
ESc101 : Fundamental of Computing

I Semester 2008-09

Lecture 37

• Analyzing the efficiency of algorithms.

• Algorithms compared

– Sequential Search and Binary search

– GCD fast and GCD slow

– Merge Sort and Selection Sort
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Problem 1 : Searching
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Comparing Searching algorithms

Searching for an element x in a sorted array of n numbers.

• Sequential Search

• Binary search

Experimental observation : Binary search has been found to be much faster

than sequential search. (given as assignment during Lab 11 for Thursday and

Friday)
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Problem 2 : Computing GCD of two positive numbers
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Comparing Two GCD algorithms

We gave two algorithms for GCD computation long back in this course.

• GCD fast : based on %

• GCD slow : based on subtraction

The code of these algorithms is shown on the following page.
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Why is GCD fast faster than GCD slow ?

//Assume m>=n

int GCD_fast(m,n)

{ while(n!=0)

{ rem = m%n;

m = n;

n = rem;

}

return m;

}

--------------------------------

int GCD_slow(m,n)

{ while(n!=0)

{ diff = m-n;

if(diff>=n) m = diff

else {m=n; n = diff;}

}

return m;

}

6



Problem 3 : Sorting

Given an array storing n numbers, sort them
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Comparing Three sorting algorithms

Experimental Observations

• Quick sort is more efficient than merge sort

• Merge sort is more efficient than Selection Sort

The code is given in Three sorting algos.java
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What is the reason for different running times?

Given that all algorithms (for searching, GCD, sorting)

• have same input and output

• are executed in same environment (machine, operating system)

We need to analyze the number of steps/instruction

taken by each algorithm for a problem
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Algorithm design is incomplete until you analyze its runnin g time
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How many steps/instructions are executed by the following l oop ?

for(int i=1; i<=n; i=i+1)

{

sum = sum + i;

}

For sake of simplicity, we can say that

No. of Steps = 1+3n+1
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How many steps/instructions are executed by the following l oop ?

for(int i=1; i<=n; i=i+1)

{

sum = sum + i;

}

For sake of simplicity, we can say that

No. of Steps = 1 + 3n + 1
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How many steps/instructions are executed by the following l oop ?

for(int i=1; i<=n; i=i+1)

{

sum = sum + i;

}

For sake of simplicity, we can say that

No. of Steps = an + b, for some positive constants a, b

13



How many steps/instructions are executed by the following l oop

for(int n=1;n<=m;n=n+1)

{

for(int i=1; i<=n; i=i+1)

{

sum = sum + i;

}

}

For sake of simplicity, we can say that

No. of Steps = 1 + m +
∑n=m

n=1
(1 + 3n + 1) + m
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How many steps/instructions are executed by the following l oop

for(int n=1;n<=m;n=n+1)

{

for(int i=1; i<=n; i=i+1)

{

sum = sum + i;

}

}

For sake of simplicity, we can say that

No. of Steps = 1 + m +
∑n=m

n=1
(1 + 3n + 1) + m = 3/2m2 + 11/2m + 1
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How many steps/instructions are executed by the following l oop

for(int n=1;n<=m;n=n+1)

{

for(int i=1; i<=n; i=i+1)

{

sum = sum + i;

}

}

For sake of simplicity, we can say that

No. of Steps = am2 + bm + c, for some constants a,b,c
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Analysis of Number of instructions of an algorithm

How many instructions are executed ...

• to search a number in an unsorted array storing n numbers.

• to search a number in a sorted array of m numbers.

• to sort n numbers by selection sort.

• to sort n numbers by merge sort.

it is function of imput size

We shall focus on worst case number of instructions taken by an algorithm
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Analysis of Number of instructions of an algorithm

How many instructions are executed ...

• to search a number in an unsorted array storing n numbers.

• to search a number in a sorted array of m numbers.

• to sort n numbers by selection sort.

• to sort n numbers by merge sort.

Observation : it is function of input size

We shall focus on worst case number of instructions taken by an algorithm
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No. of Instructions executed during Sequential Search on n numbers

• For sequential search, you can write a for loop for the sequential search

which iterates n times in the worst case.

• In each iteration, we perform constant number of instructions

No. of instructions in the worst case :

cn for some constant c
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No. of Instructions executed during Binary Search

Given that array A is sorted.

public static boolean Bin_search(int[] A, int x)

{ int left =0;

int right=A.length-1;

boolean Is_found = false; int mid;

while(Is_found==false && left>right)

{

mid = (left+right);

if(A[mid]==x) Is_found=true;

else if(A[mid]>x) right = mid-1;

else left = mid+1;

}

return Is_found;

}
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Analysis of Binary Search

• There are four instructions before entering the while loop.

• Number of instructions in each iteration of while loop is at most 5.

• After each iterations of the while loop, the search domain (A[left]..A[right])

reduces by at least a factor of 2

• Total number of iterations of loop : log
2
n.

Hence the number of instructions in the worst case =

4 + 5 log
2
n = a log

2
n + b, for some constants a, b.
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Hence Binary Search is exponentially faster than sequentia l search
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Why is GCD fast faster than GCD slow ?

//Assume m>=n

int GCD_fast(m,n)

{ while(n!=0)

{ rem = m%n;

m = n;

n = rem;

}

return m;

}

--------------------------------

int GCD_slow(m,n)

{ while(n!=0)

{ diff = m-n;

if(diff>=n) m = diff

else {m=n; n = diff;}

}

return m;

}
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Analysis of GCD fast

We shall bound the number of iterations of the while loop.

//Assume m>=n

int GCD_fast(m,n)

{ while(n!=0)

{ rem = m%n;

m = n;

n = rem;

}

return m;

}

Observation : After an iteration (m, n) −→ (n, m%n).
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Analysis of GCD fast

Observation : After an iteration (m, n) −→ (n, m%n).

Consider any iteration.

• Case 1 : m > 3

2
n

Inference : after the iteration

the new value of m < 2

3
times old value of m

• Case 2 : m ≤
3

2
n

Inference : after the iteration

The new value of n ≤
1

2
times old value of n
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Analysis of GCD fast

Observation : After an iteration (m, n) −→ (n, m%n).

Consider any iteration.

• Case 1 : m > 3

2
n

Inference : after the iteration

the new value of m < 2

3
times old value of m

• Case 2 : m ≤
3

2
n

Inference : after the iteration

The new value of n ≤
1

2
times old value of n
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Analysis of GCD fast

Observation : After an iteration (m, n) −→ (n, m%n).

Consider any iteration.

• Case 1 : m > 3

2
n

Inference : after the iteration

the new value of m < 2

3
times old value of m

• Case 2 : m ≤
3

2
n

Inference : after the iteration

The new value of n ≤
1

2
times old value of n
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Analysis of GCD fast

• It can be seen that once m or n becomes less than or equal to 2, at most one

more iteration will be executed.

• Hence, based on previous slide the number of iterations of while loop is at

most log
3/2

m + log
2
n.
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Analysis of GCD slow

//Assume m>=n

int GCD_slow(m,n)

{ while(n!=0)

{ diff = m-n;

if(diff>=n) m = diff

else {m=n; n = diff;}

}

return m;

}

The worst case : m is much larger than n.

For example m = 10000000002, n = 2.

It follows from the code that the algorithm will perform m/n iterations which is

close to m when n is a small number.
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Comparing GCD fast and GCD slow

In the worst case,

GCD fast is exponentially faster than GCD slow.
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Comparing Selection Sort and Merge Sort

31



No. of instructions executed in Selection Sort on n numbers
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Number of instructions taken in Selection Sort

int index_of_smallest_value(int[] A,int i)

//returns integer j such that A[j] is smallest among A[i], A[i+1],...

SelectionSort(int [] A)

{

for(int count=0;count<A.length;count=count+1)

{

int j = index_of_smallest_value(A, count);

if(j != count)

swap_values_at(A,j,count);

}

}

It follows easily that index of smallest value takes c(n− i)

instructions in the worst case for some constant c.
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Number of instructions taken in Selection Sort on n numbers

• There are ???? iterations of the for loop

• Number of instructions taken to find ith smallest element = ????
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Number of instructions taken in Selection Sort on n numbers

• There are n − 1 iterations of the for loop

• Number of instructions taken to find ith smallest element = ???? c(n − i) for

some constant c.
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Number of instructions taken in Selection Sort on n numbers

• There are n − 1 iterations of the for loop

• Number of instructions taken to find ith smallest element = c(n − i) for some

constant c.
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Number of instructions taken in Selection Sort on n numbers

∑

0≤i<n−1

c(n − i) = c
n(n − 1)

2
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Let us analyse Merge Sort on n numbers

It uses a method to merge two sorted arrays
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number of instructions for merging two sorted arrays of size n

Recall that the algorithm proceeds like :

start scanning A and B from left, compare two elements of A and B, copy the

smaller one into C and continue ...
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Merging two sorted arrays

49 89 1012895 . . .

34 40 53 66 92 . . .3B

A

C 3 5 9 28 34

Number of instructions : cn for some constant c
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Number of instructions taken in Merge Sort

public static void mergesort(int[] A, int left, int right)

{ if(left!=right)

{ int mid = (left+right)/2;

mergesort(A, left, mid);

mergesort(A, mid+1, right);

merge(A,left,mid,right);

}

}

Each call of mergesort does two tasks

• Invoking two calls recursively

• Merging of two sorted portions of array A
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Number of instructions taken in Merge Sort

MSort(A,0,7)

MSort(A,4,7)
MSort(A,0,3)

MSort(A,0,1) MSort(A,4,5)MSort(A,2,3) MSort(A,6,7)

MSort(A,0,0) MSort(A,1,1) MSort(A,2,2) MSort(A,3,3) MSort(A,4,4) MSort(A,5,5) MSort(A,6,6) MSort(A,7,7)

A

Level 0

Level 1

Level 2

Level 3

99 17 5 241167
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Number of instructions taken in Merge Sort

• We perform cn instructions at each level of the recursion tree.

• There are log
2
n levels in the tree.

Hence in the worst case there are cn log
2
n instructions executed in Merge Sort

on an array of size n.
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Alternate analysis of Merge Sort

Let T (n) be the number of instructions executed by merge sort on n numbers.

The following recurrence captures the running time of merge sort exactly.

T (n) =







a if n = 1

cn + 2T (n/2) otherwise

Here cn is the no. of instructions for merging two halves of the array.
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Alternate analysis of Merge Sort

Gradually unfold the recurrence.

T (n) = cn + 2(cn/2 + 2T (n/22))

= cn + cn + 22T (n/22)

= cn + cn + cn + ... + 2iT (n/2i)

= cn + cn + cn + ... log
2
n terms...

= cn log
2
n
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Efficiency of Quick Sort to be analysed in next lecture class

Please come to Wednesday lecture with any question/doubt
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