Suraj Chouhan

EDUCATION					
	Degree/Certificate	Institute	CGPA/%	Year	
M. Tech (Department of Management Sciences)		Indian Institute of Technology, Kanpur	-	2025- Present	
B. Tech (Agricultural Engineering)		CTAE, Agriculture University, Jodhpur	8.73 CGPA	2021-25	
Higher Secondary Education		Prathibha Public Senior Secondary school, Jodhpur	79.80 %	2020	
Secondary Education		Red Rose Public Senior Secondary School, Jodhpur	94.00%	2018	
PROJECTS					
PriceMyRide — Used Car Price Prediction Machine Learning Regression (GitHub Link) August 2025 (Self Project)					
Objective	 Predicted used-car prices from 6,717 listings; parsed numeric strings, derived brand, removed nulls/duplicates, log- transformed skewed features. 				
Approach	Context: Predicted used-car prices from 6,717 listings; parsed numeric strings, derived brand, removed				
	nulls/duplicates, log-transformed skewed features.				
	 Process: FunctionTransformer → ColumnTransformer (One-Hot + Scaling) → model; 5-fold CV and held-out test set. Modeling/Analysis: Compared Linear, Ridge, Lasso vs RandomForest (n_estimators=400); selected RandomForest. 				
	Tools: Python, scikit-learn, Pandas, NumPy, Plotly				
	 Repo tagline: End-to-end car price prediction with log-aware preprocessing and RF (R² ≈ 0.93). 				
Result	 Results: Test R² = 0.929; MAE ≈ ₹73,000; linear baselines R² ≈ 0.87–0.89 (MAE ≈ ₹89k–₹93k). 				
Digital Mark	Digital Marketing Conversion Modeling Machine Learning Classification + Uplift (GitHub Link) (Self Project) August 2025				
Objective	•To predict the selling price of used cars using supervised regression on tabular automotive listings to support data- driven pricing and faster sales decisions.				
Approach	Context: Built an end-to-end conversion prediction and uplift modeling pipeline on 8,000 campaign records;				
	features span demographics, channel/type, engagement, and spend.				
	Process: ColumnTransformer (One-Hot + Scaling) inside an imbalanced-learning Pipeline with SMOTE; 5-fold				
	Stratified CV; held-out test evaluation; interactive PR/ROC and driver analysis.				
	 Modeling/Analysis: XGBoost classifier (n_estimators=300, max_depth=4, lr=0.1, subsample/colsample=0.8); threshold tuning for F1 and recall; Two-Model uplift (separate treatment/control models) with ranked targeting. 				
	Tools: Python, scikit-learn, imbalanced-learn, XGBoost, Pandas, NumPy, Plotly/Seaborn.				
	• Repo tagline: Conversion prediction with XGBoost and uplift ranking for campaign targeting; PR-AUC ≈ 0.94,				
Docult	 actionable thresholds, and top-20% uplift focus. PR-AUC 0.94, ROC-AUC 0.81; at threshold 0.552, accuracy 0.92 with high converter recall; uplift 				
Result	(simulated): top 20% +0.1	6 vs bottom 20% -0.15.	iverter recall;		
PM2.5 Forecasting (India)Growth Time Series Regression EDA (GitHub Link) (Self Project)					
Objective	 To forecast hourly PM2.5 u vs R² 0.86, MAE 4.79). 	sing a RandomForest that outperforms a 24h persiste	ence baseline (R ² 0.97, MAE 2.22	
Approach	• Context: Forecasted hourly PM2.5 from 36,192 timestamps; created calendar features and 1h/24h lags; time-ordered 80/20 split to avoid leakage.				
	 Process: Built a RandomForest regressor and established a persistence baseline (t-24h); evaluated on held-out test window using R², MAE, RMSE with side-by-side comparisonPerformed. 				
	Tools: Python, scikit-learn,				
		sting that beats a 24h persistence baseline by large n	nargins (R ² 0.9	7 vs 0.86) with	
	hourly features and lags	, , , , , , , , , , , , , , , , , , ,	3 ()	,	
Result	 Model R²=0.967, MAE=2.22 outperforming baseline. 	, RMSE=3.58 vs Naive-24h R²=0.857 , MAE=4.79, RMS	SE=7.46 on tes	t, clearly	
COURSEWORK & SKILLS *in progress					
Relevant Data Mining and Knowledge Discovery* Probability & Statistics* Operations Research for Management*					
Courses	Introduction to Computing*				
Skills	Python ML Libraries: NumPy, Pandas, Matplotlib, Seaborn, Scikit-learn* MySQL* Excel				
Soft Skills Flexibility Adaptability Team Management Communication Skills Leadership Decision Making					
ACHIEVEMENTS & EXTRACURRICULAR Second ALP 10 in CATE AC in 2025 agreed to the UT. Beauting					
 Secured AIR-10 in GATE AG in 2025 organised by IIT, Roorkee Secured AIR-171 in GATE AG in 2024 organised by IISC, Bengaluru 					
- Secured Air 1/1 in GRIE AG in 2024 Organised by ilse, bengalulu					