
OpenMP
Swarnendu Biswas

An Introductory Course on High-Performance Computing in Engineering

Indian Institute of Technology Kanpur

30th Sep 2019

Content influenced by many excellent references, see References slide for acknowledgements.

What is OpenMP?

• OpenMP (Open Multi-Processing) is a popular shared-memory
programming API
• A directive based parallel programming model that helps standardize

practices established in SMP, vectorization and heterogeneous device
programming

• OpenMP program is essentially a sequential program augmented with
compiler directives to specify parallelism

• Eases conversion of existing sequential programs

• OpenMP supports C/C++ and Fortran on a wide variety of
architectures

• OpenMP is supported by popular C/C++ compilers, for e.g.,
LLVM/Clang, GNU GCC, Intel ICC, and IBM XLC

Key Concepts in OpenMP

• Parallel regions where parallel execution occurs via multiple
concurrently executing threads
• Each thread has its own program counter and executes one instruction at a

time, similar to sequential program execution

• Shared and private data: shared variables are the means of
communicating data between threads

• Synchronization: fundamental means of coordinating execution of
concurrent threads

• Mechanism for automated work distribution across threads

Fork-Join Model of Parallel Execution

Goals of OpenMP

• Standardization
• Provide a standard among a variety of shared memory

architectures/platforms
• Jointly defined and endorsed by a group of major computer hardware and

software vendors

• Ease of use
• Provide capability to incrementally parallelize a serial program, unlike

message-passing libraries which typically require an all or nothing approach
• Provide the capability to implement both coarse-grain and fine-grain

parallelism

• Portability
• Most major platforms and compilers have OpenMP support

The OpenMP API

• Compiler directives
• #pragma omp parallel
• Treated as comments with no/disabled OpenMP support

• Runtime library routines
• int omp_get_num_threads(void)

• Environment variables
• export OMP_NUM_THREADS=8

General Code Structure

#include <omp.h>

…

int main() {

…

// serial code, master thread

…

// begin parallel section,

// fork a team of threads

#pragma omp parallel …

{

// parallel region executed by

// all threads

// other logic

…

// all parallel threads join

// master thread

}

// resume serial code

…

}

OpenMP Core Syntax
• Most common constructs in OpenMP are compiler directives

• #pragma omp directive [clause [clause]…] newline
• Example: #pragma omp parallel num_threads(4)

• directive
• Scope extends to the the structured block following a directive, does not span

multiple routines or code files

• [clause, ...]
• Optional. Clauses can be in any order, and repeated as necessary unless

otherwise restricted

• newline
• Required. Precedes the structured block which is enclosed by this directive.

• Function prototypes and types are defined in #include <omp.h>

Structured Block

• Most OpenMP constructs apply to a structured block

• Structured block is a block of one or more statements surrounded by
“{ }”, with one point of entry at the top and one point of exit at the
bottom

• It is okay to have an exit within the structured block

• Disallows code that branches into or out of the middle of the
structured block

Compiling an OpenMP Program

• Linux and GNU GCC
• g++ –fopenmp hello-world.cpp

• Linux and Clang/LLVM
• clang++ -fopenmp hello-world.cpp

• Can use the preprocessor macro _OPENMP to check for compiler
support

Hello World with OpenMP!
#include <iostream>

#include <omp.h>

using namespace std;

int main() {

cout << "This is serial code\n";

#pragma omp parallel

{

int num_threads = omp_get_num_threads();

int tid = omp_get_thread_num();

if (tid == 0) {

cout << num_threads << "\n";

}

cout << "Hello World: " << tid << "\n";

}

cout << "This is serial code\n";

#pragma omp parallel num_threads(2)

{

int tid = omp_get_thread_num();

cout << "Hello World: " << tid << "\n";

}

cout << "This is serial code\n";

omp_set_num_threads(3);

#pragma omp parallel

{

int tid = omp_get_thread_num();

cout << "Hello World: " << tid << "\n";

}

}

Hello World with OpenMP!

• Each thread in a team has a unique integer “id”; master thread has
“id” 0, and other threads have “id” 1, 2, …

• OpenMP runtime function omp_get_thread_num() returns a thread’s
unique “id”

• The function omp_get_num_threads() returns the total number of
executing threads

• The function omp_set_num_threads(x) asks for “x” threads to execute in
the next parallel region (must be set outside region)

OpenMP Constructs

• A construct consists of an
executable directive and the
associated loop, statement, or
structured block

#pragma omp parallel

{

// inside parallel construct

subroutine ();

}

void subroutine (void) {

// outside parallel construct

}

OpenMP Regions

• A region consists of all code
encountered during a specific
instance of the execution of a
given construct
• Includes implicit code introduced

by the OpenMP implementation

#pragma omp parallel

{

// inside parallel region

subroutine ();

}

void subroutine (void) {

// inside parallel region

}

Parallel Region Construct

• Block of code that will be executed by multiple threads
• #pragma omp parallel [clause …]

structured_block

• Example of clauses
• private (list)
• shared (list)
• default (shared | none)
• firstprivate (list)
• reduction (operator: list)
• num_threads (integer-expression)
• …

Parallel Region Construct

• When a thread reaches a parallel directive, it creates a team of
threads and becomes the master of the team
• By default OpenMP creates as many thread as many cores available in the

system

• The master is a member of that team and has thread number 0 within
that team

• The code is duplicated and all threads will execute that code

• There is an implied barrier at the end of a parallel section

• Only the master thread continues execution past this point

Threading in OpenMP

#pragma omp parallel
num_threads(4)
{
foobar ();

}

• OpenMP implementations use a
thread pool so full cost of threads
creation and destruction is not
incurred for reach parallel region

• Only three threads are created
excluding the parent thread

void thunk () {
foobar ();

}

pthread_t tid[4];

for (int i = 1; i < 4; ++i)
pthread_create (&tid[i],0,thunk,

0);

for (int i = 1; i < 4; ++i)
pthread_join (tid[i]);

Specifying Number of Threads

• Desired number of threads can
be specified in many ways

1. Setting environmental variable
OMP_NUM_THREADS

2. Runtime OpenMP function
omp_set_num_threads(4)

3. Clause in #pragma for parallel
region

double A[1000];

#pragma omp parallel num_threads(4)

{

int t_id = omp_get_thread_num();

int nthrs = omp_get_num_threads();

for (int i = t_id; i < 1000; i += nthrs) {

A[i] = foo(i);

}

}

Specifying Number of Threads

• Three ways
1. OMP_NUM_THREADS
2. omp_set_num_threads(…)
3. #pragma omp parallel num_threads(…)

• OMP_NUM_THREADS (if present) specifies initially the number of threads

• Calls to omp_set_num_threads() override the value of OMP_NUM_THREADS

• Presence of the num_threads clause overrides both other values

Distributing Work

• Threads can perform disjoint work division using their thread ids and
knowledge of total # threads

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
int t_id = omp_get_thread_num();
for (int i = t_id; i < 1000; i += omp_get_num_threads()) {
A[i]= foo(i);

}
}

Cyclic distribution
of work

Distributing Work

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
int t_id = omp_get_thread_num();
int num_thrs = omp_get_num_threads();
int b_size = 1000 / num_thrs;
for (int i = t_id*b_size; i < (t_id+1)*b_size; i += num_thrs) {
A[i]= foo(i);

}
}

Block distribution
of work

Nested Parallelism

• Allows to create parallel region
within a parallel region itself

• Nested parallelism can help scale
to large parallel computations

• Usually turned off by default
• Can lead to oversubscription by

creating lots of threads

• Set OMP_NESTED as TRUE or call
omp_set_nested()

Recurring Example of Numerical Integration

• Mathematically

න
0

1 4

(1 + 𝑥2)
𝑑𝑥 = 𝜋

• We can approximate the integral as
the sum of the rectangles

𝑖=0

𝑁

𝐹 𝑥𝑖 ∆𝑥 ≈ 𝜋

where each rectangle has width
∆𝑥 and height 𝐹 𝑥𝑖 at the middle of
interval i

4.

0

2.

0

1.

0X
0.

0

Serial Pi Program

double seq_pi() {

int i;

double x, pi, sum = 0.0;

double step = 1.0 / (double)NUM_STEPS;

for (i = 0; i < NUM_STEPS; i++) {

x = (i + 0.5) * step;

sum += 4.0 / (1.0 + x * x);

}

pi = step * sum;

return pi;

}

$ g++ -fopenmp compute-pi.cpp

$./a.out

3.14159

Computing Pi with OpenMP

double omp_pi_with_fs() {

omp_set_num_threads(NUM_THRS);

double sum[NUM_THRS] = {0.0};

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

// Parallel region with worker threads

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

sum[tid] += 4.0 / (1.0 + x * x);

}

} // end #pragma omp parallel

for (int i = 0; i < num_thrs; i++) {

pi += (sum[i] * step);

}

return pi;

}

Optimize the Pi Program
double omp_pi_without_fs2() {

omp_set_num_threads(NUM_THRS);

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x, sum;

for (int i = tid; i < NUM_STEPS; i += nt
hrds) {

x = (i + 0.5) * step;

// Scalar variable sum is

// thread-private, so no false sharing

sum += 4.0 / (1.0 + x * x);

}

pi += (sum * step);

} // end #pragma omp parallel

return pi;

}

Optimize the Pi Program

double omp_pi_without_fs2() {

omp_set_num_threads(NUM_THRS);

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x, sum;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

// Scalar variable sum is

// thread-private, so no false sharing

sum += 4.0 / (1.0 + x * x);

}

pi += (sum * step);

} // end #pragma omp parallel

return pi;

}

This program is now wrong! Why?

Synchronization Constructs

critical Construct

• Only one thread can enter
critical section at a time; others
are held at entry to critical
section

• Prevents any race conditions in
updating “res”

float res;

#pragma omp parallel

{

float B;

int id = omp_get_thread_num();

int nthrds = omp_get_num_threads();

for (int i = id; i < MAX; i += nthrds) {

B = big_job(i);

#pragma omp critical

consume (B, res);

}

}

critical Construct

• Works by acquiring a lock

• If your code has multiple critical sections, they are all mutually
exclusive

• You can avoid this by naming critical sections
• #pragma omp critical (optional_name)

Correct Pi Program: Fix the Data Race

double omp_pi_without_fs2() {

omp_set_num_threads(NUM_THRS);

double pi = 0.0, step = 1.0 / (double)NUM_ST
EPS;

uint16_t num_thrs;

#pragma omp parallel

{

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x, sum;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

// Scalar variable sum is

// thread-private, so no false sharing

sum += 4.0 / (1.0 + x * x);

}

#pragma omp critical // Mutual exclusion

pi += (sum * step);

} // end #pragma omp parallel

return pi;

}

atomic Construct

• Atomic is an efficient critical
section for simple reduction
operations

• Applies only to the update of a
memory location

• Uses hardware atomic
instructions for implementation;
much lower overhead than using
critical section

float res;

#pragma omp parallel

{

float B;

int id = omp_get_thread_num();

int nthrds = omp_get_num_threads();

for (int i = id; i < MAX; i += nthrds) {

B = big_job(i);

#pragma omp atomic

res += B;

}

}

atomic Construct

• Expression operation can be of
type
• x binop= expr

• x is a scalar type

• binop can be +, *, -, /, &, ^, |, <<, or
>>

• x++

• ++x

• x--

• --x

float res;

#pragma omp parallel

{

float B;

int id = omp_get_thread_num();

int nthrds = omp_get_num_threads();

for (int i = id; i < MAX; i += nthrds) {

B = big_job(i);

#pragma omp atomic

res += B;

}

}

critical vs atomic

critical

• Locks code segments

• Serializes all unnamed critical
sections

• Less efficient than atomic

• More general

atomic

• Locks data variables

• Serializes operations on the
same shared data

• Makes use of hardware
instructions to provide atomicity

• Less general

Barrier Synchronization

#pragma omp parallel private(id)

{

int id=omp_get_thread_num();

A[id] = big_calc1(id);

#pragma omp barrier

B[id] = big_calc2(id);

}

• Each thread waits until all
threads arrive

explicit barrier

Clause ordered

• Specifies that iterations of the
enclosed loop will be executed
in the same order as if they were
executed on a serial processor

• It must appear within the extent
of omp for or omp parallel for

• Should be used in two stages

omp_set_num_threads(4);

#pragma omp parallel

{

#pragma omp for ordered

for (int i=0; i<N; i++) {

tmp = func1(i);

#pragma omp ordered
cout << tmp << “\n”;

}

}

Clause master

#pragma omp parallel

{

do_many_things();

#pragma omp master

{

reset_boundaries();

}

do_many_other_things();

}

multiple threads
of control

only master thread executes this
region, other threads just skip it,

no barrier is implied

multiple threads
of control

Clause single

#pragma omp parallel
{
do_many_things();

#pragma omp single
{
reset_boundaries();

}

do_many_other_things();
}

multiple threads
of control

a single thread executes
this region, may not be

the master thread

multiple threads
of control

implicit barrier, all other threads
wait; can remove with nowait clause

Simplify Control Flow: Use single

double omp_pi_without_fs2() {

omp_set_num_threads(NUM_THRS);

double pi = 0.0, step = 1.0 / (double)NUM_ST
EPS;

uint16_t num_thrs;

#pragma omp parallel

{

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

#pragma omp single

num_thrs = nthrds;

double x, sum;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

// Scalar variable sum is

// thread-private, so no false sharing

sum += 4.0 / (1.0 + x * x);

}

#pragma omp critical // Mutual exclusion

pi += (sum * step);

}

return pi;

}

Reductions in OpenMP

• Reductions are common patterns
• True dependence that cannot be

removed

• OpenMP provides special support
via reduction clause
• OpenMP compiler automatically

creates local variables for each
thread, and divides work to form
partial reductions, and code to
combine the partial reductions

• Predefined set of associative
operators can be used with
reduction clause,
• For e.g., +, *, -, min, max

double sum = 0.0;

omp_set_num_threads(N);
#pragma omp parallel

double my_sum = 0.0;
my_sum = func(omp_get_thread_num());

#pragma omp critical
sum += my_sum;

Reductions in OpenMP

• Reductions clause specifies an
operator and a list of reduction
variables (must be shared variables)

• OpenMP compiler creates a local copy
for each reduction variable, initialized
to operator’s identity (e.g., 0 for +; 1
for *)

• After work-shared loop completes,
contents of local variables are
combined with the “entry” value of
the shared variable

• Final result is placed in shared variable

double sum = 0.0;

omp_set_num_threads(N);

#pragma omp parallel reduction(+ : sum)

sum += func(omp_get_thread_num());

Reduction Operators and Initial Values

Operator Initial value

+ 0

* 1

- 0

Min Largest positive number

Max Smallest negative number

Operator Initial value

& ~0

| 0

^ 0

&& 1

|| 0

C/C++
only

Computing Pi with OpenMP
double omp_pi_with_fs() {

omp_set_num_threads(NUM_THRS);

double sum[NUM_THRS] = {0.0};

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

// Parallel region with worker threads

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

#pragma omp single

num_thrs = nthrds;

double x;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

sum[tid] += 4.0 / (1.0 + x * x);

}

} // end #pragma omp parallel

#pragma omp parallel for reduction(+ : pi)

for (int i = 0; i < num_thrs; i++) {

pi += (sum[i] * step);

}

return pi;

}

Data Sharing

Understanding Scope of Shared Data

• As with any shared-memory programming model, it is important to
identify shared data
• Multiple child threads may read and update the shared data

• Need to coordinate communication among the team by proper initialization
and assignment to variables

• Scope of a variable refers to the set of threads that can access the
thread in a parallel block

Data Scope

• Variables (declared outside the scope of a parallel region) are shared
among threads unless explicitly made private

• A variable in a parallel region can be either shared or private
• Variables declared within parallel region scope are private

• Stack variables declared in functions called from within a parallel region are
private

Implicit Rules

int n = 10, a = 7;

#pragma omp parallel

{

…

int b = a + n;

b++;

…

}

• n and a are shared variables

• b is a private variable

Data Sharing: shared Clause

• shared (list)
• Shared by all threads, all threads access the same storage area for shared

variables

• #pragma omp parallel shared(x)

• Responsibility for synchronizing accesses is on the programmer

Data Sharing: private Clause

• private (list)
• A new object is declared for each thread in the team

• Variables declared private should be assumed to be uninitialized for each
thread

• #pragma omp parallel private(x)
• Each thread receives its own uninitialized variable x

• Variable x falls out-of-scope after the parallel region

• A global variable with the same name is unaffected (v3.0 and later)

Understanding the private clause

int p = 0;

#pragma omp parallel private(p)

{

// value of p is undefined

p = omp_get_thread_num();

// value of p is defined

…

}

// value of p is undefined

Clause default

• default (shared | none)
• Specify a default scope for all

variables in the lexical extent of
any parallel region

int a, b, c, n;

#pragma omp parallel for
default(shared), private(a, b)

for (int i = 0; i < n; i++) {

// a and b are private variables

// c and n are shared variables

}

Clause default

int n = 10;

std::vector<int> vector(n);

int a = 10;

#pragma omp parallel for default(none) shared(n, vector)

for (int i = 0; i < n; i++) {

vector[i] = i*a;

}

Is this snippet correct?

Worksharing Construct

Worksharing Construct

• Loop structure in parallel region is
same as sequential code

• No explicit thread-id based work
division; instead system
automatically divides loop iterations
among threads

• User can control work division: block,
cyclic, block-cyclic, etc., via
“schedule” clause in pragma

float res;

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < MAX; i++) {

B = big_job(i);

}

}

Worksharing Construct

#pragma omp parallel

{

#pragma omp for

for (int i=0; i<N; i++) {

func1(i);

}

}

Variable i is made “private” to each thread by
default. You could also do this explicitly with
a “private(i)” clause.

If the team consists of only one thread then
the worksharing region is not executed in
parallel.

Worksharing Construct

for(i=0;i< N;i++) {

a[i] = a[i] + b[i];

}

#pragma omp parallel

#pragma omp for

for(i=0;i<N;i++) {

a[i] = a[i] + b[i];

}

#pragma omp parallel

{

int id, i, Nthrds, istart, iend;

id = omp_get_thread_num();

Nthrds = omp_get_num_threads();

istart = id * N / Nthrds;

iend = (id+1) * N / Nthrds;

if (id == Nthrds-1) iend = N;

for(i=istart;i<iend;i++) {

a[i] = a[i] + b[i];

}

}

sequential code

work sharing
construct

OpenMP parallel
region

Combined Worksharing Construct

float res;

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < MAX; i++) {

B = big_job(i);

#pragma omp critical

consume (B, res);

}

}

float res;

#pragma omp parallel for

for (int i = 0; i < MAX; i++) {

B = big_job(i);

#pragma omp critical

consume (B, res);

}

Often a parallel region has a single
work-shared loop

Limitations on the Loop Structure

• Loops need to be in the
canonical form
• Cannot use while or do-while

• Loop variable must have integer
or pointer type

• Cannot use a loop where the trip
count cannot be determined

• for (index = start; index < end;
index++)

• for (index = start; index >= end;
index = index - incr)

Take Care with the Worksharing Construct

OpenMP compiler will not check for dependences

Take Care when Sharing Data

#pragma omp parallel for

{

for(i=0; i<n; i++) {

tmp = 2.0*a[i];

a[i] = tmp;

b[i] = c[i]/tmp;

}

}

#pragma omp parallel for
private(tmp)

{

for(i=0; i<n; i++) {

tmp = 2.0*a[i];

a[i] = tmp;

b[i] = c[i]/tmp;

}

}

Take Care when Sharing Data

int i = 0, n = 10, a = 7;

#pragma omp parallel for

for (i = 0; i< n; i++) {

int b = a + i;

}

• n and a are shared variables

• b is a private variable

• A loop iteration variable is
private by default
• So i is private

Our Refined Pi Implementation

double omp_pi() {

double x, pi, sum = 0.0;

double step = 1.0 / (double)NUM_STEPS;

#pragma omp parallel for private(x) reduction(+ : sum) num_threads(NUM_THRS)

for (int i = 0; i < NUM_STEPS; i++) {

x = (i + 0.5) * step;

sum += 4.0 / (1.0 + x * x);

}

pi = step * sum;

return pi;

}

Evaluate the Pi Program Variants

• Sequential computation of pi

• Parallel computation with thread-local sum

• Worksharing construct

Finer Control on Work Distribution

• The schedule clause determines how loop iterators are mapped
onto threads
• Most implementations use block partitioning

• #pragma omp parallel for schedule [, <chunksize>]

• Good assignment of iterations to threads can have a significant
impact on performance

Finer Control on Work Distribution

• #pragma omp parallel for schedule(static[,chunk])
• Fixed-sized chunks (or as equal as possible) assigned (alternating) to

num_threads

• Typical default is: chunk = iterations/num_threads

• Set chunk = 1 for cyclic distribution

• #pragma omp parallel for schedule(dynamic[,chunk])
• Run-time scheduling (has overhead)

• Each thread grabs “chunk” iterations off queue until all iterations have been
scheduled, default is 1

• Good load-balancing for uneven workloads

Finer Control on Work Distribution

• #pragma omp parallel for schedule(guided[,chunk])
• Threads dynamically grab blocks of iterations

• Chunk size starts relatively large, to get all threads busy with good
amortization of overhead

• Subsequently, chunk size is reduced to “chunk” to produce good workload
balance

• By default, initial size is iterations/num_threads

Finer Control on Work Distribution

• #pragma omp parallel for schedule(runtime)
• Decision deferred till run-time

• Schedule and chunk size taken from OMP_SCHEDULE environment variable or
from runtime library routines
• $ export OMP_SCHEDULE=“static,1”

• #pragma omp parallel for schedule(auto)
• Schedule is left to the compiler runtime to choose (need not be any of the

above)

• Any possible mapping of iterations to threads in the team can be chosen

Understanding the schedule clause

Schedule clause When to use?

static Predetermined and predictable by the
programmer; low overhead at run-time,
scheduling is done at compile-time

dynamic Unpredictable, highly variable work per iteration;
greater overhead at run-time, more complex
scheduling logic

guided Special case of dynamic to reduce scheduling
overhead

auto When the runtime can learn from previous
executions of the same loop

OpenMP Sections

• Noniterative worksharing
construct

• Worksharing for function-level
parallelism; complementary to
“omp for” loops

• The sections construct gives a
different structured block to
each thread

#pragma omp parallel

{

…

#pragma omp sections

{

#pragma omp section

x_calculation();

#pragma omp section

y_calculation();

#pragma omp section

z_calculation();

} // implicit barrier

…

}

The Essence of OpenMP

• Create threads that execute in a shared address space
• The only way to create threads is with the parallel construct
• Once created, all threads execute the code inside the construct

• Split up the work between threads by one of two means
• SPMD (Single Program Multiple Data) – all threads execute the same code and you use the

thread ID to assign work to a thread
• Workshare constructs split up loops and tasks between threads

• Manage data environment to avoid data access conflicts
• Synchronization so correct results are produced regardless of how threads are scheduled
• Carefully manage which data can be private (local to each thread) and shared

References

• Tim Mattson et al. The OpenMP Common Core: A hands on exploration, SC 2018.

• Tim Mattson and Larry Meadows. A “Hands-on” Introduction to OpenMP. SC 2008.

• Ruud van der Pas. OpenMP Tasking Explained. SC 2013.

• Peter Pacheco. An Introduction to Parallel Programming.

• Blaise Barney. OpenMP. https://computing.llnl.gov/tutorials/openMP/

https://computing.llnl.gov/tutorials/openMP/

