From:	"Bhaskar Anga" <bhaskar.anga@ofb.gov.in></bhaskar.anga@ofb.gov.in>
Subject:	Sponsored Research
Date:	Mon, February 27, 2017 4:48 pm
To:	odc.ofmk@ofb.gov.in

Dear Sir

We are working for Ordnance Factory Medak, Hyderabad under MoD, GoI. Our core area is the manufacture of Infantry Combat Vehicles (ICV) for Indian Army. We have been entrusted with development of future generation ICVs. The bottom plate configuration of these vehicles need to protected against mine blast and presently we are working on this area.

In this regard a brief introduction of our requirement for sponsered research is attached to this mail.

Please kindly let me know your intreset.

Kind regards A Bhaskar Jr Works Manager 08790525495

Attachments:

untitled-[1.2].html Size:[0.8 k

Type: text/html

P alpha EOS.docx

Size: 22 k

Type:application/vnd.openxmlformats-officedocument.wordprocessingml.document

Aim:

The parameters for the equation of state for the given Aluminium Foam material are to be calculated which can then be used as input to hydrocode ANSYS AUTODYN[™]

Background:

A numerical analysis study using ANSYS AUTODYN[™] is being carried out, focusing on dynamic response behaviour of metallic sandwich structure on blast impact loading. The plate materials will be varied consisting of aluminium plate, aluminium foam and steel plate. Though the material model and properties for aluminium and steel are available in ANSYS AUTODYN[™] material library, the same are not available for aluminium foam.

Input Data to Autodyn:

Equation of State: P alpha	Thermal Conductivity
Reference density	Compaction Curve
Porous density	Strength: von Mises
Porous sound speed	Shear Modulus
Initial compaction pressure	Yield Stress
Solid compaction pressure	Failure: Hydro (Pmin)
Compaction exponent	Hydro Tensile Limit
Solid EOS: Shock	Reheal
Gruneisen coefficient	Crack Softening
Parameter C1	Stochastic failure
Parameter S1	Material Cut-offs
Parameter Quadratic S2	Maximum Expansion
Relative volume, VE/V0	Minimum Density Factor
Relative volume, VB/V0	Minimum Density Factor (SPH)
Parameter C2	Maximum Density Factor (SPH)
Parameter S2	Minimum Sound speed
Reference Temperature	Maximum Sound speed (SPH)
Specific Heat	Maximum Temperature