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Role of CAE (CFD)

 Computer-Aided Engineering (CAE) is the broad usage 
of computer software to aid in engineering analysis tasks.

 Finite Element Analysis (FEA)
 Computational Fluid Dynamics (CFD)
 Multi-body dynamics (MBD)
 Optimization

 Software tools that have been developed to support these 
activities are considered CAE tools.

 The term encompasses simulation, validation, and optimization 
of products and manufacturing tools.

In the future, CAE systems will be major providers of information 
to help support design teams in decision making !!
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What is CFD?

 Computational fluid dynamics (CFD) deals with solution of fluid

dynamics and heat transfer problems using numerical techniques.

 CFD is an alternative to measurements for solving large-scale fluid

dynamical systems.

 CFD has evolved as a design tool for various industries namely

Aerospace, Mechanical, Auto-mobile, Chemical, Metallurgical,

Electronics, and even Food processing industries.

 CFD is becoming a key-element for computer-aided designs in

industries across world over.
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Phase of CFD

 Pre-processing – defining the geometry model, the physical model and 
the boundary conditions

 Computing (usually performed on high powered computers (HPC))

 Post-processing of results (using scientific visualization tools & 
techniques )

Iterative process !!
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CFD

 CFD is the “science” of predicting fluid behaviour
• Flow field, heat transfer, mass transfer, chemical

reactions, etc…
• By solving the governing equations of fluid flow using a numerical 

approach (computer based simulation)

 The results of CFD analyses

• Represent valid engineering data that may be used for
• Conceptual studies of new designs (with reduction of lead time and 

costs)
• Studies where controlled experiments are difficult to perform
• Studies with hazardous operating conditions
• Redesign engineering

 CFD analyses represent a valid

• Complement to experimental tests
• Reducing the total effort required in laboratory tests
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Why use CFD?

• Analysis and Design

Simulation-based design instead of “build & test”

More cost effectively and more rapidly than with experiments

CFD solution provides high-fidelity database for interrogation of flow field

Simulation of physical fluid phenomena that are difficult to be 

measured by experiments

Scale simulations (e.g., full-scale ships, airplanes)

Hazards (e.g., explosions, radiation, pollution)

Physics (e.g., weather prediction, planetary boundary layer, stellar 

evolution)

• Knowledge and exploration of flow physics
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Why use CFD?

Simulation(CFD) Experiment

Cost Cheap Expensive

Time Short Long

Scale Any Small/Middle

Information All Measured Points

Repeatable All Some 

Security Safe Some Dangerous 
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Why use CFD?

 Computers built in the 1950s performed limited floating point

operations per second, i.e. only few hundred arithmetic operations

per second.

 Computers that are manufactured today have teraflops rating

where tera is a trillion and flops is an abbreviation for floating

point operations per second.

 While computer speed has increased at a tremendous rate,

computer cost has fallen significantly.

 It is revealed that the computational cost has been reduced by

approximately a factor of 10 every 8 years.

 Today a desktop machine can do the job of “mainframe” machines

of 1980s.
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Where is CFD used?  (Aerospace)

• Where is CFD used?

– Aerospace

– Appliances

– Automotive

– Biomedical

– Chemical Processing

– HVAC&R

– Hydraulics

– Marine

– Oil & Gas

– Power Generation

– Sports

F18 Store Separation 

Wing-Body Interaction Hypersonic Launch 

Vehicle  

Source: internet
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Where is CFD used?  (Appliances)

• Where is CFD used?

– Aerospace

– Appliances

– Automotive

– Biomedical

– Chemical Processing

– HVAC&R

– Hydraulics

– Marine

– Oil & Gas

– Power Generation

– Sports

Surface-heat-flux plots of the No-Frost 

refrigerator and freezer compartments helped 

BOSCH-SIEMENS engineers to optimize the 

location of air inlets.

Source: internet
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Where is CFD used? (Automotive)

• Where is CFD used?

– Aerospace

– Appliances

– Automotive

– Biomedical

– Chemical Processing

– HVAC&R

– Hydraulics

– Marine

– Oil & Gas

– Power Generation

– Sports

External Aerodynamics Undercarriage 

Aerodynamics 

Interior Ventilation
Engine Cooling 

Source: internet
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Where is CFD used?  (Biomedical)

• Where is CFD used?

– Aerospace

– Appliances

– Automotive

– Biomedical

– Chemical Processing

– HVAC&R

– Hydraulics

– Marine

– Oil & Gas

– Power Generation

– Sports

Temperature and natural 

convection currents in the eye 

following laser heating. 

Spinal Catheter 

Medtronic Blood Pump

Source: internet
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Where is CFD used? (Chemical Processing)

• Where is CFD used?

– Aerospace

– Appliances

– Automotive

– Biomedical

– Chemical Processing

– HVAC&R

– Hydraulics

– Marine

– Oil & Gas

– Power Generation

– Sports

Polymerization reactor vessel - prediction 

of flow separation and residence time 

effects. 

Shear rate distribution in twin-

screw extruder simulation

Twin-screw extruder 

modeling

Source: internet
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Where is CFD used? (HVAC&R)

• Where is CFD used?

– Aerospace

– Appliances

– Automotive

– Biomedical

– Chemical Processing

– HVAC&R

– Hydraulics

– Marine

– Oil & Gas

– Power Generation

– Sports

Particle traces of copier VOC emissions 

colored by concentration level fall 

behind the copier and then circulate 

through the room before exiting the 

exhaust. 

Mean age of air contours indicate 

location of fresh supply air 

Streamlines for workstation 

ventilation

Flow pathlines colored by 

pressure quantify head loss 

in ductwork
Source: internet
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Where is CFD used? (Hydraulics)

• Where is CFD used?

– Aerospace

– Appliances

– Automotive

– Biomedical

– Chemical Processing

– HVAC&R

– Hydraulics

– Marine

– Oil & Gas

– Power Generation

– Sports

Source: internet
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Where is CFD used? (Marine)

• Where is CFD used?

– Aerospace

– Appliances

– Automotive

– Biomedical

– Chemical Processing

– HVAC&R

– Hydraulics

– Marine

– Oil & Gas

– Power Generation

– Sports

Source: internet
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Where is CFD used? (Oil & Gas)

• Where is CFD used?

– Aerospace

– Appliances

– Automotive

– Biomedical

– Chemical Processing

– HVAC&R

– Hydraulics

– Marine

– Oil & Gas

– Power Generation

– Sports

Flow vectors and pressure 

distribution on an offshore oil rig

Flow of lubricating 

mud over drill bit

Volume fraction of water

Volume fraction of oil

Volume fraction of gas

Analysis of multiphase 

separator

Source: internet
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Where is CFD used? (Power Generation)

• Where is CFD used?

– Aerospace

– Appliances

– Automotive

– Biomedical

– Chemical Processing

– HVAC&R

– Hydraulics

– Marine

– Oil & Gas

– Power Generation

– Sports
Flow pattern through a water 

turbine. 

Flow in a 

burner 
Flow around cooling 

towers

Pathlines from the inlet 

colored by temperature 

during standard 

operating conditionsSource: internet
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Where is CFD used? (Sports)

• Where is CFD used?

– Aerospace

– Appliances

– Automotive

– Biomedical

– Chemical Processing

– HVAC&R

– Hydraulics

– Marine

– Oil & Gas

– Power Generation

– Sports

Source: internet
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Physics of Fluid

Density ρ

 Fluid = Liquid + Gas

       

 lecompressib      variable

ibleincompress      const     







Substance Air(18ºC) Water(20ºC) Honey(20ºC)

Density(kg/m3) 1.275 1000 1446

Viscosity(P) 1.82e-4 1.002e-2 190

Viscosity μ: 
resistance to flow of a fluid

)(
3

Poise
m

Ns










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Physics of Fluid

Fluid Mechanics

Inviscid Viscous

Laminar Turbulence

Internal

(pipe,valve)

External

(airfoil, ship)
Compressible

(air, acoustic)

Incompressible

(water)

Components of  Fluid Mechanics 
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Physics of Fluid

 CFD codes typically designed for representation of 
specific flow phenomenon

• Viscous vs. inviscid (no viscous forces)  (Re)

• Turbulent vs. laminar (Re)

• Incompressible vs. compressible (Ma)

• Single- vs. multi-phase (Ca)

• Thermal/density effects and energy equation (Pr, g, Gr, Ec)

• Free-surface flow and surface tension (Fr, We)

• Chemical reactions, mass transfer

• etc…
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Claude-Louis Navier George Gabriel Stokes

Navier-Stokes Equations

C.L. M. H. Navier, Memoire sur les Lois du Mouvements des Fluides, Mem. de l’Acad. d. Sci.,6, 398 (1822)

C.G. Stokes, On the Theories of the Internal Friction of Fluids in Motion, Trans. Cambridge Phys. Soc., 8, (1845)

Source: internet
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Conservation law

in outM
inm outm

outin mm
dt

dM
 

outin mm  

0
dt

dM
Mass

Momentum

Energy
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Navier-Stokes Equation I

Mass ConservationContinuity Equation

0





i

i

x

U

Dt

D



Compressible

0, 
Dt

D
const




0




i

i

x

U
Incompressible
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Navier-Stokes Equation II

Momentum ConservationMomentum Equation
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3

2

I :   Local change with time

II :  Momentum convection

III:  Surface force

IV:  Molecular-dependent momentum exchange(diffusion)

V:   Mass force
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Navier-Stokes Equation III

Momentum Equation for Incompressible Fluid
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Navier-Stokes Equation IV

 Energy ConservationEnergy Equation


V

i

j

ij

IV

i

III

i

i

II

i

i

I

x

U

x

T

x

U
P

x

T
Uc

t

T
c














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







  2

2

I :   Local energy change with time

II:   Convective term

III:  Pressure work

IV:  Heat flux(diffusion)

V: Irreversible transfer of mechanical energy into heat
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Discretization

 Discretization Methods

 Finite Difference

Straightforward to apply, simple, sturctured grids

 Finite Element

Any geometries

 Finite Volume

Conservation, any geometries

Analytical Equations Discretized Equations
Discretization
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Discretization

Name of the 

Method

Process Advantage Disadvantage

Finite-

Difference 

Method 

(FDM)

The method includes

the assumption that

the variation of the

unknown to be

computed is

somewhat like a

polynomial in x, y, or

z so that higher

derivatives are

unimportant.

Straightforwardness

and relative

simplicity by which

a newcomer in the

field is able to

obtain solutions of

simple problems

Not suitable to

solve problems

with increasing

degree of physical

complexity such

as flows at higher

Reynolds

numbers, flows

around arbitrarily

shaped bodies,

and strongly time-

dependent flows
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Discretization
Name of 

the 

Method

Process Advantage Disadvantage

Finite 

element 

Method 

(FEM)

It finds solutions 

at discrete spatial 

regions  (called 

elements) by 

assuming that the 

governing 

differential 

equations apply to 

the continuum 

within each 

element. 

 Successful in

solid mechanics

applications.

 Their introduction

and ready

acceptance in

fluid mechanics

were due to

relative ease by

which flow

problems with

complicated

boundary shapes

could be modeled,

especially when

compared with

FDMs.

 More complicated matrix

operations are required to solve the

resulting system of equations

 Meaningful variational

formulations are difficult to obtain

for high Reynolds number flows

 Variational principle-based FEM is

limited to solutions of creeping

flow and heat conduction problems
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Discretization

Name of 

the Method

Process Advantage Disadvantage

Spectral 

Method

The

approximation is

based on

expansions of

independent

variables into

finite series of

smooth

functions.

It can be easily

combined with

standard FDMs.

 Their relative

complexity in

comparison with

standard FDMs

 Implementation of

complex boundary

conditions appears

to be a frequent

source of

considerable

difficulty
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Discretization
Name of 

the 

Method

Process Advantage Disadvantage

Finite 

Volume 

Method 

(FVM)

 Domain is divided into a

number of non-

overlapping control

volumes

 The differential equation

is integrated over each

control volume

 Piecewise profiles

expressing the variation

of the unknown between

the grid points are used

to evaluate the required

integrals

Physical 

soundnes

s

Not as 

straightforwa

rd as FDM
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FVM-I

General Form of Navier-Stokes Equation
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FVM-II

Conservation of Finite Volume Method
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FVM-III
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Discretization of Cont. Eqn
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Discretization of NS Eqn

 FV Discretization of Incompressible N-S Equation
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Grids

 Structured Grid

+ all nodes have the same number of 

elements around it

– only for simple domains

 Unstructured Grid

+ for all geometries

– irregular data structure

 Block Structured Grid
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Boundary Conditions

 Typical Boundary Conditions
No-slip(Wall), Axisymmetric, Inlet, Outlet, Periodic

Inlet ,u=c,v=0

o

No-slip walls: u=0,v=0

v=0, dp/dr=0,du/dr=0

Outlet, du/dx=0

dv/dy=0,dp/dx=0
r

x
Axisymmetric Periodic boundary condition in 

spanwise direction of an airfoil
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Solvers and Numerical Staff

 Solvers

 Direct: Cramer’s rule, Gauss elimination, LU decomposition

 Iterative: Jacobi method, Gauss-Seidel method, SOR method

 Numerical Parameters 

 Under relaxation factor, convergence limit, etc.

Multigrid, Parallelization

Monitor residuals (change of results between iterations)

 Number of iterations for steady flow or number of time steps for 
unsteady flow

 Single/double precisions
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Classification of PDEsCriteria Detail Examples

order

The order of a PDE is

determined by the highest-

order partial derivative

present in that equation

First order: ∂/∂x –G ∂/∂y= O

Second order: ∂2/∂x2 - ∂/∂y=O

Third order: [∂3/∂x3]2 + ∂2/∂x∂y + 

∂/∂y = O

linearity

If the coefficients are

constants or functions of the

independent variables only,

then Eq. is linear. If

the coefficients are functions

of the dependent variables

and/or any of its derivatives

of either lower or same

order, then the equation is

nonlinear.

a ∂2/∂x2 + b ∂2/∂x∂y + c ∂2/∂y2  + d 

= O
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Classification of PDEs

Linear second-order PDEs: elliptic, parabolic, and hyperbolic. 

The general form of this class of equations is:   

where coefficients are either constants or functions of the independent variables only. 

The three canonical forms are determined by the following criteria:

 b2 – 4ac < 0 elliptic
 b2 – 4ac = 0 parabolic
 b2 – 4ac > 0 hyperbolic
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Classification of PDEs
PDE Example Explanation

Elliptic

Laplace’s equation:

Poisson’s equation:

In elliptic problems, the function f(x, y) must satisfy

both, the differential equation over a closed domain

and the boundary conditions on the closed boundary

of the domain.

Parabolic

Heat conduction In parabolic problems, the solution advances

outward indefinitely from known initial values,

always satisfying the known boundary conditions as

the solution progresses.

Hyperbolic

Wave equation The solution domain of hyperbolic PDE has the

same open-ended nature as in parabolic PDE.

However, two initial conditions are required to start

the solution of hyperbolic equations in contrast with

parabolic equations, where only one initial condition

is required.
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Classification of N-S eqn

The complete Navier–Stokes equations in three space coordinates (x, y, z) 

and time (t) are a system of three nonlinear second-order equations in four 

independent variables. So, the normal classification rules do not apply 

directly to them. Nevertheless, they do possess properties such as 

hyperbolic, parabolic, and elliptic: 

Hyperbolic 

Flows

• Unsteady, inviscid compressible flow. A compressible 

flow can sustain sound and shock waves, and the 

Navier–Stokes equations are essentially hyperbolic in 

nature.

• For steady inviscid compressible flows, the equations 

are hyperbolic if the speed is supersonic, and elliptic for 

subsonic speed.
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Classification of N-S eqn

Parabolic Flows Elliptic Flows Mixed Flows

•The boundary layer

flows have

essentially parabolic

character. The

solution marches in

the downstream

direction, and the

numerical methods

used for solving

parabolic equations

are appropriate.

• The subsonic inviscid

flow falls under this

category.

•If a flow has a region of

recirculation, information

may travel upstream as

well as downstream.

Therefore, specification of

boundary conditions only

at the upstream end of the

flow is not sufficient. The

problem then becomes

elliptic in nature.

There is a possibility

that a flow may not be

characterized purely

by one type. For

example, in a steady

transonic flow, both

supersonic and

subsonic regions exist.

The supersonic regions

are hyperbolic,

whereas subsonic

regions are elliptic.
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Initial and BC

The initial and boundary conditions must be specified to obtain unique numerical 
solutions to PDEs:

Following Eq. depicts a problem in which the temperature within a large solid slab 
having finite thickness changes in the x-direction as a function of time till steady state 
(corresponding to t → ∞ ) is reached:

1. Dirichlet Conditions (First Kind):

The values of the dependent variables are specified at the boundaries 

in the figure:

• Boundary Conditions of first kind can be expressed as

B.C. 1  T=f (t) or T1 at x=0 
t > 0                        

B.C.2   T= T2            at x=L                                              

• Initial Condition

T= f(x)       at t= 0                     0<= x =<L

or T= T0
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Initial and BC

2. Neumann Conditions (Second Kind)

The derivative of the dependent variable is given as a constant or as a function of the 

independent variable on one boundary:

This condition specifies that the temperature gradient at the right boundary is zero 

(insulation condition).

Cauchy conditions: A problem that combines both Dirichlet and Neumann conditions 

is considered to have Cauchy conditions:                                   

Fig: Cauchy conditions
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Initial and BC

3. Robbins Conditions (Third Kind)
The derivative of the dependent variable is given as a function of the 

dependent variable on the boundary. 
For the heat conduction problem,  this may correspond to the case of 

cooling of
a large steel slab of finite thickness “L” by water or oil, the heat transfer 
coefficient h being finite: 
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Initial and Boundary value probs

On the basis of their initial and boundary conditions, PDEs may be further classified into 

initial value or boundary value problems.

 Initial Value Problems:

In this case, at least one of the independent variables has an open region. In the unsteady 

state heat conduction problem, the time variable has the range 0 ≤  t ≤  ∞ , where no 

condition has been specified at t = ∞ ; therefore, this is an initial value problem.

 Boundary Value Problems:

When the region is closed for all independent variables and conditions are specified at all 

boundaries, then the problem is of the boundary value type. An example of this is the 

three-dimensional steady-state  heat conduction (with no heat generation) problem, which 

is mathematically represented by the  equation:
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