velocity causes more damping, the displacements

Fig. 5.15(a) and angular displacements Fig. 5.15(b) achieve steady state much faster in this case.

It is clear from the above two examples that the given velocities of steady forward flight are not

helpful in keeping the given ring detector (underslung load) parallel to the ground as desired for

surveying. Perhaps a much smooth transition from zero to slightly lower velocity than considered

above is be�er for keeping the same ring parallel to ground. To investigate this speculation, we

simulate a forward flight that slowly accelerates from rest and gradually a�ains a lower constant

velocity.
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Figure 5.14: FE solution for relative wind speed 40 m/s at the end of 100 s when steady state has already been

achieved is shown on the le�, while the underslung load’s orientation is shown by a zoomed-in view on the

right.
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Figure 5.15: Time evolution of (a) displacement and (b) angular displacement of the underslung load during

−40ê2 m/s steady forward flight.

5.2.3 General forward flight

In this section, we simulate the dynamics of towed system during a general forward flight that

starts from rest and a�ains a constant velocity a�er a desired time. The helicopter towed detector

o�en needs to survey a long patch of area while maintaining a desired velocity. We expect to

maintain a lower constant velocity for the same cable-underslung load system discussed in the

previous section. For example, the helicopter starts from rest at t = 0 s and then travels a�er

20 s at a velocity of (say) 8 m/s in the ê2 direction when the wind blows at −5ê2 m/s. So the

relative wind velocity on the system a�er achieving this constant speed is −13ê2 m/s, which

is nearly half of that considered in the first example of Sec. 5.2.2. To this end, we prescribe the
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following condition on the velocity:

u̇0(t) =


0 m/s if t = 0 s,

8 ê2 m/s if t > 20 s.

(5.2.1)

To satisfy the above conditions while ensuring that the motion is smooth until the desired velocity

is a�ained, we approximate the velocity

u̇0(t) =
erf(12)− erf(6− 1.5 t0.6)

2
8 ê2 m/s, (5.2.2)

where Abramowitz et al. [1964] define the function

erf(z) :=
2√
π

z∫
0

exp(−τ2) dτ.
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Figure 5.16: (a) Displacement, (b) velocity and (c) acceleration of the surveying helicopter for the proposed

forward flight in the ê2 direction is shown. The constant velocity of 8 m/s is achieved a�er 40 s starting from

rest.

Figure 5.16 plots the desired displacement, velocity and acceleration for the forward flight

as functions of time using (5.2.2). Note that when the velocity u̇0(t) = 8 ê2 m/s is constant

for t > 20s, the displacement u0(t) = 8t ê2 m grows linearly and the acceleration ü0(t)

vanishes, as desired. Also note that, there is no special reason for choosing (5.2.2) than to have a

smoothly rising and se�ling function, commonly known as sigmoid function. However, instead

of one sigmoid function we may simply choose piecewise smooth polynomials, and this will be

demonstrated in the next section where we design trajectories for maneuvers.

For now, we simulate the flight conditions (5.2.2) on the cable and underslung load system of

Sec. 5.2.2, subjected to a −5ê2 m/s wind. The steady state of the system is shown in Fig. 5.17. In
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Figure 5.17: FE solution of forward flight at the end of 100 s, when steady state has already been achieved.

The inset zoomed-in view of the underslung load is shown on the right.

contrast to Sec. 5.2.2, the relative wind velocity of −13ê2 m/s experienced by the system is lower,

which causes the underslung load to displace less.

Contrasting the actual displacement of the underslung load with the helicopter’s trajectory in

Fig. 5.18, we note that the underslung load follows the trajectory of the helicopter closely with

negligible variation. The small initial oscillations of x∗3 in Fig. 5.18(c) are due to the von Karman

e�ect, and it damps out when the steady velocity is achieved.
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Figure 5.18: Displacement of the underslung load contrasted with the helicopter’s trajectory during a forward

flight of 8 m/s.
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Further, the steady state angular displacement of the underslung load is small (ϕ∗3 ≈ −0.4

rad) in Fig. 5.19 in contrast to Fig. 5.13(b), which implies that the ring detector remains less tilted

to the ground/surveying plane. This facilitates be�er operation for a long period of time at this

cruising speed.
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Figure 5.19: Time evolution of angular displacement of the underslung load during a forward flight of 8 m/s

that starts from rest.

5.2.4 U-turn maneuver

In this section, we simulate the dynamics of towed system during a ‘U’ turn maneuver. Such

a maneuver may be undertaken by the surveying helicopter for changing to a parallel lane. In

t = 70 s

100 m

x3200 m

x2
100 m

  x1 10 m

t = 30 s

t = 100 s

o

g

0

Underslung 
load's path

Figure 5.20: Trajectory of the surveying helicopter for the proposed U-turn maneuver is shown. The actual

path of the underslung load is shown with broken line.

the following example, we expect the helicopter to start from rest at t = 0 s and then follow a
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trajectory (Fig. 5.20) which obeys the following conditions at various times:

u0(t) =



0 if t = 0 s,

100ê2 m if t = 30 s,

100 (ê2 + ê3) m if t = 70 s,

100ê3 m if t = 100 s,

, u̇0(t) =



0 m/s if t = 0 s,

6ê2 m/s if t = 30 s,

−6ê2 m/s if t = 70 s,

0 m/s if t = 100 s

(5.2.3)

and

ü0(t) = 0 if t = 0, 30, 70 and 100 s.

To satisfy (5.2.3), the entire trajectory u0(t) is then approximated by the following combination

of smooth polynomials:

u0(t) =



(
7 t3

675
− t4

3375
+

t5

405000

)
ê2 if 0 ≤ t ≤ 30 s,

(
9703589

236
− 1020973 t

84
+

2330461 t2

1439
− 406546 t3

3163

+
69323 t4

10250
− 24350 t5

98059
+

1909 t6

292879
− 88 t7

714447

+
27 t8

16237985

)
ê2 +

(
−31791879

65
+

19035877 t

124

−2719411 t2

124
+

839599 t3

445
− 290133 t4

2662
+

119078 t5

26689

−5991 t6

45011
+

1243 t7

424393
− 215 t8

4522888

)
ê3 if 30 s < t ≤ 70 s,

(
440000

81
− 29200 t

81
+

812 t2

81
− 281 t3

2025

+
19 t4

20250
− t5

405000

)
ê2 + 100ê3 if 70 s < t ≤ 100 s,

(5.2.4)

where we have also assumed that the helicopter comes to a halt at the four intermediate time

junctions, i.e. the higher derivatives of acceleration dü0/dt (jerk) and d2ü0/dt
2

(snap) are also

zero at these times. This assumption, in addition to (5.2.3), provided the necessary number of

conditions for computing all the coe�icients of the polynomials finally arrived at in (5.2.4).

We investigate the same cable and underslung load system of Sec. 5.2.3 for this maneuver.

Comparing underslung load’s displacements with the helicopter’s trajectory (5.2.4) in Fig. 5.21,

we note that the underslung load closely follows the desired trajectory.

Figure 5.22 plots the evolution of the underslung load’s angular displacement in time. Note

that the system here is subjected to slightly lesser relative wind speed (≤ 12 m/s) than the
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Figure 5.21: Displacement of the underslung load contrasted with the helicopter’s trajectory during a U-turn

maneuver of 6 m/s initial turn velocity.
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Figure 5.22: Time evolution of angular displacement of the underslung load during U-turn maneuver of 6 m/s

initial turn velocity.

forward flight (13 m/s) simulation of previous section. Therefore, the angular displacement of

the mineral detector is lower (< ±0.3 rad), keeping it nearly parallel to the ground for most of

the time. When the helicopter finally stops at t = 100 s, the underslung load is parallel to the

ground as shown by the zoomed-in view (inset) of Fig. 5.23.

5.2.5 U-turn maneuver without intermediate halts

As discussed in the previous section, the assumption of zero derivatives of acceleration in the

above method required the helicopter to come to halt at each intermediate time junction; see
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Figure 5.23: FE solution at the end of 100 s when the helicopter has come to rest. The underslung load is

almost parallel to the ground, i.e. the ê2-ê3 plane, as shown in the zoomed view (right).

(5.2.3) and Fig. 5.20. Such a trajectory is ine�icient for practical maneuvering situations. It is

o�en desired to have a trajectory with smooth transitions through the intermediate junctions.

To this end, we set up the following minimization problem to obtain a trajectory that starts

from rest, passes through the desired junctions (5.2.3) and has minimum snap (second derivative

of acceleration) throughout the journey:

min

100 s∫
0

d2ü0

dt2
· d

2ü0

dt2
dt, (5.2.5a)

subject to

u0(t) =



0 m if t = 0 s,

100ê2 m if t = 30 s,

100 (ê2 + ê3) m if t = 70 s,

100ê3 m if t = 100 s,

, (5.2.5b)

and

u̇0 = ü0 = 0 if t = 0 or 100 s. (5.2.5c)

The resulting trajectory of the helicopter, along with its velocity and acceleration, is plo�ed in

Fig. 5.24.

The angular displacement of the underslung load during this maneuver is shown in Fig. 5.25.

These grow initially, then drop down and remain small within ±0.1 rad. Thus, the underslung

load remains nearly parallel to the ground in the later half of the journey, i.e. for t > 50 s.
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Figure 5.24: Time evolution of (a) displacement, (b) velocity and (c) acceleration of the helicopter during

minimum snap U-turn maneuver.
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Figure 5.25: Time evolution of angular displacement of the underslung load, when the trajectory which has

minimum snap is chosen. The velocity before turning is 7.423 m/s.

The actual path (displacement) of the underslung load is contrasted with the helicopter’s

trajectory in Fig. 5.26, and we note that these nearly coincide.

In contrast to the low initial turning speed of 6 m/s in the previous U-turn trajectory (Fig. 5.21),

we require a higher speed of 7.423 m/s for this maneuver.

Further, for a di�erent trajectory with the same turning speed of 7.423 m/s, but assuming

intermediate stoppage conditions (5.2.3) instead of minimum snap condition (5.2.5), results in

the underslung load taking a slightly longer U-turn — compare x∗2 in Figs. 5.27 and 5.26 — with
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Figure 5.26: Displacement of the underslung load contrasted with the helicopter’s trajectory during a minimum

snap U-turn maneuver.
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Figure 5.27: Displacement of the underslung load contrasted with the helicopter’s trajectory during a U-turn

maneuver of 7.423 m/s initial turn velocity.

larger angular displacement — compare ϕ∗2 in Figs. 5.28 and 5.25.
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Figure 5.28: Time evolution of angular displacement of the underslung load, for the case when the velocity

before turning is 7.423 m/s.

5.2.6 Round maneuver

In this section, we simulate the dynamics of towed system during a ‘round’ turn maneuver. Such

a maneuver may be undertaken by the helicopter for surveying a circular patch and returning to

the starting point.

In the following example, we expect the helicopter to start from rest at t = 0 s and then follow

a trajectory (Fig. 5.31) which obeys the following conditions at various times:

u0(t) =



0 if t = 0 s,

100 (ê2 − ê3) if t = 30 s,

100 (ê2 + ê3) if t = 70 s,

0 if t = 100 s

(5.2.6a)

and

u̇0 = ü0 = 0 if t = 0 or 100 s. (5.2.6b)

Using the conditions (5.2.6) along with (5.2.5a) we design a minimum snap trajectory. The

motion starts from rest with zero velocity and zero acceleration as shown in Fig. 5.29, passing

smoothly through the desired intermediate time junctions.

In Fig. 5.30, we plot the angular displacement of the underslung load during the round maneuver.

These are smooth and small (≤ ±0.4 rad) as shown in Fig. 5.30, thus, keeping the underslung load

(mineral detector) almost parallel to the ground (ê2-ê3 plane) as desired for proper surveying.
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Figure 5.29: Time evolution of (a) displacement, (b) velocity and (c) acceleration of the helicopter for the

round maneuver.
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Figure 5.30: Time evolution of angular displacement of the underslung load during round maneuver.

The resulting in trajectory of the helicopter and the underslung load are shown in Fig. 5.31.

The displacements of the underslung load shown in Fig. 5.32 are smooth. We also note that the

underslung load starts and comes to a halt together with the helicopter while closely following

its trajectory.

5.3 Realistic cable-underslung load system

In this section, we simulate using values that are representative of an actual TDEM system. For

the forward flight, the cruising speed of 27.8 m/s (≈ 50 knots) is used [Lahiri et al., 2012]. For

the U-turn and round maneuvers, we employ the flight trajectories and conditions computed
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Figure 5.31: Trajectory of the surveying helicopter for the proposed ‘round’ maneuver is shown. The actual

path of the underslung load is shown with broken line.
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Figure 5.32: Displacement of the underslung load contrasted with the helicopter’s trajectory during a minimum

snap round maneuver.

in Secs. 5.2.5 and 5.2.6 by using the minimum snap criterion (5.2.5a). The following system

configuration is obtained from Lahiri et al. [2012] and then projected on/recomputed for our

model.

A ` = 14 m long cable with cross-sectional radius r = 0.004 m is towing a 435 kg un-

derslung load as shown in Fig. 1.7. Their underslung load is a complex structure with three

concentric rings (polygon housings) connected by several links. The vertical distance from the
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ring’s center to the point of a�achment on the cable is given as `∗ = 16 m. Lahiri et al. [2012]

modeled the cable and the links as massless members which bear only tension. The links are of

di�erent lengths to provide an initial tilt to the underslung load.

Here, we assume that the underslung load is a simple ring-like structure as shown in Fig. 3.2,

while the cable is a flexible GE beam made of nylon as discussed in Chap. 2. Note from Chap. 3

that our model assumes that the massless links bear no drag and are of the same length, which

keeps the ring initially parallel to the ground. Since Lahiri et al. [2012] do not provide the

thickness/cross-sectional radius of the ring, we estimate it as follows. The total drag acting on

their structure with outermost ring’s radius 11 m for a 25.74 m/s downwash (downward airflow

from the helicopter rotor) was reported as 5051.74 N in the case of hover. Assuming that the

same total drag force acts normally on a single ring (our model) with radius r∗ = 11 m and drag

coe�icient cn ≈ 1.2, without a�ecting the links, we deduce the ring’s cross-sectional radius to

be r∗
cs
≈ 0.07 m.

A general forward flight with cruise velocity u̇02(t > 20 s) = 27.8 m/s instead of 6 m/s

in (5.2.2) is simulated with the above data: (1) under no wind conditions and ignoring the von

Karman e�ect as in Lahiri et al. [2012], and (2) under a more realistic situation with vair = −5ê2

m/s and von Karman coe�icient ck = 0.6. Additionally, we assume no downwash from the

helicopter on the ring as our underslung load is a large ring, whereas the downwash will only be

e�ective over a small central part, as its diameter decreases away from the rotor [Venkatesan,

2014]. The steady state configuration at the end of 100 s for (1) no wind condition is shown in

Fig. 5.33(a), where the cable is nearly straight and the underslung load is inclined to the ground.

The angular displacement at t = 100 s is ϕ∗3 ≈ −0.75 rad (−43o
) as shown in Fig. 5.33(b).

The trajectory followed by the underslung load is contrasted with that of the helicopter in

Fig. 5.34.

The steady state configuration at the end of 100 s for case (2) when there is a wind with

velocity −5ê2 m/s is shown in Fig. 5.35(a).

The cable is nearly straight and the underslung load is inclined to the ground at an angle

ϕ∗3 ≈ −0.9 rad (−51o
) as shown in Fig. 5.35(b).

The trajectory followed by the underslung load in this case is contrasted with that of the

helicopter in Fig. 5.36.
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Figure 5.33: (a) Steady state at the end of 100 s and (b) angular displacement of the underslung load for

27.8 m/s forward flight under no wind condition.
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Figure 5.34: Displacement of the underslung load contrasted with the helicopter’s trajectory during 27.8 m/s

forward flight under no wind condition.
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Figure 5.35: (a) Steady state at the end of 100 s and (b) evolution of angular displacement of the underslung

load for 27.8 m/s forward flight under 5 m/s wind.
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Figure 5.36: Displacement of the underslung load contrasted with the helicopter’s trajectory during 27.8 m/s

forward flight and under 5 m/s wind.

Note that the small initial oscillations of x∗3 – in the direction normal to wind – are due to the

von Karman e�ect, which was absent in case (1). These oscillations damp out with increase in

the forward velocity.

Finally, we simulate the above cable-underslung load system for the minimum snap U-turn

(5.2.5) and round (5.2.6) maneuvers. The configurations of cable-underslung load system at the

end of the U-turn and round maneuvers are shown in Fig. 5.37. The cables in both these cases is

straight while the ring in parallel to the ground when the helicopter stops.

The evolution of underslung load’s displacement contrasted with the helicopter’s trajectory in

the case of U-turn and round maneuvers are, respectively, shown in Figs. 5.38(a) and 5.39(a). We
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Figure 5.37: FE solutions are identical when the helicopter finishes, respectively, the minimum snap (a) U-turn

and (b) round maneuvers.
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Figure 5.38: Evolution of (a) underslung load’s displacements contrasted with helicopter’s trajectory and (b)
evolution of angular displacement of the underslung load, during minimum snap U-turn maneuver under 5
m/s wind.

note that in both these cases the underslung load closely follows the helicopter with negligible

deviation. Similarly, the evolution of underslung load’s angular displacements are shown in

Figs. 5.38(b) and 5.39(b). We observe that these are far less (< ±0.05 rad) than previous examples

for t > 50 s. The reason for this is that the heavy weight of the ring brings in a stabilizing e�ect

in this example.

Other than that, the above observations are similar to those in Secs. 5.2.5 and 5.2.6, where

comparatively much smaller and lighter underslung load was employed. This tells us that with

optimum trajectory design (passive control), we can keep the ring detector at the ideal inclination



Problem A Chapter 5. Results and Discussions 81 120

Time (s)
0 20 40 60 80 100

Sl
un

gl
oa

d'
s a

ng
ul

ar
 d

is
pl

ac
em

en
t (

ra
d)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0

20

40

-200

0

200

Time (s)
0 20 40 60 80 100

-200

0

200

H
el

ic
op

te
r’s

 tr
aj

ec
to

ry
 (m

)
U

nd
er

sl
un

g 
lo

ad
’s

 d
ip

la
ce

m
en

t
 (m

)

(a) (b)

Figure 5.39: Evolution of (a) underslung load’s displacements contrasted with helicopter’s trajectory and (b)
evolution of angular displacement of the underslung load, during minimum snap round maneuver under 5 m/s

wind.

to the ground. The speed and time of cruising, as shown in Secs. 5.2.5 and 5.2.6, were determined

by the trajectory.





Chapter 6

Conclusions and future work

In this chapter, we summarize some significant outcomes of the present work and then discuss

the scope of further research.

We studied the dynamics of a ring-shaped underslung load towed from a helicopter via heavy

cable. The cable was modeled as a three-dimensional geometrically exact (GE) beam, in which the

e�ects of large rotation and large displacement are incorporated. It is a considerable improvement

over the existing string models for towing cables, especially when the underslung load is large and

may undergo complex 3D motion due to aerodynamic drag and helicopter’s trajectory. The cable

elements were modeled as cylinders inclined in 3D cross-flow when computing the aerodynamic

loads. The underslung load was modeled as a rigid body, where the links connecting the large

ring-shaped detector to the cable’s end were assumed massless and bore negligible aerodynamic

drag in contrast to the ring. The drag on the ring was calculated by assuming the ring is made of

several rigidly connected cylinders which are inclined in 3D cross-flow. E�ects of von Karman

vortex shedding were incorporated in the drag model of the cable, while they were neglected

in the case of the ring. The equations of motion of the underslung load entered as a boundary

condition to that of the cable. The helicopter (top) end of the cable was prescribed to move

on given trajectories. In the translating frame of reference, the top end – similar to a hinge –

only allowed the cable to rotate about it. The weak form of the cable’s equations is nonlinear

in displacements and angular displacements of the cable’s material points. To set these in the

finite element (FE) frameworks required linearization about a base configuration. The linearized

weak form was then discretized/meshed into several two-noded elements, and the FE model of

the system was obtained. Finally, we simulated various practical conditions of hover, forward

flight, U-turn maneuver and round/circular maneuver using this FE model. The response of

the system in terms of displacements and angular displacements was studied. We identified
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the conditions when the ring detector remained nearly parallel to the ground. During forward

flights, we noticed small initial von Karman vibrations in the direction normal to the flow. These

eventually damp out when max cruising speed is achieved. We also observed that for flight

trajectories which are designed by minimizing higher derivatives of acceleration, such as the

snap, the actual path cruised by underslung load had negligible deviations from the desired path.

Also, the ring detector in these cases remained parallel to the ground for maximum duration.

Future research

The following avenues o�er scope for immediately extending the present research.

1. Detailed modeling of more realistic shapes of the mineral detector, e.g., including the

several concentric rings, as shown by Lahiri et al. [2012]’s underslung load can be done to

upgrade the present simple ring model. By analyzing the forces in each member, we may

be in a be�er position to investigate the dynamics of the detector.

2. Designing a variety of maneuvers and actively controlling the helicopter’s motion for

keeping the ring detector parallel to the ground.

3. Se�ing up and implementing a coupled fluid-structure interaction problem, where the

challenge is to compute the fluid forces by solving the Navier-Stokes equations of fluid

(wind) in tandem with the nonlinear elastodynamic equations of the cable-underslung

load system. This setup can then be used to understand the e�ect of the air flow close to

the helicopter’s body, and its e�ects on the cable.

Apart from the above cases, there are a variety of other challenging engineering applications

in which a cable-connected multibody system undergoes complex 3D motion when subjected to

aero/hydrodynamic forces. The broader framework presented in this thesis allows us to build

similar computational models for enhancing the existing research on the following problems. For

example:

1. Aerial refueling of an aircra� requires it to be connected to a source aircra� as shown in

Fig. 6.1(a). Both the aircra� are required to maintain certain velocity during this process

while flying in di�erent lanes. The fuel hose connected between their respective fuel-tanks

undergoes complex 3D motion due to heavy wind loading.
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Figure 6.1: (a) A source aircra� is shown refueling two smaller planes via hoses connected between them.

Photograph courtesy: The Tribune News Service (dt. 7 Feb 2018), India. (b) A schematic of an aerostat tethered

to the ground station via cable. The figure is taken from Mukherjee [2016].

2. Aerostat system comprising of a huge balloon that floats at higher altitudes while being

tethered to the ground station by a heavy cable is shown in Fig. 6.1(b). They carry instru-

ments for carrying out static aerial surveillance and atmospheric studies. The entire system

experiences aerodynamic forces that vary with the altitude, while the balloon is addition-

ally subjected to buoyancy. This system is an inverted case of a hovering cable-underslung

load system, where instead of a downward hanging slung load there is a balloon floating

vertically upwards.

3. Space tethered systems are instruments, such as telescopes, a�ached to a satellite via

tethers. They undergo complex 3D motions in the space while orbiting around the planet

at high velocities. Therefore, modeling the dynamics of such systems is important to avoid

entanglement and other issues while controlling the a�itude of the instrument.

Finally, problems related to lengthening cables in above applications is another exciting

avenue where the research presented in this (Problem A) and the next part (Problem B) have a

common scope for future research. In the three applications above, the cable lengthens/extends

longitudinally for (1) deploying the fuel hose from source to the receiver aircra�, (2) launching

the aerostat from ground to the desired altitude, or (3) relocating the tethered instrument. In

lengthening or traveling cables, gyroscopic forces enter into the cable’s equation and play a

significant role in governing their dynamics; see Problem B.





Problem B

Cable Traveling Against Gravity



Nomenclature
The following list describes the notations that will be used in this part of the thesis.

1. L Initial cable length or the distance between top and bo�om roller supports.

2. x, x̄ Dimensional and nondimensional coordinates along L.

3. t, t̄ Dimensional and nondimensional time.

4. y(x, t), ȳ(x̄, t̄) Dimensional and nondimensional transverse displacement of cable.

5. g Acceleration due to gravity.

6. ρ0, ρ, w Cable’s mass densities in dimensional and nondimensional form, and weight

density

7. Ac, I, E Cable’s cross-sectional area, area moment of inertia and Young’s modulus.

8. v, v̄ Dimensional and nondimensional traveling speed.

9. v̄crit, v̄sub, v̄sup, v̄bif Nondimensional critical, sub-critical, super-critical and bifurcation

speeds of the traveling cable.

10. F (x, t), V,M Transversely distributed load, Shear force and Bending Moment, respec-

tively.

11. ζ, c Dimensional and nondimensional coe�icient of viscous damping.

12. T (x, t), T̄ (x̄, t̄) Dimensional and nondimensional tension in the cable.

13. µ, µs Nondimensional end tension, i.e. at x = L, in beam and string, respectively.

14. θ = µ−2
Nondimensional bending rigidity.

15. ∂nx = ∂n/∂xn, ∂̄nx = ∂n/∂x̄n The nth
order partial derivatives w.r.t. x and x̄.

16. ∂nt = ∂n/∂tn, ∂̄nt = ∂n/∂t̄n The nth
order partial derivatives w.r.t. t and t̄.

17. �̇ = d�/dt = ∂�/∂t+ v∂�/∂x, ˙̄� = d�/dt̄ Total time derivatives in dimensional and

nondimensional forms. The respective second derivatives are �̈ and
¨̄�.

18. SR Slenderness ratio (nondimensional).

19. ω,Re(ω), Im(ω) First mode’s nondimensional eigenvalue, with its real and imaginary

parts.

20. N Number of sinusoidal shape functions or finite elements.

21. Ē, ĒK , ĒP Nondimensional total mechanical, kinetic and potential energy densities.

22.
˙̄E Rate of change of the nondimensional total mechanical energy.

23. Matrix notation: all column vectors are in lowercase boldfaced le�ers: s, b, q, h, 1 and 0,

while all matrices are in uppercase boldfaced le�ers: M, A, C and K.



Chapter 7

Introduction

Traveling cables are fundamental driving mechanisms in elevators, conveyor belts, automobile

chain-drives, cableways, etc. In these, all or part of the cable is inclined to gravity. During

operations the cable tends to oscillate transversely as it travels longitudinally [Barakat, 1968;

Miranker, 1960; Mote, 1965, 1966; Rogge, 1972; Sack, 1954; Swope & Ames, 1963; Thurman & Mote,

1969; Wickert, 1992; Wickert & Mote, 1990; Wickert & Mote Jr, 1989]. To prevent breakdown due

to fatigue these oscillations need to remain within some design limits. In these studies, cables

are modeled either as an elastic beam or as a string.

The dynamics of horizontally traveling (traveling direction normal to gravity) beams and

strings is well studied [Barakat, 1968; Miranker, 1960; Mote, 1965, 1966; Rogge, 1972; Sack, 1954;

Swope & Ames, 1963; Thurman & Mote, 1969; Wickert, 1992; Wickert & Mote, 1990; Wickert

& Mote Jr, 1989]. Most work has focused on modal analysis to obtain natural frequencies

(eigenvalues) at di�erent operating speeds. Eigenvalues appear as complex conjugates, in which

the imaginary part contributes to oscillations while the real part controls the amplitude. During

stable operations the real part is absent. Therefore, the critical speed at which the eigenvalue

first appears as a conjugate pair is of special interest. At this speed the amplitude may grow with

time by virtue of the positive real part, leading to instability. For a pre-tensioned strings traveling

horizontally in between simple roller supports, Miranker [1960] found that the rate of change of

energy of the material between the supports is generally nonzero due to a continuous energy

influx from the material outside the supports (boundary), which makes it a nonconservative

system. Response to harmonic support excitation was also studied by Miranker [1960], and the

instability was identified with the resonance frequency, as the amplitude of the vibration grew

with time. Discussions on dissipation and stability of general dynamical systems are found in

[Ziegler, 2013].
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The critical speed of a traveling cable varies with the type of supports and the distance

between them. The arc-length based model of a spatially traveling string proposed by Rogge

[1972] generalized all its preceding models. The calculations in [Barakat, 1968; Miranker, 1960]

of the energy flow in a dissipation-free model were later improved when an additional energy

influx from the supports was identified by Wickert & Mote Jr [1989]. However, it was noted that

the total energy during steady horizontal travel was not constant in spite of zero damping. Thus,

the system was nonconservative whether or not the modal analysis predicted instability.

Apart from the above studies which focus on linear beam/string models, several others [Farokhi

et al., 2013a,b, 2016; Ghayesh et al., 2013a,b; Ghayesh & Farokhi, 2015; Ghayesh et al., 2013;

Mockensturm & Guo, 2005; Öz et al., 2001; Pakdemirli & Ulsoy, 1997] have studied the e�ects

of geometric and/or material nonlinearities on the stability of the beams which are either

accelerating or moving with a constant speed in between horizontally aligned supports. Most

results on the horizontally traveling beams and strings have been compiled by Hagedorn &

DasGupta [2007] and Banichuk et al. [2013]. They include discussions on modal, transient and

energy analyses. We restrict ourselves from visiting them individually, due to constraint of space,

and focus primarily on linear beam and string models for the cables traveling vertically, against

gravity.

For a vertically traveling heavy cable the tension varies along its length. This leads to the

governing equation of motion with a spatially varying coe�icient, which makes the equation non

self-adjoint which cannot be solved exactly. Traveling against gravity, in turn, a�ects the critical

speed at which instability sets in. To the best of our knowledge this case, which has practical

importance, has not yet been investigated. The work presented in this part of the thesis has now

been published [Dehadrai et al., 2018] in the Journal of Computational & Nonlinear Dynamics.

This part is organized as follows. We begin from Chapter 8 by modeling the cable as a beam

traveling vertically (against gravity) with constant speed, while resting upon small and smooth

rollers; see Fig. 8.1. A string model, useful for very flexible cables, is obtained as a special case in

Sec. 8.2. Then a modal analysis is done in Sec. 9.1 of Chapter 9 to identify the relation between

speed, inclination (horizontal and vertical), tension, bending rigidity, slenderness ratio and the

conditions of instability. In Sec. 9.5 of Chapter 9, we verify the instability from evolution of both

the energy and the amplitude of oscillations obtained a�er direct time-integration of the model.

The concluding Chapter 10 summarizes the implications on cable design of our analyses, and

discusses future scope of research.



Chapter 8

Governing Equations

A heavy cable traveling vertically, against gravity, between two pairs of small rollers is shown in

Fig. 8.1. The x− axis is aligned with the cable, and has its origin in between the bo�om rollers.

The distance between the top and bo�om rollers is L and the acceleration due to gravity g acts

vertically downwards. The cable has uniform mass density ρ0, cross-sectionAc, Young’s modulus

E, and cross-sectional area moment of inertia I . The speed v of each material particle along

the length of the cable is constant. The transverse displacement y = y(x, t) of a material point

located at x is measured from the vertical axis (broken line), and it is assumed to be small. To

account for presence of fluid drag, a transversely distributed loading F (x, t) = ζ ẏ, with damping

coe�icient ζ , is applied. For small transverse deflection, the weight w = ρ0Acg per unit length

x

L

y  x,t F

g

v

(    )

Roller support

Fdx
wdx

dx

TV

M

T+∂xT
V+∂xV

M+∂xM

Cable element

Figure 8.1: Schematic of a traveling cable at time t and a free body diagram (top-le�) of the cable element of

length ds ≈ dx is shown. The deflections of the cable are exaggerated for clarity.

of the cable causes its tension to vary along the cable’s length:

T (x) = T (L)− w (L− x) , (8.0.1)
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where we assume that the tension T (L) at x = L is known.

A free body diagram of small cable-element is also shown in the Fig. 8.1. The tension T , shear

force V and bending moment M on the element evolve over the element’s length ds (≈ dx) to

T + ∂xTdx, V + ∂xV dx and M + ∂xMdx, respectively. Here, we have employed the notation

∂nx = (∂n/∂xn) and ∂nt = (∂n/∂tn) for the nth
order partial derivatives with respect to x and t,

respectively. The external forces Fds ≈ Fdx due to damping and wds ≈ wdx due to weight are

also shown on the element.

8.1 Beam model

The bending moment M and the shear force V in the cable are related by, respectively, the

bending-curvature equation [Timoshenko & Gere, 2009]

M = EI ∂2
xy,

and the angular momentum equation,

V = ∂x(ρIÿ −M).

Now, we balance the linear momenta and obtain the equations governing the transverse vibrations

of the beam:

[EI∂4
x − ∂x{T (x) ∂x}]y + ζẏ + (ρ0Ac − ρ0I∂

2
x)ÿ = 0 (8.1.1a)

where

ẏ(x, t) = ∂ty + v ∂xy

and

ÿ(x, t) = ∂2
t y + 2v ∂x∂ty + v2 ∂2

xy.

The small and well lubricated (smooth) roller supports o�er a displacement-free and moment-free

boundary conditions on the beam,

y(0, t) = y(L, t) = ∂2
xy(0, t) = ∂2

xy(L, t) = 0. (8.1.1b)

In (8.1.1) the term ∂ty is called the local velocity, v ∂xy is the convective velocity of a material

point, ∂2
t y is the local acceleration, 2v ∂x∂ty is a gyroscopic term and v2 ∂2

xy is the convective

acceleration. Furthermore, the term EI∂4
xy accounts for bending rigidity, while ρ0I∂

2
xÿ is the

rotary inertia. When T (x) = T (L), we recover transverse vibrations of a horizontally traveling

Rayleigh beam, while the Euler-Bernoulli beam of Hagedorn & DasGupta [2007] is recovered

when rotary inertia is also ignored.
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8.2 Special case: string model

For a heavy cable which is highly flexible and has negligible shear and bending rigidity, a string

model is arrived at by ignoring EI in (8.1.1):

[−∂x{T (x) ∂x}]y + ζẏ + ρ0Acÿ = 0 (8.2.1a)

with

y(0, t) = y(L, t) = 0. (8.2.1b)

The equation for a horizontally traveling string considered in [Hagedorn & DasGupta, 2007] is

retrieved from (8.2.1) by se�ing T (x) = T (L).

8.3 Nondimensionalization

For further analysis, the dimensionless forms of the governing equation (8.1.1) are derived here.

To this end, we introduce nondimensional quantities

x̄ =
x

L
, ȳ =

y

L
, t̄ = t

√
EI

ρ0AcL4
,

v̄ = v

√
ρ0AcL

2

EI
, µ =

√
T (L)L2

EI
, (8.3.1)

ρ =
wL3

EI
, SR =

√
L2Ac
I

and c =
ζL2

√
EIρ0Ac

.

Our definition of slenderness ratio SR follows [Timoshenko & Gere, 2009, pg. 50] and should be

contrasted with that of [Hagedorn & DasGupta, 2007, pg. 125], which is same as our S
2
R
. The

dimensionless end tension µ will be employed as a control parameter to vary tension in the cable.

With these (8.1.1) transforms to[
∂̄4
x − ∂̄x

{
T̄ (x̄) ∂̄x

} ]
ȳ + c ˙̄y +

(
1− S

−2
R
∂̄2
x

)
¨̄y = 0 (8.3.2a)

and

ȳ(0, t̄) = ȳ(1, t̄) = ∂̄2
xȳ (0, t̄) = ∂̄2

xȳ (1, t̄) = 0, (8.3.2b)

where ∂̄x = ∂/∂x̄ and ∂̄t = ∂/∂t̄, and the nondimensional tension

T̄ (x̄) = µ2 − ρ (1− x̄) . (8.3.3)

For the string of Sec. 8.2 we employ the following nondimensionalization:

x̄ =
x

L
, ȳ =

y

L
, t̄ = t

√
T (L)

ρ0AcL2
,
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v̄ = v

√
ρ0Ac
T (L)

, T̄ (x̄) =
T (x)

T (L)
, µ = 1, (8.3.4)

ρ =
wL

T (L)
, and c =

ζL√
T (L)ρ0Ac

.

With these (8.2.1) becomes

[
−∂̄x

{
T̄ (x̄) ∂̄x

}]
ȳ + c ˙̄y + ¨̄y = 0, (8.3.5a)

and

ȳ(0, t̄) = ȳ(1, t̄) = 0. (8.3.5b)

With an alternative nondimensionalization scheme we can avoid separate dimensionless parame-

ters for the beam and the string equations, as in (8.3.1) and (8.3.4), and employ the bending rigidity

as the control parameter instead of the end tension. This is discussed in the Sec. 9.3.



Chapter 9

Numerical Solution

The governing equations, (8.1.1) and (8.2.1), or their dimensionless forms, (8.3.2) and (8.3.5), are

not self-adjoint and cannot be solved exactly. Hence, we use the Galerkin method [Meirovitch

& Hagedorn, 1994] for computing the eigenvalues and time response for the beam and string

models. Towards this, we assume the expansion

ȳN (x̄, t) = sTb, (9.0.1)

where s(x̄) = [sin (nπx̄)]T, for n = 1 . . . N , is an N -dimensional column vector of sine modes,

and b(t̄) = [b1(t̄), b2(t̄), · · · bN (t̄)]T is a column vector of time-varying unknown coe�icients.

The modes individually vanish at the boundaries, thereby satisfying the geometric boundary

conditions. Then (8.3.2) evaluated at ȳ = ȳN results in an error, called the residue. By se�ing the

projections of the residue onto the N sine modes to zero yields a set of N di�erential algebraic

equation, which may be cast in the following state-space form:

dq

dt̄
= Aq, (9.0.2a)

where the state vector and the state matrix are, respectively,

q =

ḃ

b

 and A =

∫ 1

0

−M−1C 1

−M−1K 0

 dx̄, (9.0.2b)

with 1 representing an N×N identity matrix and 0 being the N×N zero matrix, while

M =
(
ssT
)

+ S
−2
R

(
s′s′

T

)
,

C = c
(
ssT
)

+ 2v̄
(
ss′

T

+ S
−2
R

s′s′′
T

)
(9.0.2c)

and K =
(
1− S

−2
R
v̄2
) (

s′′s′′
T

)
−
{
v̄2 − T̄ (x̄)

} (
s′s′

T

)
+
cv̄

2

(
ss′

T − s′sT

)
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are the mass, damping and sti�ness matrices, respectively, with ( )′ denoting d/dx̄. Note that

the mass matrix M is symmetric, while the damping matrix C has a symmetric part c(ssT)

and a skew-symmetric part 2v̄(ss′T + S
−2
R

s′s′′T) called the gyroscopic damping. From the

sti�ness matrix K, a�er replacing for T̄ from (8.3.3), we obtain four terms: the material sti�ness

(1− S
−2
R
v̄2) (s′′s′′T), the geometric sti�ness (v̄2 − µ2) (s′s′T), the sti�ness ρ (1− x̄) (s′s′T) due

to the cable’s weight, and the sti�ness cv̄ (ss′T − s′sT)/2 due to damping. While the first three

sti�ness terms are symmetric, the last one is skew-symmetric. The state-space form for the

string model (8.3.5) is obtained by se�ing S
−2
R

= 0 and µ = 1 in M and K.

Equation (9.0.2) may be treated as an eigenvalue problem for modal analysis, or an initial value

problem for transient analysis. In modal analysis, the cable’s natural frequencies corresponding to

the specified modes are extracted directly from (9.0.2). In a transient analysis, b(t̄) is calculated

through direct time-integration of the state-space equation (9.0.2a) with given initial conditions

b(0) and ḃ(0). The material displacements are then obtained from (9.0.1).

Finite element (FE) formulation: An alternate way to obtain the state-space form is through

the finite-element (FE) method. Instead of assuming global sinusoidal shape functions of (9.0.1),

the domain x̄ = [0, 1] is discretized into N elements, following which the displacement ȳ and

the slope ȳ′ at each N + 1 nodes (locations) are approximated by a complete cubic (Hermite)

polynomial and its derivative.

For a two-node element e with the first node at x̄e and second node at x̄e + h, where h is the

element’s length, the Hermite polynomials [Bathe, 2006] for the first node are

p(1)
e (x̄) = 1− 3

(
x̄− x̄e
h

)2

+ 2

(
x̄− x̄e
h

)3

and ϕ(1)
e (x̄) = − (x̄− x̄e)

(
1− x̄− x̄e

h

)2

,

and those at the second node are

p(2)
e (x̄) = 3

(
x̄− x̄e
h

)2

− 2

(
x̄− x̄e
h

)3

and ϕ(2)
e (x̄) = − (x̄− x̄e)

{(
x̄− x̄e
h

)2

− x̄− x̄e
h

}
,

where pe(x̄) and ϕe(x̄) are the interpolating functions for the displacement ȳ(x̄) and slope ȳ′(x̄),

respectively. Further, for each element

ȳe = hT

ebe,
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where be is the nodal degree of freedom and

he =
[
p(1)
e , ϕ(1)

e , p(2)
e , ϕ(2)

e

]
T

.

Thus, the elemental state equation is

dqe
dt̄

= Aeqe, where the elemental state vector and the

elemental state matrix are

qe =

ḃe

be

 and Ae =

∫ h

0

−M−1
e Ce 1e

−M−1
e Ke 0e

 dx̄,
while the definitions of Me, Ce and Ke are analog to those in (9.0.2c),

Me =
(
heh

T

e

)
+ S
−2
R

(
h′e h′

T

e

)
,

Ce = c
(
heh

T

e

)
+ 2v̄

(
heh

′T
e + S

−2
R

h′e h′′
T

e

)
and Ke =

(
1− S

−2
R
v̄2
) (

h′′e h′′
T

e

)
−
{
v̄2 − T̄ (x̄)

} (
h′eh

′T
e

)
+
cv̄

2

(
heh

′T
e − h′eh

T

e

)
Finally, carrying out standard FE procedures [Bathe, 2006], the global state equation (9.0.2) is

obtained by assembling all the elemental state equations, so that the global state matrix A is

2N × 2N block diagonal matrix, where each block is the elemental state matrix Ae, for e = 1 to

N , and q is 2N × 1 global state vector.

We now discuss modal analysis in detail, followed by a brief discussion of energetics and

transient analysis.

9.1 Modal Analysis

The state matrix A in (9.0.2b) is not symmetric in general, but it has N complex conjugate

eigenvalues ωn, for n = 1 to N . The eigenvalues depend upon the geometric and material

parameters of the cable, viz. travel speed, prevailing tension, bending rigidity and the slenderness

ratio of the cable.

The accuracy of modal analysis depends on the number of sine modes (Galerkin) or elements

(FE) employed, and we discuss this in Sec. 9.4. With su�icient number of modes and elements

both Galerkin with sine modes and FE give the same results. Thus, henceforth, we will report

results utilizing the Galerkin method only.

Accordingly, the transverse displacement is

ȳN (x̄, t̄) = Re

N∑
n=1

an exp[{Re(ωn)± i Im(ωn)}t̄ ] sin(nπx̄),
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where an are the unknown amplitudes which are found from initial conditions, and the N

sinusoidal modes collectively define the instantaneous shape of the cable, while the oscillatory

part exp{±i Im(ωn)t̄} modulates the material point’s vibration about its equilibrium state. The

growth or decay of the amplitude of these vibrations is governed by exp{Re(ωn)t̄}. The real part

of the eigenvalue, thus, governs the solution’s, and hence the cable’s instability.

9.2 Stability

Onset of instability in operation corresponds to the emergence of positive real part of the first

mode’s eigenvalue. When this happens the displacements grow exponentially with time. This
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Figure 9.1: Comparison of the first eigenvalues for cables modeled as Euler-Bernoulli beam: (—-•—-) represents

the vertically traveling cable for which the parameter ρ = 10, while (—-◦—-) represents the cable traveling

horizontally for which ρ = 0. For both the cases, the other parameters µ = 1, S
−2
R

= 0 and c = 0.

may result in failure and/or bring in nonlinear e�ects, hitherto ignored. The instability criterion

identifies the critical value of the governing parameter at which the real part of the first mode’s

eigenvalue first becomes positive. Here, we explicitly define two dimensionless quantities that

we will use frequently in this part of the thesis:

Critical speed v̄crit is defined as the nondimensional speed of the traveling cable at which the

Re(ω) of the first mode’s eigenvalue ω first becomes positive. This point can be easily identified

when Re(ω) is plo�ed as a function of v̄, such as in Fig. 9.1.

Bifurcation speed v̄bif is defined as the nondimensional speed of the traveling cable at which

the already existing positive and negative parts of the Im(ω) vanish, whereas the Re(ω) splits or

bifurcates into two parts.

For example, in Fig. 9.1, we identify nondimensional speeds v̄ = 2.387 and 3.2969 as the

critical speeds for cables traveling vertically and horizontally, respectively. Beyond these speeds
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the Re(ω) bifurcates and the Im(ω) vanishes. This implies that for the traveling cables modeled

as an Euler-Bernoulli beam, the speeds v̄crit = v̄bif, i.e., the appearance of positive Re(ω) and the

bifurcation of Re(ω) with vanishing of Im(ω) both occur at simultaneously. Moreover, as we will

see later in this section, v̄crit and v̄bif are also same for the horizontally traveling Rayleigh beam,

but di�erent for the vertically traveling Rayleigh beam.

The critical/bifurcation speed shi�s to the le� when the Euler-Bernoulli beam (Fig. 9.1) travels

vertically. This implies a lowering of the critical speed of operation due to the influence of gravity

g on tension T (x) in the cable leading to an earlier onset of instability compared to the case

when the cable was considered traveling horizontally. The critical speed v̄crit = 3.2969 for the

horizontally traveling beam agrees well with the value reported by Wickert & Mote [1990].

A higher tension in the cable stabilizes the system. This role of tension in enhancing stability

is lowered by the action of gravity in vertically traveling cables as shown in Fig. 9.2. The resulting
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Figure 9.2: Stability curves for Euler-Bernoulli beams traveling horizontally (–◦–) and vertically (–•–) are

obtained by plo�ing the nondimensional critical speed v̄crit as a function of nondimensional end tension µ.

The parameter ρ = 0 and 10 for the horizontally and vertically traveling beams, respectively, while the other

parameters c = 0 and S
−2
R

= 0.

curve for each is the boundary separating regions of stable and unstable operations, which lie

below and above the curve, respectively. Furthermore, we observe that, as expected, increasing

the cable tension delays the onset of instability, thereby ensuring stable operation at relatively

higher speeds. The critical speeds for both the horizontally and the vertically traveling beams

converge as the end tension rises further; see Fig. 9.2. Thus, tension contributes to the stability.

Consider now a cable modeled as a Rayleigh beam wherein rotary inertia is retained. In a

horizontally traveling Rayleigh beam the slenderness ratio SR, defined in (8.3.1), improves the
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stability for any nonzero end-tension µ and mass density ρ, as shown by the solid curve in

Fig. 9.3. At higher SR the rotary inertia term in (8.3.2) becomes small compared to the bending

rigidity. Therefore, with increasing slenderness ratio, the stability boundary of the Rayleigh beam

approaches that of a traveling Euler-Bernoulli beam (dashed line); the la�er, of course, remains

una�ected by SR. Interestingly, we find that a vertically traveling Rayleigh beam is inherently
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Figure 9.3: Stability curves obtained by plo�ing nondimensional critical speed v̄crit as a function of slenderness

ratio SR for horizontally traveling Rayleigh (—) and Euler-Bernoulli (- - -) beams. The other parameters ρ = 0,

µ = 1 and c = 0.

unstable, i.e. at any SR the real part Re(ω) of the first mode’s eigenvalue ω is always positive,

as shown in the inset of Fig. 9.4, implying that its critical speed v̄crit = 0. Moreover, unlike an

Euler-Bernoulli beam (Fig. 9.1) or the horizontally traveling Rayleigh beam, the bifurcation speed

v̄bif = 2.36 of vertically traveling Rayleigh beam (Fig. 9.4) is di�erent than its v̄crit.

However, we observe that the inclusion of damping (c > 0) shi�s the real part of the first

eigenvalue below zero, thereby removing the inherent instability of a vertically traveling Rayleigh

beam. The amount that Re(ω) shi�s depends upon the amount of damping c introduced, as

shown in Fig. 9.5. Also, introducing more damping shi�s v̄crit further to the right. This shi� in

critical speed due to damping maybe employed to provide a suitable range of speeds v̄ < v̄crit for

stable operation. Figure 9.6 plots v̄crit as a function of c. We observe that the stability curve (solid

line) grows steadily with c, a�er a steep initial rise (inset of Fig. 9.6) due to inclusion of damping,

thereby confirming that damping enhances the stability. However, as shown in Fig. 9.5, the speed

v̄bif at which the first eigenvalue bifurcates is less than v̄crit for the damped, vertically traveling,

Rayleigh beam. This indicates the existence of complex eigenvalues at sub-bifurcation speeds,

resulting in underdamped oscillations of the beam in its first mode during stable operation. In
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Figure 9.4: Real and imaginary part of the smallest (first) eigenvalue of an undamped (c = 0), vertically

traveling Rayleigh beam as functions of speed for ρ = 10, µ = 1 and SR = 20. The inset shows the existence

of positive real part at all nondimensional speeds v̄ > 0, while the bifurcation (as in Fig. 9.1) happens much

later when v̄ = v̄bif = 2.36.

contrast to v̄crit, the bifurcation point in the damped beam shi�s le�, i.e. v̄bif decreases with

increase in damping. We note from this behaviour of v̄bif, that when c is increased enough, there

will be a v̄ at which Im(ω) of the first mode will cease to appear. When this happens, the higher

modes (not shown) become significant and govern the beam’s oscillations. Figure 9.6 also plots

v̄bif curve (broken line) which diminishes monotonically with increase in c. This indicates that

the vertically traveling cable is stable due to damping and has underdamped oscillations when

the speed is beneath the broken line in Fig. 9.6, while it is stable and undergoes no oscillations

when the speed is between the solid and broken lines.

A damped Euler-Bernoulli beam shows a similar behaviour and is not discussed for brevity.

String model

For highly flexible cables (negligible bending rigidity), the end tension T (L) in the cable and the

influence of gravity on tension T (x) govern stability. Figure 9.7 plots the dimensionless critical

speed v̄crit as a function of scaled end tension

µs =
T (L)|vertical

T (L)|horizontal

,

which is a ratio of end tension T (L) in a vertically traveling string to the tension in a string

that is traveling horizontally. The curves in Fig. 9.7 plot the stability curve for horizontally and

vertically traveling strings. We again note that cables traveling vertically, against gravity, are

more unstable, and the end tension enhances stability. However, unlike for beams, the tension

does not a�ect the critical speed of horizontally traveling strings. In this case the dimensionless
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Figure 9.5: Real and imaginary parts of the first mode’s eigenvalue for a damped, vertically traveling, Rayleigh

beam as function of nondimensional speed v̄ for nondimensional viscosity c = 0 (—), 5 (–◦–) and 10 (–•–). The

other parameters ρ = 10, SR = 20 and µ = 1. We observe that with damping the critical speed v̄crit increases

from 0 for c = 0 to 2.375 for c = 5, and 2.435 for c = 10. Also, Re(ω) bifurcates at speeds v̄bif < v̄crit for

c = 5 and 10, in contrast to when c = 0.
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Figure 9.6: Stability curve (—) obtained by plo�ing nondimensional critical speed v̄crit as a function of

nondimensional damping c for vertically traveling Rayleigh beam, while its bifurcation speed (- - -) vanishes

monotonically with increase in c, thus, marking a boundary within the sub-critical (stable) region inside which

the cable undergoes underdamped oscillations. The inset shows the steep initial rise in the stability curve due

to the inclusion of damping. The other parameters ρ = 10, SR = 20 and µ = 1.

critical speed v̄crit is 1, matching the analytic solution in [Hagedorn & DasGupta, 2007]. Also, it

is important to note that in contrast to beams (Fig. 9.2), the stability curve of vertically traveling

string in Fig. 9.7 is concave and it converges to the critical speed of a horizontally traveling string
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at high end-tensions.

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1.0

Stable

Scaled end tension, µs

N
on

di
m

en
si

on
al

cr
iti

ca
ls

pe
ed

,v̄
cr

it Unstable

Figure 9.7: Nondimensional critical speed v̄crit as a function of scaled end tension µs for horizontally (—◦—)

and vertically (—•—) traveling strings. The parameter ρ = 0 and 10 for the horizontally and vertically traveling

strings, respectively, while the paramater c = 0.

9.3 Alternative nondimensionalization scheme

An alternative nondimensionalization of governing equation (8.1.1), as suggested by an anony-

mous reviewer of our paper [Dehadrai et al., 2018], is given here employing the following

dimensionless quantities:

x̄ =
x

L
, ȳ =

y

L
, t̄ = t

√
T (L)

L2ρ0Ac
,

v̄ = v

√
ρ0Ac
T (L)

, θ =
EI

L2T (L)
, (9.3.1)

ρ =
wL

T (L)
, SR =

√
I

L2Ac
and c =

ζL√
ρ0AcT (L)

,

where the slenderness ratio SR is reciprocal of the quantity defined in (8.3.1), while the dimen-

sionless bending rigidity θ is the ratio of bending rigidity and the end tension. With these (8.1.1)

becomes [
θ ∂̄4

x − ∂̄x
{
T̄ (x̄) ∂̄x

}]
ȳ + c ˙̄y +

(
1− S

2
R
∂̄2
x

)
¨̄y = 0 (9.3.2a)

and

ȳ(0, t̄) = ȳ(1, t̄) = ∂̄2
xȳ (0, t̄) = ∂̄2

xȳ (1, t̄) = 0, (9.3.2b)

while the nondimensional tension

T̄ (x̄) =
T (x)

T (L)
= 1− ρ (1− x̄) . (9.3.3)
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The nondimensional equation of the string is obtained from (9.3.2) by se�ing θ = 0 and SR = 0,

[
−∂̄x

{
T̄ (x̄) ∂̄x

}]
ȳ + c ˙̄y + ¨̄y = 0, (9.3.4a)

and ȳ(0, t̄) = ȳ(1, t̄) = 0. (9.3.4b)

In this scheme, the dimensionless bending rigidity θ is employed as the control parameter in

contrast to dimensionless end tension µ in Sec.8.3. The stability curves for the horizontally and

the vertically traveling beams for varying θ are shown in Fig. 9.8. We observe that as we increase
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Figure 9.8: Stability curves for Euler-Bernoulli beams traveling horizontally (–◦–) and vertically (–•–) are

obtained by plo�ing the nondimensional critical speed v̄crit as a function of nondimensional bending rigidity θ.

The parameter ρ = 0 and 10 for the horizontally and vertically traveling beams, respectively, while the other

parameters c = 0 and SR = 0. At θ = 0, the critical points HS (v̄crit = 1) and VS (v̄crit = 0) are the critical

speeds of horizontally and vertically traveling strings, respectively.

the bending rigidity the traveling cable becomes more stable. Also, the cable is more stable while

traveling horizontally than traveling vertically due to the e�ect of gravity. However, with further

increase in θ the stability curves of the vertically and the horizontally traveling cables come

closer, and the stabilizing e�ect of bending rigidity dominates the destabilizing e�ect of gravity.

The critical speeds HS (v̄ = 1) and VS (v̄ = 0) at zero bending rigidity (θ = 0) correspond to

the horizontally and the vertically traveling strings, respectively. Note that, for the string we

obtain only one point through this scheme in Fig. 9.8, in contrast to a complete stability curve in

Fig. 9.7.

9.4 Convergence of solution

The converged values of critical speed for horizontally and vertically traveling beams are found

by progressively increasing the number N of sine functions until the relative error between
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two successive computations becomes lower than 0.001%. For the horizontally traveling cable,

the computed values of critical speed from beam and string models are compared with those

obtained by employing Green’s functions in [Wickert & Mote, 1990]. Additionally, we solved

(9.0.2) numerically utilizing 2-node Hermitian finite elements (FE). The converged solution from

this procedure is in excellent agreement with that found through Galerkin projection with sine

modes. Figure 9.9(a) plots the relative error

εv
crit

=

∣∣∣∣1− v̄N
crit

v̄ref

crit

∣∣∣∣ · 100

in calculating the critical speed v̄N
crit

for an Euler-Bernoulli beam using N number of modes

(Galerkin) or elements (FE), where we consider the reference critical speed vref

crit
= 10.48, which

is the closed form result by Wickert & Mote [1990] for the horizontally traveling cable, while

v̄ref

crit
= v̄

(N=399)
crit

= 10.23 for the vertically traveling cable. Similarly, Fig. 9.9(b) plots the relative

error

εω
sub

=

∣∣∣∣1− ωN

ωref

∣∣∣∣ · 100

in calculation of the first mode’s eigenvalue ωN usingN number of modes (Galerkin) or elements

(FE) at an arbitrarily chosen sub-critical speed v̄ref

sub
= 5, where the reference eigenvalue ωref

is calculated at N = 399. For horizontally traveling beams the closed form results of Wickert

& Mote [1990] are taken as reference. We conclude that when N ≥ 9 both FE solution and

Galerkin projection with sine modes are accurate, and match with each other.

9.5 Energetics

Further insight into the system is provided by investigating the manner in which energy flows

into and away from a traveling cable. In this section we examine the flow of energy in traveling

Euler-Bernoulli beams below and above the critical speed.

The total mechanical energy per unit length of the beam

Ē(x̄, t̄) = ĒK(x̄, t̄) + ĒP (x̄, t̄),

where the kinetic energy density

ĒK(x̄, t̄) =
1

2
(v̄2 + ˙̄y2)

and the potential energy density

ĒP (x̄, t̄) =
1

2
(∂̄x

2
ȳ)2 +

T̄ (x̄)

2
(∂̄xȳ)2 + ρx̄.
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Figure 9.9: Plot ( a) compares the errors in critical speed vN
crit

obtained from the N -term Galerkin projection

and the N -element FE solution for horizontally (ρ = 0) and vertically (ρ = 10) traveling cables. In each case

µ = 10, c = 0 and S
−2
R

= 0. For horizontally traveling cable the critical speed v
ref

crit
= 10.48, as found by

Wickert & Mote [1990]. For vertically traveling cable, the critical velocity calculated using N = 399 terms

is taken as the reference. Plot (b) compares errors in the calculation of the first mode’s eigenvalue ω at

sub-critical speed v
ref

sub
= 5.

The total rate of change of mechanical energy is

˙̄E(t̄) =

1∫
0

(
∂̄tĒ + v̄ ∂̄xĒ

)
dx̄

=

∣∣∣∣ {T̄ (x̄) ∂̄xȳ − ∂̄3
xȳ
} (
v̄ ∂̄xȳ

) ∣∣∣∣1
0

+

1∫
0

ρv̄
(
∂̄xȳ
)2
dx̄, (9.5.1)

where ∂̄xȳ is the slope of the cable at x̄, and so T̄ (x̄) ∂̄xȳ and v̄ ∂̄xȳ are the transverse (ȳ-

directional) component of the nondimensional tension and the convective velocity, respectively,

while ∂̄3
xȳ is the dimensionless shear force in the cable at x̄. Therefore, the first term in (9.5.1),

which is evaluated at the ends (x̄ = 0 and 1), is the power supplied to the cable across the end

supports by the action of the transverse component of tension and the shear force. This term

estimates the inflow and outflow of energy from the boundaries due to the presence of non-zero

convective velocity v̄ ∂̄xȳ there; note that the local velocity ∂̄tȳ vanishes at the supports. The

second term in (9.5.1) is the contribution of the cable’s self-weight, as it travels vertically against

gravity, and which vanishes (ρ = 0) for a horizontally traveling cable.
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The time rate of change of energy, (9.5.1), is zero in a non-traveling (v̄ = 0) cable, but not if the

cable is traveling. In this the traveling cable exhibits a non-conservative behaviour. This behaviour,

however, doesn’t necessarily indicate instability of the traveling cable. Indeed, through modal

analysis (Sec. 9.1) we identified a range of travel speeds and other system parameters for stable

operations. Therefore, in the following, we study the stability of horizontally and vertically

traveling cable by monitoring the evolution of the total mechanical energy and the transverse

displacement of a material particle passing through the mid-span (x = L/2 or x̄ = 0.5) of the

cable.

Transverse displacement and the rate of change of energy

A standard explicit (Runge-Ku�a) numerical time-integration of the state space equation (9.0.2)

is performed to obtain the temporal coe�icients b(t). The traveling cable is assumed to be

released from a displaced configuration corresponding to the first sine mode. Accordingly, the

initial conditions are: b(0) = [0.01, 0, 0, . . . ]T and ḃ(0) = [0, 0, 0, . . . ]T. The transverse

displacement at x̄ = 0.5 is then calculated from (9.0.1), and the rate of change of total energy
˙̄E

is obtained from (9.5.1).
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ȳ

0

0.5

1

˙̄Esup

˙̄Esub

N
on

di
m

en
si

on
al

en
er

gy
ra

te
,

˙̄ E0 20 40

10−2

10−1

100
t−5 27

t̄

lo
g
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Figure 9.10: Temporal evolution of the transverse nondimensional displacement of the horizontally traveling

cable at x̄ = 0.5 (x = L/2) and the rate of change of total mechanical energy (nondimensional). The

sub-critical and super-critical nondimensional speeds are v̄sub = 3.26 and v̄sup = 3.297, respectively, while the

parameters ρ = 0, µ = 1, c = 0 and S
−2
R

= 0. The inset semi-log plot shows that ȳsup ( � ) grows modestly

for some time following which the growth is exponential (—) at a rate exp (ωsupt̄) = exp {Re (ωsup) t̄}, with

ωsup = 0.068.
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Figures 9.10 and 9.11 show the evolution of transverse displacement and
˙̄E for a horizontally

and vertically traveling Euler-Bernoulli beam, respectively. The results at sub-critical (v̄ < v̄crit)

and super-critical (v̄ > v̄crit) operations are compared, keeping the critical speed corresponding

to µ = 1 and ρ = 10 from Fig. 9.2 as reference. The displacement ȳsub and rate of change of

energy
˙̄Esub correspond to operation at a sub-critical speed v̄sub < v̄crit, while ȳsup and

˙̄Esup are

calculated at a super-critical speed v̄sup > v̄crit.
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ȳsup

ȳsub

Nondimensional time, t̄

N
on

di
m

en
si

on
al

di
sp

la
ce

m
en

t,
ȳ
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Figure 9.11: Temporal evolution of the transverse nondimensional displacement of the vertically traveling cable

at x̄ = 0.5 (x = L/2) and the rate of change of total mechanical energy (nondimensional). The sub-critical and

super-critical nondimensional speeds are v̄sub = 2.37 and v̄sup = 2.38723, respectively, while the parameters

ρ = 10, µ = 1, c = 0 and S
−2
R

= 0. The inset semi-log plot shows that ȳsup ( � ) grows exponentially, at a

rate exp (ωsupt̄) = exp {Re (ωsup) t̄} with ωsup = 0.068, a�er a rapid initial rise in its amplitude.

The sub-critical
˙̄Esub and ȳsub are oscillatory and bounded over an extended period of time

(see Fig. 9.10). This is in agreement with Fig. 9.1, in which, at speeds lower than critical speed the

real part of the first eigenvalue is zero. However, at super-critical speed v̄sup, both the energy

rate and displacement amplitude show rapid growth. At this speed, as shown in Fig. 9.1, Re(ωsup)

is positive and Im(ωsup) vanishes, so that the displacement ȳsup grows exponentially with time

at the rate ωsup = Re(ωsup) = 0.068, as shown in the inset of Fig. 9.10. We note that the growth

is linear and small for a while before growing exponentially. With further increase in speed this

exponent becomes larger and the growth in amplitude is even faster.

Traveling against gravity, as discussed previously, only worsens the stability, as shown in

Fig. 9.11. Indeed, we observe from the inset in Fig. 9.11 that, in contrast to the inset of Fig. 9.10,
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during vertical travel the initial growth in displacement ȳsup for super-critical speed is fairly rapid

before it se�les into exponential growth at the same rate as in Fig. 9.10. Furthermore, this growth

appears earlier in time as compared to the horizontally traveling cable. Thus, the exponential

growth of
˙̄E in energetics and ȳsup transient analysis support the existence of positive Re(ω)

found from modal analysis. However, the initial growth in ȳsup, discussed above, is probably

due to the choice of initial conditions, b(0) and ḃ(0), used during the numerical integration of

the state space equation. This dependence on initial conditions makes the transient and energy

analyses insu�icient in determining the instability, in contrast to the modal analysis.

The super-critical energy rate
˙̄Esup grows monotonically for a horizontally traveling cable

(Fig. 9.10), whereas the growth has an initial dip in case of vertically traveling cable (Fig. 9.11). We

surmise that this dip is due to the second term in (9.5.1), which is a contribution of the cable’s

weight to cable tension that is absent during horizontal travel.





Chapter 10

Conclusions and future work

In this part of the thesis, we studied the vibration analysis of a tensioned, heavy cable traveling

vertically, against gravity, at a constant speed. The cable was modeled as a beam incorporating

rotary inertia. Employing both the Galerkin method with sine modes and the finite element

method, a modal analysis was performed for a beam with (Rayleigh) and without rotary inertia

(Euler-Bernoulli). The instability in the modal analysis was identified with the critical value

of the parameter at which the real part of the first mode’s eigenvalue first becomes positive.

We computed the critical values of the parameters at which instability occurs; namely speed

of travel, end-tension, slenderness ratio, and bending rigidity. Stability curves, or boundaries,

are obtained in the space of these parameters. Direct numerical integration and energy analysis

on the Euler-Bernoulli model are used to verify these boundaries. As a particular case, highly

flexible cables with zero bending rigidity are also studied by modeling them as strings.

The major findings in our study are as follows:

(1) For the Euler-Bernoulli beam, the critical speed v̄crit coincides with the speed v̄bif corre-

sponding to the bifurcation of the real part of eigenvalue and simultaneous vanishing of the

associated imaginary part. In contrast, v̄crit and v̄bif are di�erent for a vertically traveling Rayleigh

beam.

(2) The applied end-tension enhances the stability of a traveling cable system, while the action

of a component of gravity along the vertical cable lowers it. This observation is regardless of

whether the traveling cable is modeled as a beam or as a string.

(3) Slenderness ratio improves the stability of the system. However, the sensitivity of the

response to slenderness ratio is more clearly observed when a traveling cable is modeled as a

Rayleigh beam rather than as an Euler-Bernoulli beam. When slenderness ratios are high, both

the models give close results.
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(4) A vertically traveling Rayleigh beam shows instability for all travel speeds, i.e. v̄crit = 0 and

v̄bif > v̄crit. However, this inherent instability can be removed by inclusion of damping. When

damping is included, v̄bif < v̄crit and the Rayleigh beam undergoes underdamped oscillations

at sub-bifurcation travel speeds. In Euler-Bernoulli beams the damping further enhances the

stability.

(5) The time rate of change of energy
˙̄E of the traveling cable is not constant, exhibiting a

non-conservative behaviour. This behaviour does not necessarily imply instability at all speeds of

travel. At sub-critical speeds,
˙̄Esub is oscillatory, but remains bounded for extended period of time.

Whereas, at super-critical speeds
˙̄Esup grows monotonically for horizontally traveling cables and

non-monotonically for vertically traveling cables. Both
˙̄Esup and ȳsup grow more rapidly when

cable travels vertically, thereby confirming the destabilizing e�ect caused by traveling against

gravity. However, the results of the transient and energy analyses are dependent on the choice

of initial conditions, in contrast to those of the modal analysis.

We conclude that pre-tension, bending rigidity, damping, and slenderness ratio enhance the

stability of traveling cables. However, traveling vertically against gravity adversely a�ects stability,

and this has significant design implications. Finally, by su�iciently increasing the pre-tension we

can minimize the destabilizing e�ect of gravity. For an already operating system of a vertically

traveling cable, the most practical way to enhance the stability is by tuning the end-tension

o�ered by the mechanism (motor) that drives the cable. With the parametric analysis presented

here, we may avoid unstable operating situations in the first place by making an informed choice

of the material and cross-sectional features of the cable, and by utilizing the damping o�ered by

the surrounding fluid, if any.

Future research

For the vertically traveling cables, the cable oscillations about the equilibrium (vertical axis)

could be considered small up to the leading order. The present study focused on determining the

critical values of system parameters at the onset of instability.

However, a�er the onset of instability, or when external loads are large, nonlinearities may

set in due to large displacements. Also, when cables travel inclined to gravity, the equilibrium

shape of the cable has to be considered when investigating vibrations of such cables. Indeed, in

light of the geometrically exact (GE) beam theory discussed in Problem A, which incorporates

large deflections and rotations, there is a scope of performing the stability analysis about a three-
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dimensionally deformed state. The GE beam model will allow us to investigate the contribution

of bending, torsion, stretching and shear in the stability of traveling cables. This study of flexible

cables that are generally not restricted to operate in a 2D plane will be more realistic.

Furthermore, with the growing a�ention towards cable-ways as a mode of transport in hilly

regions, similar stability analyses can be done by augmenting the present cable model with

intermediate hanging rigid bodies, and then extend it to the nonlinear regime. Such a study may

give interesting insights into designing these engineering applications.

Finally, problems related to lengthening cables in above applications is another exciting avenue

where the research presented in Problem A and Problem B of the thesis have a shared scope of

future research, as mentioned in Chap.6. The 2D model for longitudinally extending GE beams

was developed by Vu-�oc & Li [1995]. Its application to the aerostat deployment problem in

two-dimensional linear [Mukherjee et al., 2018] and nonlinear [Mukherjee, 2016] regimes, and

extension to three dimensions [Singh, 2018] has recently received a�ention, but there remains

much scope for further work.
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