
Practise problems on Time complexity of an algorithm

1. Analyse the number of instructions executed in the following recursive
algorithm for computing nth Fibonacci numbers as a function of n

public static int fib(int n)

{

if(n==0) return 1;

else if(n==1) return 1;

else return(fib(n-1) + fib(n-2));

}

public static void main(String args[])

{

int n = Integer.parseInt(args[0]);

System.out.println(fib(n));

}

Answer : We proceed similar to the analysis of merge sort. We consider
the recursion tree for fib(n). We can observe that for n > 1, the number
of instructions executed during fib(n) is equal to the number of instruc-
tions executed during fib(n-1) plus the number of instructions executed
during fib(n-2) and two or three instructions in addition. Hence, for
each node inthe recursion tree, the number of instructions executed (ex-
cluding those which are executed during its children) is just a constant. So
the total number of instructions executed is c times the number of nodes
in the recursion tree of fib(n). We shall now try to estimate T (n) upto
some constant multiplicative factor. Let T (n) be the number of nodes
in the recursion tree for fib(n). T (n) can be expressed by the following
equation.

T (n) =

{

1 for n = 0, 1
T(n-1) + T(n-2) + 1 for n > 1

Let us define function G(n) as T (n)+1. It is easy to observe that G(0) =
2, G(1) = 2, and G(n) = G(n − 1) + G(n − 2) for n > 1. This equation
looks familiar. It is the same as that of fibonacci number except that it
differs at the base cases - n = {0, 1}. It is easy to prove by induction on
n that for all n ≥ 1,

Fibonacci(n) < G(n) < 4Fibonacci(n) (1)

Using Equation 1 and the relation between T (n) and G(n), it follows that
Fibonacci(n) − 1 < T (n) < 4Fibonacci(n) − 1. Hence the number of
instructions executed during fib(n) is within some constant multiple of
nth Fibonacci number.

The motivated students may try to analyse how big nth Fibonacci numbers
might be. In fact, it grows exponantially with n. Here is a sketch of the

1



proof (this is optional and won’t be rquired for end semester

exam). Show that F (n) ≥ H(n) for all n ≥ 2 where H(1) = H(2) = 1,
and for n > 2, H(n) is defined as follows.

H(n) = 2H(n − 2)

By unfording the above recurrence, it follows easily that H(n) grows ex-
ponentially with n.

2. Analyse the number of instructions executed in the following iterative
algorithm for computing nth Fibonacci numbers as a function of n

public static void main(String args[])

{

int n = Integer.parseInt(args[0]);

if(n==0) System.out.println(0);

else if(n==1) System.out.println(1);

else

{ int fib1 = 0;

int fib2 =1;

for(int i=2; i<=n;i=i+1)

{

int temp = fib1+fib2;

fib1 = fib2;

fib2 = temp;

}

System.out.println(fib2);

}

}

Answer : The algorithm takes cn instructions for some positive constant
c.

3. Design an algorithm which computes 3n using only c log n instructions for
some positive constant c.
Hint : Write a method based on the following recursive formulation of
3n carefully.

3n =







1 if n = 0
3n/2 ∗ 3n/2 if n%2 == 0
3n/2 ∗ 3n/2 ∗ 3 if n%2 == 1

4. Given an array A which stores 0 and 1, such that each entry containing
0 appears before all those entries containing 1. In other words, it is like
{0, 0, 0, ..., 0, 0, 1, 1, ..., 111}. Design an algorithm to find out the small
index i in the array A such that A[i] = 1 using c log n instructions in the
worst case for some positive constant c.
Hint : exploit the idea used in binary search. The method is described
below.

2



publis static void First_index_with_one(int[] A)

{

if(A[0]==1) System.out.println(‘‘The first index storing one is 0’’);

else if(A[(A.length-1)]==0) System.out.println(‘‘All entries of A are 0’’);

else //There is a unique i such that A[i-1]==0 and A[i]==1

{ int left = 0; int right=A.length-1;

boolean Isfound=false;

while(Isfound==false)

{ mid = (left+right)/2;

if(A[mid]==0) left = mid+1;

else

{ if(A[mid-1]==0) is_found=true;

else right=mid-1;

}

}

System.out.println(‘‘The first index containing one is ’’+mid);

}

}

5. How many instructions are executed when we multiply n × m matrix A

with m × r matrix B ?
Answer : The number of instructions executed is c mnr for some positive
constant c.
Explanation : We need to analyse the algorithm for multiplying two
matrices as discussed in one of the lecture. The final matrix will be n× r.
For each entry of the final matrix we perform vector product of one rwo
of matrix A with one column of B, hence m multiplications and m-1
additions. Thus cm instructions are executed for computing one entry of
the final matrix. Hence the total number of instructions for computing
product of A and B is c mnr.

3


