GPGPU Architectures and CUDA C

Swarnendu Biswas

An Introductory Course on High-Performance Computing in Engineering Indian Institute of Technology Kanpur 30th Sep Oct 2019

Content influenced by many excellent references, see References slide for acknowledgements.

A Brief History of GPUs

- Many real-world applications are compute-intensive and dataparallel
 - They need to process a lot of data, mostly floating-point operations
 - For example, real-time highdefinition graphics applications such as your favorite video games
 - Iterative kernels which update elements according to some fixed pattern called a stencil

A Brief History of GPUs

- This spurred the need for a highly-parallel computational device with high computational power and memory bandwidth
 - CPUs are more complex devices catering to a wider audience
- GPUs are now used in different applications
 - Game effects, computational science simulations, image processing and machine learning, linear algebra
- Several GPU vendors like NVIDIA, AMD, Intel, QualComm, ARM, etc.

Key Insights in the GPGPU Architecture

- GPUs are suited for compute-intensive data-parallel applications
 - The same program is executed for each data element
 - High arithmetic intensity which can hide latency of memory accesses
 - Less complex control flow
- Much more transistors or real-estate is devoted to computation rather than data caching and control flow

Floating-Point Operations per Second for the CPU and GPU

Theoretical Peak Performance, Single Precision

Memory Bandwidth for CPU and GPU

High-end CPU-GPU Comparison

Cores Active threads Frequency Peak performance (SP) Peak mem. bandwidth Maximum power Launch price Xeon 8180M 28 2 per core 2.5 (3.8) GHz 4.1? TFlop/s 119 GB/s 205 W \$13,000

Release dates Xeon: Q3'17 Titan V: Q4'17

Titan V 5120 (+ 640) 32 per core 1.2 (1.45) GHz 13.8 TFlop/s 653 GB/s 250 W* \$3000*

GPGPU

- Multi-core chip
- SIMD execution within a single core (many ALUs performing the same instruction)
- Multi-threaded execution on a single core (multiple threads executed concurrently by a core)

Advantages of a GPU

- Performance
 - 3.4x as many operations executed per second
- Main memory bandwidth
 - 5.5x as many bytes transferred per second
- Cost- and energy-efficiency
 - 15x as much performance per dollar
 - 2.8x as much performance per watt

(based on peak values)

- GPU's higher performance and energy efficiency are due to different allocation of chip area
 - High degree of SIMD parallelism, simple in-order cores, less control/sync. logic, lower cache/scratchpad capacity

GPU Disadvantages

- Clearly, we should be using GPUs all the time
 - So why aren't we?
- GPUs can only execute some types of code fast
 - Need lots of data parallelism, data reuse, & regularity
 - SIMD parallelism is not well suited for all algorithms
- GPUs are harder to program and tune than CPUs
 - Mostly because of their architecture
 - Fewer tools and libraries exist

GPU Architecture

- GPUs consist of Streaming Multiprocessors (SMs)
 - Up to 80 SMs per chip (run blocks)
- SMs contain Processing Elements (PEs)
 - Up to 64 PEs per SM (run threads)

Scalability of GPU Architecture

A multithreaded program is partitioned into blocks of threads that execute independently from each other.

A GPU with more multiprocessors will automatically execute the program in less time than a GPU with fewer multiprocessors.

CUDA-Enabled NVIDIA GPUs

	Embedded	Consumer desktop/laptop	Professional Workstation	Data Center
Turing (Compute capabilities 7.x)	DRIVE/JETSON AGX Xavier	GeForce 2000 Series	Quadro RTX Series	Tesla T Series
Volta (Compute capabilities 7.x)	DRIVE/JETSON AGX Xavier			Tesla V Series
Pascal (Compute capabilities 6.x)	Tegra X2	GeForce 1000 Series	Quadro P Series	Tesla P Series
Maxwell (Compute capabilities 5.x)	Tegra X1	GeForce 900 Series	Quadro M Series	Tesla M Series
Kepler (Compute capabilities 3.x)	Tegra K1	GeForce 600/700 Series	Quadro K Series	Tesla K Series

Block Scalability

- Hardware can assign blocks to SMs in any order
 - A kernel with enough blocks scales across GPUs
 - Not all blocks may be resident at the same time

What is CUDA?

- It is general purpose **parallel computing platform** and programming model that leverages the parallel compute engine in NVIDIA GPUs
 - Introduced in 2007 with NVIDIA Tesla architecture
 - CUDA C, C++, Fortran, PyCUDA are language systems built on top of CUDA
- Three key abstractions in CUDA
 - Hierarchy of thread groups
 - Shared memories
 - Barrier synchronization

CUDA Programming Model

- Helps fine-grained data parallelism and thread parallelism, nested within coarse-grained data parallelism and task parallelism
- 1. Partition the problem into coarse sub-problems that can be solved independently
- 2. Assign each sub-problem to a "block" of threads to be solved in parallel
- 3. Each sub-problem is also decomposed into finer work items that are solved in parallel by all threads within the "block"

Heterogeneous Computing

Host

CPU and its memory (host memory)

- Device
- GPU and its memory (device memory)

Heterogeneous Computing

#include <iostream> #include <algorithm></algorithm></iostream>	
using namespace std;	
#define N 1024 #define RADIUS 3 #define BLOCK_SIZE 16	
_globalvoid stencil_1d(int *in, int *out) { shared int temp[BLOCK, SIZE + 2 * RADIUS]; int glindes = thread!dx.x + blockdx x * blockDim.x; int lindex = thread!dx.x + RADIUS;]
<pre>// Read input elements into shared memory temp[index] = in[gindex]; if (threaditx.x = RADIUS] = in[gindex = RADIUS]; temp[index = RADIVS] = in[gindex = BLOCK_SIZE];</pre>	
} // Synchronize (ensure all the data is available) syncthreads();	parallel
// Apply the stencil int result = 0; for (int offset = -RADIUS ; offset <= RADIUS ; offset++) result += temp[index + offset];	puratier
<pre>// Store the result out[gindex] = result; }</pre>	
vdid (fill_inis(ini "x, ini n) { fill_n(x, n, 1); }	
Int main(void) { int "in, "out, // host copies of a, b, c int "d_in, "d_out, // device copies of a, b, c int size = (N+2*RADUS) * issoof(n);]
<pre>// Alloc space for host copies and setup values in = (int "malloc(size); fill_ints(in, N + 2*RADUS); out = (int "malloc(size); fill_ints(out, N + 2*RADUS); // Alloc space for device copies</pre>	serial co
cudaMalloc((void **)&d_in, size); cudaMalloc((void **)&d_out, size); // Copy to device	
cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice); cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);	
<pre>// Launch stencil_1d() kernel on GPU stencil_1d<<<n block_size,block_size="">>>(d_in + RADIUS, d_out + RADIUS);</n></pre>	parallel
<pre>// Copy result back to host cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost); // Cleanup</pre>	serial co
free(in); free(out); cudaFree(d_in); cudaFree(d_out); return 0;	

fn

ode

code

ode

Heterogeneous Computing

CUDA Extensions for C/C++

- Function launch
 - Calling functions on GPU
- Memory management
 - GPU memory allocation, copying data to/from GPU
- Declaration qualifiers
 - ___device, ___shared, ___local, ___global
- Special instructions
 - Barriers, fences, etc.
- Keywords
 - threadIdx, blockIdx, blockDim

Hello World with CUDA

#include <stdio.h>
#include <cuda.h>

```
__global__ void hwkernel() {
    printf("Hello world!\n");
}
```

```
int main() {
    hwkernel<<<1, 1>>>();
}
```

\$ nvcc hell-world.cu

```
$./a.out
```

\$

Hello World with CUDA

#include <stdio.h>
#include <cuda.h>

```
__global__ void hwkernel() {
    printf("Hello world!\n");
}
```

\$ nvcc hell-world.cu

\$./a.out
Hello world!

\$

```
int main() {
    hwkernel<<<1, 1>>>();
    cudaDeviceSynchronize();
```

}

Hello World with CUDA

#include <stdio.h>
#include <cuda.h>

```
__global__ void hwkernel() {
    printf("Hello world!\n");
}
```

```
int main() {
    hwkernel<<<1, 32>>>();
    cudaThreadSynchronize();
}
```

\$ nvcc hell-world.cu

\$./a.out
Hello world!
Hello world!
Hello world!
Hello world!
Hello world!
Hello world!

... \$

...

Kernels

- Special functions that a CPU can call to execute on the GPU
 - Executed N times in parallel by N different CUDA threads
- CPU can continue processing while GPU runs kernel
- Each thread will execute VecAdd()
- Each thread has a unique thread ID that is accessible within the kernel through the built-in threadIdx variable

```
// Kernel definition
global__ void VecAdd(float* A,
float* B, float* C) {
  int i = threadIdx.x;
  ...
int main() {
  ...
  // Kernel invocation with N threads
  VecAdd<<<1, N>>>(A, B, C);
}
```

Kernels

- GPU spawns m blocks with n threads (i.e., m*n threads total) that run a copy of the same function
- Kernel call returns when all threads have terminated

KernelName<<<m, n>>>(arg1, arg2, ...)

Function Declarations in CUDA

	Executed on	Callable from
device float deviceFunc()	Device	Device
globalvoid kernelFunc()	Device	Host
host float hostFunc()	Host	Host

___global___ define a kernel function, must return void

Variable Type Qualifiers in CUDA

	Memory	Scope	Lifetime
Int localVar;	Register	Thread	Thread
devicelocal int localVar;	Local	Thread	Thread
deviceshared int sharedVar;	Shared	Block	Block
device int globalVar;	Global	grid	Application

- Automatic variables without any qualifier reside in a register
 - Except arrays that reside in local memory
- Pointers can only point to memory allocated or declared in global memory

Typical CUDA Program Flow

- 1. Load data into CPU memory
 - fread/rand
- 2. Copy data from CPU to GPU memory
 - cudaMemcpy(..., cudaMemcpyHostToDevice)
- 3. Call GPU kernel
 - mykernel<<<x, y>>>(...)
- 4. Copy results from GPU to CPU memory.
 - cudaMemcpy(..., cudaMemcpyDeviceToHost)
- 5. Use results on CPU

Thread Hierarchy

- threadIdx is a 3-component vector
 - Thread index can be 1D, 2D, or 3D
 - Thread blocks as a result can be 1D, 2D, or 3D
- How to find out the relation between thread ids and threadIdx
- 1D: tid = threadIdx.x
- 2D block of size (Dx, Dy): thread ID of a thread of index (x, y) is (x + y Dx
- 3D block of size (Dx, Dy, Dz): thread ID of a thread of index (x, y, z) is (x + y Dx + z Dx Dy)

Thread Hierarchy

- Threads in a block reside on the same core, max 1024 threads in a block
- Thread blocks are organized into 1D, 2D, or 3D grids
 - Grid dimension is given by gridDim variable
- Identify block within a grid with the blockIdx variable
 - Block dimension is given by blockDim variable

Code Snippet

```
// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) {
  int i = threadIdx.x;
  int j = threadIdx.y;
 C[i][j] = A[i][j] + B[i][j];
}
int main() {
  . . .
  // Kernel invocation with one block of N \star N \star 1 threads
  int numBlocks = 1;
  dim3 threadsPerBlock(N, N);
  MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
  . . .
```

Code Snippet

```
// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) {
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  int j = blockIdx.y * blockDim.y + threadIdx.y;
  if (i < N && j < N)
   C[i][j] = A[i][j] + B[i][j];
int main() {
  . . .
  // Kernel invocation
  dim3 threadsPerBlock(16, 16);
  dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
  . . .
```

Thread Warps

- A set of consecutive threads (currently 32) that execute in SIMD fashion
- Warps are scheduling units in an SM
 - Part of the NVIDIA implementation, not the programming model
- Warps share an instruction stream
- Individual threads in a warp have their own instruction address counter and register state
- Prior to Volta, warps used a single shared program counter
 - Branch divergence occurs only within a warp

Thread Warps

- Warp threads are fully synchronized
 - There is an implicit barrier after each step/instruction
- If 3 blocks are assigned to an SM and each block has 256 threads, how many warps are there in an SM?
 - Each Block is divided into 256/32 = 8 Warps
 - There are 8 * 3 = 24 warps

SIMT Architecture

- Single instruction multiple threads
- Very similar in flavor to SIMD
 - In SIMD, you need to know the vector width and possibly use
- You can say that SIMT is SIMD with multithreading
 - You rarely need to know the number of cores in a GPU

Mapping Blocks and Threads

- When a CUDA program on the host CPU invokes a kernel grid, the blocks of the grid are enumerated and distributed to multiprocessors with available execution capacity
- The threads of a thread block execute concurrently on one multiprocessor, and multiple thread blocks can execute concurrently on one multiprocessor
- As thread blocks terminate, new blocks are launched on the vacated multiprocessors

Thread Life Cycle in a GPU

- A grid is launched on the GPU
- Thread blocks are serially distributed to all the SMs
 - Potentially >1 Thread Block per SM
- Each SM launches Warps of threads
 - 2 levels of parallelism
- SM schedules and executes Warps that are ready to run
 - Warps whose next instruction has its operands ready for consumption are eligible for execution
 - Zero-overhead scheduling
- As Warps and thread blocks complete, resources are freed
 - SPA can distribute more thread blocks

mykernel<<<numBlks, thrdsBlk>>>()

dim3 thrdsBlk(x, y, z); dim3 numBlks(p, q);

const int Nx = 11; // not a multiple of
threadsPerBlock.x
const int Ny = 5; // not a multiple of
threadsPerBlock.y

// assume A, B, C are allocated Nx x Ny float arrays
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

const int Nx = 11; // not a multiple of
threadsPerBlock.x
const int Ny = 5; // not a multiple of
threadsPerBlock.y

dim3 threadsPerBlock(4, 3, 1);

```
dim3
numBlocks((Nx+threadsPerBlock.x-1)/threadsPerBlock.x,
 (Ny+threadsPerBlock.y-1)/threadsPerBlock.y,
 1);
```

```
// assume A, B, C are allocated Nx x Ny float arrays
// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
```


}

```
__global__ void matrixAdd(float A[Ny][Nx],
float B[Ny][Nx], float C[Ny][Nx]) {
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  int j = blockIdx.y * blockDim.y + threadIdx.y;
  // guard against out of bounds array access
  if (i < Nx && j < Ny)
    C[j][i] = A[j][i] + B[j][i];</pre>
```


Memory Organization

- Host and device maintain their own separate memory spaces
- A variable in CPU memory cannot be accessed directly in a GPU kernel
- A programmer needs to maintain copies of variables
- It is programmer's responsibility to keep them in sync

Memory Hierarchy

Vector Addition

// Device code

```
__global__ void VecAdd(float* A, float*
B, float* C, int N) {
    int i = blockDim.x * blockIdx.x +
        threadIdx.x;
    if (i < N)
        C[i] = A[i] + B[i];
}</pre>
```

// Host code

```
int main() {
   const int N = (1<<24);
   size_t size = N * sizeof(float);</pre>
```

// Allocate vectors in host memory

float* h_A = (float*)malloc(size);
float* h_B = (float*)malloc(size);
float* h_C = (float*)malloc(size);

// Initialize input vectors for (int i =0; i<N; i++){ h_A[i]=i+10; h_B[i]=(N-i)*0.5; h_C[i]=0.0; }</pre>

Vector Addition

// Allocate vectors in device memory

```
float* d_A;
cudaMalloc(&d_A, size);
float* d_B;
cudaMalloc(&d_B, size);
float* d_C;
cudaMalloc(&d_C, size);
```


// Free memory cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); free(h_A); free(h_B); free(h_C);

}

Device Memory Management

- Device memory can be allocated either as linear memory or CUDA arrays
 - We will focus on linear memory
- Allocated by cudaMalloc() and freed by cudaFree()
- Data transfer between host and device is by cudaMemcpy()
- Shared memory is allocated using the __shared__ memory space specifier
 - Supposed to be faster than global memory

Memory Hierarchy

- There are also two additional read-only memory spaces accessible by all threads: the constant and texture memory spaces
 - These are carried over from graphics shading languages
- The global, constant, and texture memory spaces are optimized for different memory usages
- Global, constant, and texture memory spaces are persistent across kernel launches by the same application

Synchronization Constructs in CUDA

- __syncthreads()
 - Barrier: wait for all threads in the block to his this point
- Atomic operations
 - For e.g., float atomicAdd(float* addr, float amount)
 - Atomic operations on both global memory and shared memory variables
- Host/device synchronization
 - Implicit barrier across all threads at return of kernel

Race Conditions and Data Races

- A race condition occurs when program behavior depends upon relative timing of two (or more) event sequences
- Execute: *c += sum;
 - Read value at address c
 - Add sum to value
 - Write result to address c

Be Careful!

• Read value at address c

Thread 3, Block 7

- Read value at address c
- Add sum to value
- Write result to address c

Add sum to value

time

• Write result to address c

Atomic Operations

- Many read-modify-write atomic operations on memory available with CUDA C
 - atomicAdd(), atomicSub(), atomicMin(), atomicMax(), atomicInc(), atomicDec(), atomicExch(), atomicCAS()
- Predictable result when simultaneous access to memory required

References

- NVIDIA CUDA C Programming Guide v10.1.
- NVIDIA CUDA C Best Practices Guide v9.1.
- D. Kirk and W. Hwu Programming Massively Parallel Processors.