
ESc101 : Fundamental of Computing

I Semester 2008-09

Lecture 35

• Input from keyboard and output to Console : (Lecture 34)

• Input and Output from/to file

(using the existing classes and method of package java.io.*)

• Sorting algorithms based on recursion

– Quick Sort,

– Merge Sort (in some future class)

1

Reminder : did you solve “Tower of Hanoi” problem

• There are three Towers : A,B,C

• Tower A has n discs arranged one above the other in the increasing order of

the radii from top to bottom.

• The towers B and C are empty.

• We can move one disc only in a single step.

• AIM : Describe the steps to transfer all discs from tower A to tower B.

Constraint : We can never place a bigger disc on a smaller one.

2

Design a method Tower of Hanoi(n)

which prints the detailed instruction about the movement of discs in order to

transfer n discs from A to B.

3

Input Output from/to Console : Lecture 34

Classes used :

• InputStreamReader

• BufferedReader

An interactive program for sorting numbers

file selection sort i.java

4

Input Output from/to File - without buffers

without buffer means reading or writing just one character at a time.

5

Input Output from/to File - without buffers

one character at a time

Classes used :

• FileReader

• FileWriter

Example : copying a file to another file.

File : IO without buffer.java

6

Output to a File - with buffers

Printing a String at a time

Classes used :

• FileWriter

• PrintWriter

Example : Storing random number in a file.

File : random example file.java

7

Input from a File - with buffers

reading a line at a time

Classes used :

• FileReader

• BufferedReader

Example : Reading numbers from a file.

File : reading numbers from file.java

8

Selection Sort

int index_of_smallest_value(int[] A,int i)

//returns integer j such that A[j] is smallest among A[i], A[i+1],...

SelectionSort(int [] A)

{

for(int count=0;count<A.length;count=count+1)

{

int j = index_of_smallest_value(A, count);

if(j != count)

swap_values_at(A,j,count);

}

}

discussed in some earlier lecture

9

Quick Sort

10

Partitioning an array into two parts

Given an array and an element x∈ A, rearrange elements within A so that

x

< x > x

.A

Can be easily done using an extra array

11

Partitioning an array into two parts

Given an array and an element x∈ A, rearrange elements within A so that

x

< x > x

.A

Can be easily done using an extra array

12

Partitioning an array into two parts

Write a method

int Partition(int[] A, int left, int right)

• which partitions the array with x = A[right]

• and returns the smallest integer i such that A[i]=x

Homework : Given an implementation of Partition()

which does not use any extra array

13

Partitioning

Write a method

int Partition(int[] A, int left, int right)

• which partitions the array with x = A[right]

• and returns the smallest integer i such that A[i]=x

Homework : Given an implementation of Partition()

which does not use any extra array

14

Partitioning without using extra array

Solution of the homework on next slide

Read it after you have made a sincere attempt.

15

Partitioning without using extra array

NSE index is abbreviation for Index of Next Smaller Element . This variable
stores the index of array where we are going to store the next element ≤ x.

public static int partition (int[] A, int left, int right)

{ int x=A[right];

int NSE_index = left;

for(int i = left; i<=right-1; i=i+1)

{

if(A[i]<=x)

{ swap(A,i,NSE_index);

NSE_index = NSE_index + 1;

}

}

//Finally moving x to its appropriate place.

swap(A,right,NSE_index);

return NSE_index;

}

}

16

Quick Sort

public static void Qsort(int[] A, int left, int right)

{

if(??)

{

??? ;

??? ;

??? ;

}

}

17

Quick Sort

public static void Qsort(int[] A, int left, int right)

{

if(left<right)

{

??? ;

??? ;

??? ;

}

}

18

Quick Sort

public static void Qsort(int[] A, int left, int right)

{

if(left<right)

{

int mid = partition(A, left, right);

??? ;

??? ;

}

}

19

Quick Sort

public static void Qsort(int[] A, int left, int right)

{

if(left<right)

{

int mid = partition(A, left, right);

Qsort(A, ??);

Qsort(A, ??);

}

}

20

Quick Sort

public static void Qsort(int[] A, int left, int right)

{

if(left<right)

{

int mid = partition(A, left, right);

Qsort(A,left,mid-1);

Qsort(A, ??);

}

}

21

Quick Sort

public static void Qsort(int[] A, int left, int right)

{

if(left<right)

{

int mid = partition(A, left, right);

Qsort(A,left,mid-1);

Qsort(A,mid+1,right);

}

}

You can observe that the size of problem corresponding to recursive calls

decreases always. Hence the program will eventually terminate.

22

Show execution of Qsort on an array of 8 elements

using paper and pen.

23

Comparing Selection Sort and Quick Sort

for(n=2000,n<25000;n=n+1000)

{ Generate an array A of size n;

Fill it with random integers;

Create copy B of array A;

Execute Quick sort on A and measure time.

Execute SelectionSort on B and measure time.

}

24

Measuring time taken a method M

long start = System.currentTimeMillis();

M();

long stop = System.currentTimeMillis();

System.out.println(stop-start);

Note : System.currentTimeMillis() returns a long which

corresponds to current time in milliseconds.

25

Comparing Selection Sort and Quick Sort

The file : Comparing Sorting Algo.java

26

