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A Brief History of GPUs

• Many real-world applications are 
compute-intensive and data-
parallel
• They need to process a lot of data, 

mostly floating-point operations

• For example, real-time high-
definition graphics applications 
such as your favorite video games

• Iterative kernels which update 
elements according to some fixed 
pattern called a stencil



A Brief History of GPUs

• This spurred the need for a highly-parallel computational device with 
high computational power and memory bandwidth
• CPUs are more complex devices catering to a wider audience

• GPUs are now used in different applications
• Game effects, computational science simulations, image processing and 

machine learning, linear algebra

• Several GPU vendors like NVIDIA, AMD, Intel, QualComm, ARM, etc.



Key Insights in the GPGPU Architecture

• GPUs are suited for compute-intensive data-parallel applications
• The same program is executed for each data element

• High arithmetic intensity which can hide latency of memory accesses

• Less complex control flow

• Much more transistors or real-estate is devoted to computation 
rather than data caching and control flow



Floating-Point Operations per Second for the 
CPU and GPU



Memory Bandwidth for CPU and GPU



High-end CPU-GPU Comparison
Xeon 8180M Titan V

Cores 28 5120 (+ 640)
Active threads 2 per core 32 per core
Frequency 2.5 (3.8) GHz 1.2 (1.45) GHz
Peak performance (SP) 4.1? TFlop/s 13.8 TFlop/s
Peak mem. bandwidth 119 GB/s 653 GB/s
Maximum power 205 W 250 W*
Launch price $13,000 $3000*

Release dates
Xeon: Q3’17
Titan V: Q4’17
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GPGPU 

• Multi-core chip

• SIMD execution within a single core (many ALUs performing the same 
instruction)

• Multi-threaded execution on a single core (multiple threads executed 
concurrently by a core)



Advantages of a GPU 

• Performance
• 3.4x as many operations executed per 

second

• Main memory bandwidth
• 5.5x as many bytes transferred per 

second

• Cost- and energy-efficiency
• 15x as much performance per dollar

• 2.8x as much performance per watt

(based on peak values)

• GPU’s higher performance and 
energy efficiency are due to 
different allocation of chip area
• High degree of SIMD parallelism, 

simple in-order cores, less 
control/sync. logic, lower 
cache/scratchpad capacity
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GPU Disadvantages

• Clearly, we should be using GPUs all the time
• So why aren’t we?

• GPUs can only execute some types of code fast
• Need lots of data parallelism, data reuse, & regularity

• SIMD parallelism is not well suited for all algorithms

• GPUs are harder to program and tune than CPUs
• Mostly because of their architecture

• Fewer tools and libraries exist
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GPU Architecture
• GPUs consist of Streaming Multiprocessors (SMs)

• Up to 80 SMs per chip (run blocks)

• SMs contain Processing Elements (PEs)
• Up to 64 PEs per SM (run threads)
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Scalability of GPU Architecture

A multithreaded program is partitioned 
into blocks of threads that execute 
independently from each other.

A GPU with more multiprocessors will 
automatically execute the program in 
less time than a GPU with fewer 
multiprocessors.



CUDA-Enabled NVIDIA GPUs

Embedded Consumer 
desktop/laptop

Professional 
Workstation

Data Center

Turing (Compute 
capabilities 7.x)

DRIVE/JETSON AGX 
Xavier

GeForce 2000 Series Quadro RTX Series Tesla T Series

Volta (Compute 
capabilities 7.x)

DRIVE/JETSON AGX 
Xavier

Tesla V Series

Pascal (Compute 
capabilities 6.x)

Tegra X2 GeForce 1000 Series Quadro P Series Tesla P Series

Maxwell (Compute 
capabilities 5.x)

Tegra X1 GeForce 900 Series Quadro M Series Tesla M Series

Kepler (Compute 
capabilities 3.x)

Tegra K1 GeForce 600/700 
Series

Quadro K Series Tesla K Series



Block Scalability

• Hardware can assign blocks to SMs in any order
• A kernel with enough blocks scales across GPUs

• Not all blocks may be resident at the same time
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GPU with 2 SMs

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel
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Block 6 Block 7
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What is CUDA?

• It is general purpose parallel computing platform and programming 
model that leverages the parallel compute engine in NVIDIA GPUs
• Introduced in 2007 with NVIDIA Tesla architecture

• CUDA C, C++, Fortran, PyCUDA are language systems built on top of CUDA

• Three key abstractions in CUDA 
• Hierarchy of thread groups 

• Shared memories

• Barrier synchronization



CUDA Programming Model

• Helps fine-grained data parallelism and thread parallelism, nested 
within coarse-grained data parallelism and task parallelism

1. Partition the problem into coarse sub-problems that can be solved 
independently

2. Assign each sub-problem to a “block” of threads to be solved in 
parallel

3. Each sub-problem is also decomposed into finer work items that are 
solved in parallel by all threads within the “block”



Heterogeneous Computing

Host

• CPU and its memory (host 
memory)

Device

• GPU and its memory (device 
memory)



Heterogeneous Computing
#include <iostream>

#include <algorithm>

using namespace std;

#define N          1024

#define RADIUS     3

#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

int gindex = threadIdx.x + blockIdx.x * blockDim.x;

int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)

__syncthreads();

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result

out[gindex] = result;

}

void fill_ints(int *x, int n) {

fill_n(x, n, 1);

}

int main(void) {

int *in, *out;              // host copies of a, b, c

int *d_in, *d_out;          // device copies of a, b, c

int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values

in  = (int *)malloc(size); fill_ints(in,  N + 2*RADIUS);

out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies

cudaMalloc((void **)&d_in,  size);

cudaMalloc((void **)&d_out, size);

// Copy to device

cudaMemcpy(d_in,  in,  size, cudaMemcpyHostToDevice);

cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU

stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, 

d_out + RADIUS);

// Copy result back to host

cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

// Cleanup

free(in); free(out);

cudaFree(d_in); cudaFree(d_out);

return 0;

}
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Heterogeneous Computing
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Simple Processing Flow
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Simple Processing Flow
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to GPU memory
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Simple Processing Flow

1. Copy input data from CPU memory 

to GPU memory

2. Load GPU program and execute,

caching data on chip for 

performance

PCI Bus
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Simple Processing Flow

1. Copy input data from CPU memory 

to GPU memory

2. Load GPU program and execute,

caching data on chip for 

performance

3. Copy results from GPU memory to 

CPU memory

PCI Bus

NVIDIA



CUDA Extensions for C/C++

• Function launch
• Calling functions on GPU

• Memory management
• GPU memory allocation, copying data to/from GPU

• Declaration qualifiers
• __device, __shared, __local, __global

• Special instructions
• Barriers, fences, etc.

• Keywords
• threadIdx, blockIdx, blockDim



Hello World with CUDA

#include <stdio.h>

#include <cuda.h>

__global__ void hwkernel() {

printf(“Hello world!\n”);

}

int main() {

hwkernel<<<1, 1>>>();

}

$ nvcc hell-world.cu

$./a.out

$



Hello World with CUDA

#include <stdio.h>

#include <cuda.h>

__global__ void hwkernel() {

printf(“Hello world!\n”);

}

int main() {

hwkernel<<<1, 1>>>();

cudaDeviceSynchronize();

}

$ nvcc hell-world.cu

$./a.out

Hello world!

$



Hello World with CUDA

#include <stdio.h>

#include <cuda.h>

__global__ void hwkernel() {

printf(“Hello world!\n”);

}

int main() {

hwkernel<<<1, 32>>>();

cudaThreadSynchronize();

}

$ nvcc hell-world.cu

$./a.out
Hello world!
Hello world!
Hello world!
Hello world!
Hello world!
…
…
$



Kernels
• Special functions that a CPU can 

call to execute on the GPU
• Executed N times in parallel by N 

different CUDA threads

• CPU can continue processing 
while GPU runs kernel

• Each thread will execute 
VecAdd()

• Each thread has a unique thread 
ID that is accessible within the 
kernel through the built-in 
threadIdx variable

// Kernel definition

__global__ void VecAdd(float* A, 
float* B, float* C) {

int i = threadIdx.x;

…

}

int main() {

…

// Kernel invocation with N threads

VecAdd<<<1, N>>>(A, B, C);

}



Kernels

• GPU spawns m blocks with n 
threads (i.e., m*n threads total) 
that run a copy of the same 
function

• Kernel call returns when all 
threads have terminated

KernelName<<<m, n>>>(arg1, arg2, ...)



Function Declarations in CUDA

Executed on Callable from

__device__ float deviceFunc() Device Device

__global__ void kernelFunc() Device Host

__host__ float hostFunc() Host Host

__global__ define a kernel function, must return void



Variable Type Qualifiers in CUDA

Memory Scope Lifetime

Int localVar; Register Thread Thread

__device__ __local__ int localVar; Local Thread Thread

__device__ __shared__ int sharedVar; Shared Block Block

__device__ int globalVar; Global grid Application

• Automatic variables without any qualifier reside in a register
• Except arrays that reside in local memory

• Pointers can only point to memory allocated or declared in global 
memory



Typical CUDA Program Flow

1. Load data into CPU memory
• fread/rand

2. Copy data from CPU to GPU memory
• cudaMemcpy(..., cudaMemcpyHostToDevice)

3. Call GPU kernel
• mykernel<<<x, y>>>(...)

4. Copy results from GPU to CPU memory.
• cudaMemcpy(..., cudaMemcpyDeviceToHost)

5. Use results on CPU



Thread Hierarchy

• threadIdx is a 3-component vector 
• Thread index can be 1D, 2D, or 3D

• Thread blocks as a result can be 1D, 2D, or 3D

• How to find out the relation between thread ids and threadIdx

• 1D: tid = threadIdx.x

• 2D block of size (Dx, Dy): thread ID of a thread of index (x, y) is (x + y 
Dx

• 3D block of size (Dx, Dy, Dz): thread ID of a thread of index (x, y, z) is (x 
+ y Dx + z Dx Dy)



Thread Hierarchy

• Threads in a block reside on the 
same core, max 1024 threads in 
a block

• Thread blocks are organized into 
1D, 2D, or 3D grids 
• Grid dimension is given by gridDim

variable

• Identify block within a grid with 
the blockIdx variable
• Block dimension is given by 

blockDim variable



Code Snippet
// Kernel definition

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) {

int i = threadIdx.x;

int j = threadIdx.y;

C[i][j] = A[i][j] + B[i][j];

}

int main() {

...

// Kernel invocation with one block of N * N * 1 threads

int numBlocks = 1;

dim3 threadsPerBlock(N, N);

MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

...

}



Code Snippet
// Kernel definition

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

if (i < N && j < N)

C[i][j] = A[i][j] + B[i][j];

}

int main() {

...

// Kernel invocation

dim3 threadsPerBlock(16, 16);

dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);

MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

...

}



Thread Warps

• A set of consecutive threads (currently 32) that execute in SIMD 
fashion

• Warps are scheduling units in an SM
• Part of the NVIDIA implementation, not the programming model

• Warps share an instruction stream

• Individual threads in a warp have their own instruction address 
counter and register state

• Prior to Volta, warps used a single shared program counter
• Branch divergence occurs only within a warp



Thread Warps

• Warp threads are fully synchronized 
• There is an implicit barrier after each step/instruction

• If 3 blocks are assigned to an SM and each block has 256 threads, 
how many warps are there in an SM?
• Each Block is divided into 256/32 = 8 Warps

• There are 8 * 3 = 24 warps



SIMT Architecture

• Single instruction multiple threads

• Very similar in flavor to SIMD
• In SIMD, you need to know the vector width and possibly use 

• You can say that SIMT is SIMD with multithreading
• You rarely need to know the number of cores in a GPU



Mapping Blocks and Threads

• When a CUDA program on the host CPU invokes a kernel grid, the 
blocks of the grid are enumerated and distributed to multiprocessors 
with available execution capacity 

• The threads of a thread block execute concurrently on one 
multiprocessor, and multiple thread blocks can execute concurrently 
on one multiprocessor 

• As thread blocks terminate, new blocks are launched on the vacated 
multiprocessors



Thread Life Cycle in a GPU

• A grid is launched on the GPU

• Thread blocks are serially distributed to all the SMs
• Potentially >1 Thread Block per SM

• Each SM launches Warps of threads
• 2 levels of parallelism

• SM schedules and executes Warps that are ready to run
• Warps whose next instruction has its operands ready for consumption are eligible for 

execution
• Zero-overhead scheduling

• As Warps and thread blocks complete, resources are freed
• SPA can distribute more thread blocks



Question

mykernel<<<numBlks, thrdsBlk>>>()

dim3 thrdsBlk(x, y, z);

dim3 numBlks(p, q);



Question
const int Nx = 11; // not a multiple of

threadsPerBlock.x

const int Ny = 5; // not a multiple of

threadsPerBlock.y

//////////////////////////////////////////////

dim3 threadsPerBlock(4, 3, 1);

dim3 numBlocks(x, y, z);

// assume A, B, C are allocated Nx x Ny float arrays

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);



Question
const int Nx = 11; // not a multiple of

threadsPerBlock.x

const int Ny = 5; // not a multiple of

threadsPerBlock.y

//////////////////////////////////////////////

dim3 threadsPerBlock(4, 3, 1);

dim3 
numBlocks((Nx+threadsPerBlock.x‐1)/threadsPerBlock.x,

(Ny+threadsPerBlock.y‐1)/threadsPerBlock.y,

1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads

// 6 blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);



Question
__global__ void matrixAdd(float A[Ny][Nx],

float B[Ny][Nx], float C[Ny][Nx]) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

// guard against out of bounds array access

if (i < Nx && j < Ny)

C[j][i] = A[j][i] + B[j][i];

}



Memory Organization

• Host and device maintain their own separate memory spaces

• A variable in CPU memory cannot be accessed directly in a GPU 
kernel

• A programmer needs to maintain copies of variables

• It is programmer's responsibility to keep them in sync



Memory Hierarchy



Vector Addition 

// Device code

__global__ void VecAdd(float* A, float*
B, float* C, int N) { 

int i = blockDim.x * blockIdx.x +

threadIdx.x;

if (i < N)

C[i] = A[i] + B[i];

}

// Host code

int main() {

const int N = (1<<24);

size_t size = N * sizeof(float);

// Allocate vectors in host memory

float* h_A = (float*)malloc(size);

float* h_B = (float*)malloc(size);

float* h_C = (float*)malloc(size);

// Initialize input vectors

for (int i =0; i<N; i++){

h_A[i]=i+10;

h_B[i]=(N-i)*0.5;

h_C[i]=0.0;

}



Vector Addition 

// Allocate vectors in device memory

float* d_A;

cudaMalloc(&d_A, size);

float* d_B;

cudaMalloc(&d_B, size);

float* d_C;

cudaMalloc(&d_C, size);

// Copy from host to device memory

cudaMemcpy(d_A, h_A, size,

cudaMemcpyHostToDevice);

cudaMemcpy(d_B, h_B, size,

cudaMemcpyHostToDevice);

// Invoke kernel

int threadsPerBlock = 256;

int blocksPerGrid = (N + threadsPerBlock -

1) / threadsPerBlock;

VecAdd<<<blocksPerGrid, threadsPerBlock>>>

(d_A, d_B, d_C, N);

// Copy result from device to host memory

cudaMemcpy(h_C, d_C, size,

cudaMemcpyDeviceToHost);

// Free memory

cudaFree(d_A); cudaFree(d_B); cudaFree(d_C);

free(h_A); free(h_B); free(h_C);

}



Device Memory Management

• Device memory can be allocated either as linear memory or CUDA 
arrays
• We will focus on linear memory

• Allocated by cudaMalloc() and freed by cudaFree()

• Data transfer between host and device is by cudaMemcpy()

• Shared memory is allocated using the __shared__ memory space 
specifier
• Supposed to be faster than global memory



Memory Hierarchy

• There are also two additional read-only memory spaces accessible by 
all threads: the constant and texture memory spaces 
• These are carried over from graphics shading languages

• The global, constant, and texture memory spaces are optimized for 
different memory usages

• Global, constant, and texture memory spaces are persistent across 
kernel launches by the same application



Synchronization Constructs in CUDA

• __syncthreads()
• Barrier: wait for all threads in the block to his this point

• Atomic operations
• For e.g., float atomicAdd(float* addr, float amount)

• Atomic operations on both global memory and shared memory variables

• Host/device synchronization
• Implicit barrier across all threads at return of kernel



Race Conditions and Data Races

• A race condition occurs when program behavior depends upon 
relative timing of two (or more) event sequences

• Execute: *c += sum;
• Read value at address c

• Add sum to value

• Write result to address c



Be Careful!

Thread 0, Block 0

• Read value at address c

• Add sum to value

• Write result to address c

Thread 3, Block 7

• Read value at address c

• Add sum to value

• Write result to address c

ti
m

e



Atomic Operations

• Many read-modify-write atomic operations on memory available with 
CUDA C
• atomicAdd(), atomicSub(), atomicMin(), atomicMax(), atomicInc(), 

atomicDec(), atomicExch(), atomicCAS()

• Predictable result when simultaneous access to memory required
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