

Advances in Wind Turbine Aerodynamics

Jaikumar Loganathan Ashok Gopinath

GE Global Research - Bangalore Imagination at work.

Outline

 \And Introduction

- $\ensuremath{\bowtie}$ Wind turbine design process
- **Wind turbine aerodynamics**
- $\mathbin{\ensuremath{\boxtimes}}$ Wind park as a product
- & What next?
- & Conclusion

Introduction

E)

Wind cost of energy is poised to overtake fossil fuel

Steps Wind farm development

Source : AWEA

- Understand Your Wind Resource
- Determine Proximity to Existing Transmission Lines
- Secure Access to Land
- Establish Access To Capital
- Identify Reliable Power Purchaser or Market
- Address Siting and Project Feasibility Considerations
- Understand Wind Energy's Economics
- Obtain Zoning and Permitting Expertise
- Establish Dialogue With Turbine Manufacturers and Project Developers
- Secure Agreement to Meet O&M Needs

Wind Turbine Design Concepts

Savonius VAWT

Danish HAWT

Darrieus VAWT

Components

<u>1.5 wind turbine</u> 52 metric ton nacelle 35 metric ton rotor

Number of rotors

Wind turbine design

Wind turbine design

Wind turbine Aerodynamics

Wind turbine

Wind Farm

Airfoil design

<u>Blade d</u>	e
	S
N. N.	0
	M
	In
 •	Ĵ

Blade geometry				
	Structural:	Airfoil:		
	Outboard: t/= .15-18	- High max. L/D - Insensitive to		
	Mid span: t/= .25	roughness - Similar design angle		
$\overline{\mathbf{i}}$	Inboard: t/> .30	- High max. lift (Rot. Effects)		
•	> Transition piece	No Aerodynamic demands		

Design goals

Thickness-to-chord ratio	> .28	.2821	.21 >
High maximum lift-to-drag ratio	•	••	
Low max. and benign post stall			
Insensitivity to roughness	•	••	
Low noise		•	
Geometric compatibility	••	••	••
Structural demands		••	٠

Operation

Airfoil design

Wind turbine airfoil

Pressure distribution

Airfoil design key parameters

1

2

3

Design point (Max lift to drag ratio)

Stall point (Max CL)

Extreme load point (Max CD)

Design point

- Max L/D highest efficiency
- Transition location is critical
- Boundary layer is attached

XFOIL

- Panel method Mark Drela, MIT
- Inviscid linear-vorticity stream function
- Viscous Integral BL formulation
- Transition e^n criteria

	AOA	CL	CL/CD	X-Tran Suction	X-Tran Pressure
Expt	5.90	1.08	150.26	38	70
XFOIL	6.00	1.10	153.25	40	71

Design point

- Max L/D highest efficiency
- Transition location is critical
- Boundary layer is attached

XFOIL

- Panel method Mark Drela, MIT
- Inviscid linear-vorticity stream function
- Viscous Integral BL formulation
- Transition e^n criteria

	AOA	CL	CL/CD	X-Tran Suction	X-Tran Pressure
Expt	5.90	1.08	150.26	38	70
XFOIL	6.00	1.10	153.25	40	71
CFD	6.00	1.09	115.00	39	71

Ve	elocity 196_w_180_Re4aoaP 196.25991821	ve06.0c DU96-W-18 Re = 4MM	0, A0A = 6
	72.19601440		
	48.13211060		
	24.06820679		
ſ'n	0.00430317 s^-1]		

CFD (K ω SST)

- RANS 2 eq turbulence model
- K₀₀ SST (zonal model, limiter on eddy viscosity)
- γ -Re_{θ} transition model

Stall point

- Max CL high loads
- Boundary layer is partially separated

Ve du	elocity 96_w_180_Re4aoaP 164.40995789	ve15.0c DU96-W-180, A0A = 14 Re = 4MM
	123.30867767	
	82.20739746	0
	41.10611725	
[n	0.00483796 n s^-1]	

Comparison with XFOIL & CFD

Delayed stall prediction

• Best practice K-ωSST predicts a delayed flow separation and stall

Next gen airfoils

Betz Limit

- Wind turbine extracts power by slowing down incoming wind
- Betz limit is the measure of optimal slow down

Annual Energy Yield (AEP)

Blade aero design

Prototype test \$\$\$\$\$

Objectives

- Maximize Cp
- Minimize noise

Constraints

- Max chord
- Thickness and twist rate

21

Conceptual design - Blade

Blade element momentum theory

- Blade element + momentum theory applied to a rotor disk
- Propeller → Helicopter → wind turbines
- Each annular ring is independent
- Does not account for wake expansion
- Applicable only to straight blades
- Fails at high blade loading and off design conditions
- Requires separate tip and root loss model

Actuator disk model

Forces acting on a blade element

A powerful design tool

Conceptual design - Blade

Vortex lifting line model

- Blade modeled as a set of lifting lines
- Vorticity shed from the trailing edge is modeled as vortex filaments
- Induced velocities on blade and wake is computed using Biot-savart law

$$\mathbf{V}_{ind} = \frac{\Gamma}{4\pi} \frac{(r_1 + r_2) \left(\mathbf{r}_1 \times \mathbf{r}_2 \right)}{r_1 r_2 + \mathbf{r}_1 \cdot \mathbf{r}_2}$$

Blade representation

Wake representation

Detailed design - CFD

- A powerful tool to understand detailed flow structure
- RANS K_@ SST
- ~ 6 million cells for a single blade analysis
- Rotational effects
- Flow separation prediction ?
- Modelling transition exorbitantly expensive
- Highly dissipative smeared wake

Detailed design – Hybrid CFD

- Elegant combination of near wall Navier-Stokes and helicoidal vortex method
- Preservers wake structures
- Improved computational efficiency (1/8)
- Flow transition
- Unsteady, multi-blade analysis

Source: UC Davis

Improving Blade Performance

Aero Related Energy Losses for Wind Turbines

•Tip Loss

s : Entitlement ~1.5% AEP

Main Blade Loss : Entitlement ~1.5% AEP
Root Loss : Entitlement ~3.5% AEP *

•Operation Loss : Entitlement ~2.0% AEP

Industry trends

Carbon

- Enhanced stiffness while managing weight
- ~32% mass reduction, 15% reduction in tip deflection
- Costly (10X time glass fibers)

Segmented blade

- Potential benefit in transportation & erection cost
- 9% increase in blade mass

Active devices

- Morphing trailing edge
- 2% rotor growth loads neutral
- · Controlled with compressed air or piezo electrics

Passive - Material tailoring

- Bend-Twist coupling
- 53m vs 49m Blade less 500kg/5% more AEP
- Exploring natural fibers

Wind farm as a product

- Wakes behind the rotor cause losses
- Coordinated control reduce these losses
- Around 1-2% of farm AEP is gained

Wake structure

Wake modeling

objectives

- Predict the wake strength and behavior (stability, shear, veer & turbulence intensity)
- Determine sensitivity of wake development to rotor loading
- Micro siting
- Quantify effect of ambient flow conditions and terrain

BEM + Free vortex

LES + Actuator line

Summary

- Wind turbine aerodynamics maximize power output
- Airfoils high L/D Stall prediction
- Blade Maximize Cp computational efficiency
- Wake understand, minimize & optimize
- Big data

