Indian Institute of Technology Kanpur
COURSES OF STUDY
2025

Indian Institute of Technology Kanpur
KANPUR-208016

COMPUTER SCIENCE ENGINEERING

Template for the BT program in Computer Science and Engineering

Semester 1 Semester 2 [Semester 3 Semester 4 Semester 5 Semester 6 Semester 7 [Semester 8
SCHEME-1(9) |[ETH111(3)** |SCHEME-2 HSS-I |[SCHEME-3 EME (9-11) [SCHEME-4 HSS-II [SCHEME-5 HSS-Il [SCHEME-6 HSS- [DE-8(9)
ELC111/ELC112/ (9-11) (9) (9) 11(9)
ELC113 *
MTH 111 (6) MTH 113 (6) [ESC201 (14) CS220 (13) CS330 (13) DE-2 (9-13) DE-5(9) OE-4 (9)
MTH 112 (6) MTH 114 (6) [ESO207 (12) CS253 (12) CS340 (9) DE-3(9) DE-6(9) OE-5 (9)
PHY 114 (11) PHY 113 (11) |(CS201 (11) CS202M (5) CS345 (9) DE-4(9) DE-7(9) OE-6 (9)
PHY 111 (3) CHM 111 (3) |[ESO-2 (9-11) CS203M (5) DE-1(9) OE-1(9) OE-3 (9) OE-7 (9)
TA 111 (9) ESC 111 (7) OE-2 (5-9)
CHM 112 (4) ESC 112 (7)
CHM 113 (4) LIF111 (6)
PE111 (3) PE112 (3)

55 52 54-58 44-46 49 50-58 45 45

Remarks

students inthe 374 semester

All the four UGPs are optional.

At least 2 DEs must be selected from Basket — A.

Students cantake upto4 UGPs, butonly at most 3 UGPs (27 credits) can be
countedtowards graduation requirements.

ESO/SO courses are available in 6-14 credits each. ESO207A is compulsory for CSE

Credit Table for BT Program in Computer Science and Engineering

Course type Recommended Credit range |[Minimum Credits required
for eraduation

Institute Core (IC) 112 112

E/SO 18-45 21-23

Departmentrequirements |144-179 149 (77 DC + 72 DE)

Open electives (OE) 51-57 cq.q2F

SCHEME 54-58 54-58

Total for 4-year BT/BS 391-420 395-405

* Exceeds the credit range recommended by UGARC

Template for the BTH program in Computer Science and Engineering

Template for 3rd to 8th semester for BTH program in Computer Science and Engineering

Semester 3 Semester 4 Semester 5 Semester 6 Semester 7 Semester 8

SCHEME-2 HSS-I [SCHEME-3 EME [SCHEME-4 HSS-Il |SCHEME-5 HSS-II [SCHEME-6 HSS-II [DE-8 (9)

(9-11) (9-11) (9) (9) (9)

ESC201 (14) CS220 (13) CS330 (13) DE-2 (9-13) DE-5(9) OE-4 (9)

ESO207 (12) CS253 (12) CS340 (9) DE-3(9) DE-6(9) OE-5 (9)

CS201 (11) CS202M (5) CS345 (9) DE-4(9) DE-7(9) OE-6 (9)

ESO-2 (9-11) CS203M (5) DE-1(9) OE-1(9) OE-3 (9) OE-7 (9)
DEH-1(9) DEH-2(9) OE-2 (5-9) DEH-3(9)

54-58 53-55 58 50-58 45 45

CPI Criteria for BTH: Above 8.5

Remarks

— ESO/SO courses are available in 6-14 credits each. ESO207 is compulsory for CSE

studentsinthe 3" semester.
— Atleast 2 UGPs are compulsory (DE) for BTH
— At least 27 credits of DEH should be completed by taking CS6XX and CS7XX level courses

— Students cantake upto 4 UGPs, but only at most 3 UGPs (27 credits) can be

countedtowards graduation requirements.

— At least 2 DEs must be selected from Basket — A.

Template for the BTM program in Computer Science and Engineering

Template for 37d to 8th semester for BTM program in Computer Science and Engineering

Semester 3 Semester 4 Semester 5 Semester 6 Semester 7 Semester 8

SCHEME-2 HSS-I |[SCHEME-3 EME [SCHEME-4 HSS-Il |SCHEME-5 HSS-II |[SCHEME-6 HSS-Il [OE-2 (9)

(9-11) (9-11) (9) (9) (9)

ESC201 (14) CS220 (13) CS330 (13) DE-2 (9-13) DE-4(9) OE-3 (9)

ESO207 (12) CS253 (12) CS340 (9) DE-3(9) DE-5(9) OE-4 (9)

CS201 (11) CS202M (5) CS345 (9) MTB-1(9) MTB-3 (9) MTB-5 (9)

ESO-2 (9-11) CS203M (5) DE-1(9) MTB-2 (9) MTB-4 (9) MTB-6 (9)

OE-1 (5-9)

54-58 44-46 49 50-58 45 45

Remarks

— ESO/SO courses are available in 6-14 credits each. ESO207A is compulsory for CSE students

inthe 3'd semester.

— Students cantake upto4 UGPs, but only at most 3 UGPs (27 credits) can be counted
towards graduation requirements.

— At least 2 DEs must be selected from Basket — A.

— All the four UGPs are optional.

Template for five-year dual degree program in Computer Science and Engineering

Template for semester 3 to 6 same as the BT program

Semester 7 |Semester 8 Summer Semester 7 Semester 7

SCHEME-6, DE PG-1(9) M. Tech Thesis (9) |DE PG-4 (9) DE PG-6 (9)

HSS-1I (9)

DE-5(9) DE PG-2 (9) DEPG-5(9) M. Tech Thesis
(36)

0OE-2 (9) DE PG-3(9) M. Tech Thesis (27)

DE-6 (9) M. Tech Thesis (9)

DE-7 (9)

DE-8 (9)

54 36 9 45 45

MINIMUM CREDIT REQUIREMENT IN M. TECH FOR GRADUATION
PG Component: 54 credits Thesis

Component: 81 credits

REMARKS:

— Upto 36 OE credits may be used from the BT minimum requirements to fulfil
requirements for the BT-MT dual degree programme. These will be waived from the
BT programme and counted towards PG requirements.

— All other minimum BT credit requirements need to be fulfilled, including those
that are slotted in the 7th and 8th semester of the BT template.

Template for double major: second major in Computer Science and Engineering

Odd Semester |[Even Semester
CS330(13) CS202M (5) and CS203M (5)
CS340 (9) CS220(13)
CS345 (9) CS253(12)
CS DE-1 (9) CS DE-2 (9-13)
CS DE-3 (9) CS DE-4 (9)
49 53-57

— Total mandatory credits for second major in computer science: 102
Course and credit Waiver policy: Following waivers will be granted automatically:

- Course and credits to be waived If the student has done

CS340 MTH401
CS202 MTH302
CS203 MS0201 OR HSO201

— To clarify, if a student gets waiver for all the three courses above, he will need to do only
102- 19=83 credits to finish his/her CSE second major requirement. If a student gets a
waiver for C5202 only, he will need to do 102-5=97 credits to finish his/her CSE second
major requirement. The table above may be extended in future if other courses similar
to those in CSE major template are added/discovered in the other departments. Any
other course waivers (without credit waivers) may be recommended by CSE DUGC based
onits discretion.

REMARKS:

— Two DEs should be selected from Basket-A (Details of Basket-A are available in CSE
B.Tech. template).

— Total CSE-DE credits should be at least 36.

— Upto360Ecreditsmay bewaivedfromthe parentdepartment BT/BS
graduation requirements when they are used to fulfil requirements for
the double major.

— *ESO207 is a compulsory course to be done, but its credits will be counted against
the ESO requirement of the first major.

Minors in Computer Science and Engineering The

minors offered by CSE are listed in the table below.
— Foreach minor stream, the minimum total credit requirementis 30
— In each minor stream, any related course(s), if not mentioned in the list of optional
courses, may be taken as optional with the permission of the CSE DUGC
The course ESO207 can be waived if the student has done an equivalent course. CSE DUGC convener
can give more information about it.

Credits

Courses ID Course Title L-T-P-D-[C] Content
Sets, Proofs: [Weeks 1]
Sets, relations, functions, countable and
uncountable sets.
Proofs; Proofs by deduction, contrapositive and
contradiction (diagonalization).
Proofs by induction
* All these proof techniques can be covered through
examples. The rigorous notion of proof will be
covered in CS 202 and can be skipped here.
Basic Counting: [Weeks 2]
Selection/combination, arrangements/permutation,
rule of sum, rule of product.
Binomial coefficients, identities, multinomial
coefficients.
Selection with repetition/distributions of objects into
cells, distinguishable/indistinguishable objects.
Combinatorial problems with restrictions
Generating Functions: [Week 3]
Recurrence relations to solve combinatorial
problems.
Generating functions to solve recurrence.
Counting Techniques: [Weeks 4]
Inclusion-exclusion, Pigeonhole principle, Ramsey's

CS201 Mathematics For Computer 3-0-0-0-4 theorem

Science - |

Partial Order: [Week 5]

Equivalence relations, partitions, partial order,
posets, chain/antichain.

Graph Theory: [Week 6 And 7]

Definitions, degree, paths, cycles, Hamiltonian path,
Eulerian cycles.
cycles and acyclic graphs.
Trees, spanning trees, networks.

Number Theory: [Week 8 And 9]

Divisibility, primes, division theorem, Euclid's
gcd/extended Euclid's algorithm, Unique
factorization domain.
Modular arithmetic, sums and products, Chinese
remaindering, Mobius inversion.

RSA: [Week 10]

Fermat's little theorem, Euler's theorem.
Application: RSA.

Finite Fields: [Week 11]

Z p, the cyclic structure of Z pM.
Definition of the field as a generalization to F_p.
Application: Polynomials over F_p, error correction.
Group Theory: [Week 12 And 13]

Definitions, examples (Z.n and Z n™)
cyclic and dihedral group, abelian groups.

Subgroups, cosets, partition
permutation group, transpositions, cycle
representation

symmetries as a group.

Optional Topics: [If Time Permits]

Rings

Applications Of Group Theory (Burnside lemma and
generalization to Polya's theorem, use of group
theory in combinatorics).
Other interesting applications.

CS202M

Mathematics For Computer
Science - Il

3-0-0-9

Propositional logic syntax and semantics.
Tautologies, axiom system and deduction.
Proof of soundness and completeness.

First order logic syntax and semantics.
Structures, models, satisfaction and validity.
Axiomatization, soundness and completeness.
Optional: some advanced topics.

CS203M

Mathematics for Computer
Science -

3-0-0-9

Basics Of Probability Theory : [Weeks 1]

Sets, The concept of a discrete sample space in
probability theory. The definition of an event. The
definition of a probability distribution. De Morgan’s
Law, Union Bounds

Distributions : [Weeks 2]
Random variables, expectation, and variance.

Discrete distributions: Bernoulli trials, Geometric,
Binomial and Hypergeometric and Negative
Binomial distributions, Poisson
distribution. Continuous distributions: normal and
other continuous distributions. Exercises based on
the analysis of applications to computer science.

Linearity of expectation. Higher moments of a
random variable, moment generating function.
Computing the moments of geometric, binomial,
normal, and Poisson distributions.

OPTIONAL (if time permits): Function of One
Random Variable: Change of Variables.

Conditional Probability : [Weeks 3]

Conditional Probability, Conditional expectation of a
random variable with respect to an event. Bayes'
Theorem and examples of applications in computer
science.

Independence: [Weeks 4]

The concept of k-wise and mutual independence of
random variables. Applications of independence
and k-wise independence in computer science.

Tail Bounds: [Week 5]

Tail bounds: Markov inequality, Chebyshev's
Inequality, Chernoff bound, and Examples of
applications to the analysis of randomized
algorithms.

Applications: [Week 6 & 7]

Cover one or more applications: For example,
Statistics: Hypothesis Testing

Parameter Estimation: MLE, Least Squares
Introduction to the probabilistic method. Applications
to random graphs and number theory. Lovasz Local
Lemma and applications

Information theory

Markov chains

Randomized algorithms/ Streaming

CS220

Computer Organisation

3-0-3-12

Introduction.

Arithmetic algorithms.

Overview of basic digital building blocks; truth
tables; basic structure of a digital computer.
Number representation: Integer - unsigned, signed
(sign magnitude, 1&8€™s complement, 2&€™s
complement); Characters - ASCIl coding, other
coding schemes; Real numbers - fixed and floating
point, IEEE754 representation.

Basic building blocks for the ALU: Adder, Subtracter,
Shifter, Multiplication and division circuits.
Hardware description language. Introduction to
some HDL (Verilog, VHDL, BSV). Digital Design
using HDLs.

CPU.

CPU Sub-block: Datapath - ALU, Registers,
Instructions, Execution of Instructions; CPU buses;
Control path - microprogramming, hardwired logic;
External interface.

Advanced Concepts: Pipelining; Introduction to
Advanced Processors (multiprocessors and multi-
cores).

Examples of some well known processors.
Assembly Language Programming. Instruction set
and Assembly programming for some processor,
preferably the one described in class.

Memory.

Memory Sub-block: Memory organization;
Technologies - ROM, RAM, EPROM, Flash, etc.,
Virtual Memories.

Cache: Cache algorithms, Cache Hierarchy, Cache
coherence protocols.

Advanced concepts: Performance, Interleaving, On
chip vs Off chip Memories/Caches.

I/O and Peripherals.

I/O Sub-block: 1/0 techniques - interrupts, polling,
DMA; Synchronous vs. Asynchronous [/O;
Controllers.

Peripherals: Keyboard, Mouse, Monitors, Disk
drives, etc.

Lab Contents.

Digital Design using HDLs. Simple circuit designs:
For e.g. Counter, Multiplexer, Arithmetic circuits etc.
Design of a Simple Processor: Includes register file,
ALU, data paths.

FPGA Programming Programming on Xilinx Spartan
3E (or equivalent) FPGA. Handling of Inputs:
through slide switches, through push buttons.
Handling of Outputs: 7-segment display, LED
display, LCD display. The designs developed in
Part-l1 can be used to program the FPGA.
Assembly Language Programming Programming in
assembly language. The assignments should cover
the following concepts: Registers; different type of
instructions (load, store, arithmetic, logic, branch);
operand addressing modes; memory addressing
modes; conditions (codes/flags and conditional
branches) stack manipulation; procedure calls;
procedure call conventions (load/store of;
arguments on stack, activation records);

CS251

Computing Laboratory - |

0-0-3-3

Basic operating system commands. Students are
expected to know the basic shell (e.g., bash)
commands and should be able to understand the
options and functioning of a command by reading
the man and info pages.

Editors. Again, students are expected to be familiar
with at least one of the two editors vim and emacs.
However, they should be able to utilize the multiple
features of the editors (such as automatic
indentation, context-sensitive colouring, letype-
sensitive auto-wrap, etc.) and not use them simply
as a typewriter.

Version control. Students will need to completely
know how at least one of the version control systems
(e.g., cvs, svn, git, darcs) work. They should be able
to check in, check out, resolve errors and put tags
on a snapshot. On all subsequent assignments, they
must use a form of version control.

Scripting and automation. Of the various types of
shells (bash, csh, tcsh, ksh), the preferred choice is
bash, although students should be familiar with the
different command syntax in other shells as well.
Also, they will need to know the various functions
(e.g., seq, for) that a shell provides. The choice of
the scripting language (perl or python) is open to
students.

Document preparation. Students will learn using
latex for preparing documents. They should also
know how to format properly the equations, gures,
tables, theorems, etc. using different packages and
options. For bibliography management, they should
use bibtex, and must use it within the latex

documents. For drawing figures and graphs, they
can choose to learn some or all of the different
softwares used popularly (they include gnuplot, xfig,
etc.).

Hardware. Students will work hands-on to learn how
to install hard drives, RAM, etc., and in general,
assemble a computer from its different parts.

Web applications. Students will need to know the
different web languages (html, xml) that are used
along with the scripting languages (php, javascript),
forms and database tools (MySQL) that are
necessary for setting up a website. Students should
be able to setup a wiki site as well.

Useful Application Software. Students should learn
to effectively use various softwares that serve a
whole range of applications. These include the
general purpose octave or scilab, the more
statistically oriented R and the image manipulator
gimp.

Operating system installation and packages
Students can choose a particular distribution of
Linux (e.g., Fedora, Debian, Ubuntu, etc.) and learn
installing the basic operating system and different
packages. They should also learn how to congure
options globally (including booting) and for particular
users only. They will further understand how to
debug problems using the log and error les.

CS252

Computing Laboratory - Il

0-0-3-3

System administration: Students will learn to setup
and manage a network server including a web
server and an email server. They should also be
familiar with various network protocols. Further,
students will be able to administer different
components of the system by using various
monitoring tools. They should also learn simple
load-balancing tools.

Security: While setting up different network and
database servers, students will learn to manage the
security issues including different attacks. Public key
infrastructure (PKI) is a good example of how to
setup, manage, and distribute certicates that are
issued as authorization tools. As part of maintaining
sys- tems, students will need to use system
vulnerability and intrusion testing tools as well.
Compiler tools: Students will need to learn the
various low-level tools used routinely in compilers
including lex and yacc.

Programming environment tools: For efcient
programming, students are expected to use various
integrated development environments (IDEs) such
as eclipse and debuggers such as gdb. They should
also use tools for effective tagging and browsing of
source code. Finally, they will learn to use the build
tools that are necessary for large software projects.

CS253

Software Development And
Operations

3-0-3-12

Instructor:

Dr. Sandeep K. Shukla / Dr. T. V. Prabhakar /Dr.
Indranil Saha/Dr. Biswabandan Panda/Dr.
Debadatta Mishra/Dr. Preeti Malakar/Dr. Amey
Karkare

Major, Measurable Learning Objectives

Having successfully completed this course, the
student will be able to:

Learn how to develop large scale software from
scratch

Develop a full-fledged software development
environment with knowledge of utilities such as shell
scripting make file creation, regular expression
tools, and other development tools such as
autoconfiguration tools

Develop testing harnesses and testing techniques
including unit testing, integration testing, and system
level testing

Develop deployment environments, and software
maintenance tools, and updating tools

Practice defensive and secure programming with
awareness of various vulnerabilities at the code
level, software design level, architecture level

Use software libraries in large scale software
development - networking libraries, data base
connectivity libraries, and GUI libraries etc.
Develop software design documents and test
documents

Prerequisites And Co-Requisites: ESC 101, ESO
207

Texts And Special Teaching Aids

Course notes, lecture slides, man pages, and other
documentations will be provided to students by the
instructor. Self-study would be an important
component of this course.

Syllabus

The students will be exposed to the following topics:
Regular Expression Tools (e.g Awk)

Lex and Yacc

Bash Scripting

Basic Perl, Python or Ruby Scripting

Make File Details and Autoconfiguration tools, gdb
Object Oriented Programming (C++ or Java)

Unit Testing Tools and Techniques

Integration and System Level Testing Techniques
Software Requirements Analysis, Requirements
Generation, Documentation

Software Architecture, Functional, Performance and
Security Specification

Software Design with Object Oriented Design
Techniques, Design Documentation
Implementation techniques with defensive
programming and secure programming techniques
Unit testing

Development and Integration and System Testing,
Test Automation

Deployment Issues and Maintenance issues
Software Quality Metrics and measurements

The course will consist of 3 hours of lectures per
week, projects and homework, and a course project.

CS300

Technical Communication

0-0-2-2

Technical writing

Editing your own work

Critiquing others' work, mentoring
Preparing and making presentations

CS315

Principles Of Database
Systems

3-0-0-9

Introduction: Database applications, purpose,
accessing and modifying databases, need for
transactions, architecture - users and
administrators, data mining, information retrieval.
iRelational Databases: relational model, database
schema, keys, relational query languages, algebra,
tuple and domain calculus example queries,
(optional: equivalence of relational calculus and
relational algebra).

SQL: Data definition, basic SQL query structure, set
operations, nested subqueries, aggregation, null
values, database maodification, join expressions,
views.

Database Design: E-R model, E-R diagram,
reduction to relational schema, E-R design issues,
database integrity, specifying integrity constraints in
SQL: unique columns, foreign key, triggers.
Relational Database Design: features of good
design, Functional Dependency theory,
decomposition using functional dependency and
normal forms, algorithms for decomposition, normal
forms, (optional: multi-valued dependency and 4th
normal form).

Storage and File structure: Overview of secondary
storage, RAID and flash storage. Storing tables:
row-wise, column database, database buffer.
Indexing: concepts, clustered and non-clustered
indices, B+-tree indices, multiple key access,
hashed files, linear hash files, bitmap indices, Index
definition in SQL, ++R-trees.

Query Processing: Overview, measures of query
cost, selection, sorting, join processing algorithms-
nested loops, merge-sort, hash join, aggregation.
Query Optimization: purpose, transformation of
relational expressions, estimating cost and statistics
of expression, choosing evaluation plans, linear and
bushy plans, dynamic programming algorithms.
Transactions: Concept and purpose, ACID
properties and their necessity, transactions in SQL.
Problems with full isolation and levels of isolation.
Concurrency Control: lock-based protocols, 2-phase
locking, deadlock handling, multiple granularity,
timestamp based protocols, index locking, (optional:
validation protocols, multi-version protocols, snap

shot isolation, predicate locking, concurrency control
for index structures).

Recovery: Failures and their classification, recovery
and atomicity, recovery algorithms, Undo-Redo with
write ahead logging, no Undo no Redo and other
combinations, buffer management, (optional: ARIES
recovery).

Optional/Advanced topics below covered at the
discretion of instructor

Parallel Databases: Avenues for parallelism: 1/O
parallelism, interquery, inter-query and intra
operation parallelism, databases for multi-core
machines.

Distributed Databases: Distributed data storage,
distributed transactions, commit protocols,
concurrency control in distributed databases,
heterogeneous and cloud-based databases.

Data Mining: Decision Support Systems, data
warehousing, mining, classification, association
rules, clustering

Information Retrieval: relevance ranking using terms
and hyperlinks,page rank, indexing of documents,
measuring retrieval effectiveness.

XML and semi-structured data: necessity, XML
document schema, querying: XPath and XQuery
languages, applications.

CS330

Operating Systems

3-0-3-12

Introduction: review of computer organization,
intoduction to popular operating systems like UNIX,
Windows, etc., OS structure, system calls, functions
of OS, evolution of OSs.

Computer organization interface: using interrupt
handler to pass control between a running program
and OS.

Concept of a process: states, operations with
examples from UNIX (fork, exec) and/or Windows.
Process scheduling, interprocess communication
(shared memory and message passing), UNIX
signals.

Threads: multithreaded model, scheduler
activations, examples of threaded programs.
Scheduling: multi-programming and time sharing,
scheduling algorithms, multiprocessor scheduling,
thread scheduling (examples using POSIX threads).
Process synchronization: critical sections, classical
two process and n-process solutions, hardware
primitives for synchronization, = semaphores,
monitors, classical problems in synchronization
(producer-consumer, readers-writer, dining
philosophers, etc.).

Deadlocks: modeling, chararcterization, prevention
and avoidance, detection and recovery.

Memory management: with and without swapping,
paging and segmentation, demand paging, virtual
memory, page replacement algorithms, working set

model, implementations from operating systems
such as UNIX, Windows. Current Hardware support
for paging: e.g., Pentium/ MIPS processor etc.
Secondary storage and Input/Output: device
controllers and device drivers, disks, scheduling
algorithms, file systems, directory structure, device
controllers and device drivers, disks, disk space
management, disk scheduling, NFS, RAID, other
devices. operations on them, UNIX FS, UFS
protection and security, NFS.

Protection and security: lllustrations of security
model of UNIX and other OSs. Examples of attacks.
Epilogue: Pointers to advanced topics (distributed
0OS, multimedia OS, embedded OS, real-time OS,
OS for multiprocessor machines).

All the above topics will be illustrated using UNIX
and/or Windows as case-studies.

The lectures will be supplemented by a set of
assignments/projects on an instructional operating
system. This is the lab component.

CS335

Compiler Design

3-0-3-12

Compiler structure: analysis-synthesis model of
compilation, various phases of a compiler, tool
based approach to compiler construction.

Lexical analysis: interface with input, parser and
symbol table, token, lexeme and patterns.
Difficulties in lexical analysis. Error reporting.
Implementation. Regular definition, Transition
diagrams.

Syntax analysis: CFGs, ambiguity, associativity,
precedence, top down parsing, recursive descent
parsing, transformation on the grammars, predictive
parsing, bottom up parsing, LR parsers (SLR, LALR,
LR).

Syntax directed definitions: inherited and
synthesized attributes, dependency graph,
evaluation order, bottom up and top down evaluation
of attributes, L- and S-attributed definitions.

Type checking: type system, type expressions,
structural and name equivalence of types, type
conversion, overloaded functions and operators,
polymorphic functions.

Run time system: storage organization, activation
tree, activation record, stack allocation of activation
records, parameter passing mechanisms.
Intermediate code generation: intermediate
representations, translation of declarations,
assignments, control flow, boolean expressions and
procedure calls. Implementation issues.

Code generation and instruction selection: issues,
basic blocks and flow graphs, register allocation,
code generation, dag representation of programs,
code generation from dags, peep hole optimization,
code generator generators, specifications of
machine.

Introduction to Dataflow Anaysis (Reaching
Definitions and Live Variable Analysis).

Introduction to compilation for modern architectures
(superscaler out-of-order, VLIW, GPU etc.).

CS340

Theory Of Computation

3-0-0-9

Introduction: Motivation for studying theory of
computation, a quick overview of the subject. Notion
of formal language. Language membership
problem, why this is taken as the central problem of
the subject.

Finite automata and regular expressions: DFA, NFA
(with and without transitions), their equivalence.
Proof that for some languages NFAs can be
exponentially more succinct than DFAs. Denition of
regular expressions. Proof that FAs recognize, and
regular expressions denote the same class of
languages, viz., regular languages.

Properties of regular languages: Pumping lemma
and its use to prove non-regularity of a language,
closure properties of class of regular languages,
decision properties: convert- ing among
representations, testing emptiness, etc.
Minimization of DFAs, Myhill-Nerode theorem.
Context-free grammars and languages: Derivation,
parse trees. Language generated by a CFG.
Eliminating useless symbols, -productions, unit
productions. Chomsky normal form.

Pushdown automata: Denition, instantaneous
description as a snapshot of PDA com- putation,
notion of acceptance for PDAs: acceptance by nal
states, and by empty stack; the equivalence of the
two notions. Proof that CFGs generate the same
class of languages that PDAs accept.

Properties of context-free languages: Pumping
lemma for context-free languages and its use to
prove a language to be not context-free. Closure
properties of the class of context- free languages.
CYK algorithm for CFL membership, testing
emptiness of CFLs.

Turing machines: Historical context, informal proofs
of undecidability. Denition of TM, instantaneous
description as a snapshot of TM computation, notion
of acceptance. Robustness of the model: both
natural generalizations and restrictions keep the
class of languages accepted invariant.
(Generalizations: multi-track, multi-tape,
nondeterministic, etc. Restrictions: semi-innite tape,
counter machines). Church-Turing hypothesis.
Undecidability: Denitions of r.e. and recursive
languages. Turing machine codes, the
diagonalization language and proof that it is not r.e.
Universal Turing machine. Universal language, its
semi-decidability. Reducibility and its use in proving
undecidability. Rices theorem. Undecidability of
Posts correspondence problem.

Intractability: Motivation for the notion. The class P
as consensus class of tractable sets. Classes NP,
co-NP. Polynomial time reductions. NP-completess,
NP-hardness. Cook- Levin theorem. Mention about
boundary of tractability: 2SAT vs. 3SAT, 2D
matching vs. 3D matching. Some NP-completeness
proofs: vertex cover, clique, independent sets,
Hamiltonian graphs, subset-sum, set cover.

Amortized analysis.

Exposure to some advanced data structures (For
example, Fibonacci heaps or augmented data
structures or interval trees or dynamic trees).

As part of CS210/ESO211 course, three algorithm
paradigms, namely, greedy method, divide and
conquer, and dynamic programming are discussed.
These algorithm paradigms should be revisited in
CS345, but with advanced applications and/or
emphasis on their theoretical foundations as follows.
Greedy method: theoretical foundations of greedy
method (matroids) and other applications.

Divide and Conquer: FFT algorithm and other
applications.

Dynamic Programming: Bellman Ford algorithm and
other applications.

CS345 Algorithms |l 3-0-0-9 Graph algorithms: all-pairs shortest paths,
biconnected components in undirected graphs,
strongly connected components in directed graphs,
and other problems.

Pattern matching algorithms.

Lower bound on sorting.

Algorithms for maximum flow and applications.

Notion of intractability: NP-completeness, reduction

(the proof of Cook-Levin theorem may be skipped)

Exposure to some (one or more) topics from the

following list :

Approximation algorithms.

Algebraic and number theoretic algorithms.

Computational Geometry.

Linear programming.

Parallel/distributed algorithms.

Randomized algorithms.

Imperative Languages: block structure, scope rules,

parameter passing, constructs like coroutines,

tasks, exceptions etc.

Functional programming: functions, recursion,

macros, user-defined control constructs, higher

Principles Of Programming order constructs, types, data abstraction, lazy

CS350 3-0-0-9 evaluation, polymorphism, semantics, type

Languages

inference, and implementation issues.

Two of the following three topics may be covered in
detail.

Declarative programming: declarative programming,
Horn clauses, procedural interpretation of Horn
clauses, SLD-resolution including unification, the

logical variable, implementation issues: abstract
machines and compiling to abstract machines.
Declarative Concurrency: Data-driven concurrent
model, basic thread programming techniques,
Streams, lazy execution, Message passing
concurrency models.

Object-oriented programming: objects and
programming with objects, classes and instances,
hierarchies and inheritance, encapsulation,
semantics of OO languages and implementation
issues.

Introduction To Computer

Introduction to Picture Synthesis and Analysis.
Conceptual Framework of an Interactive Graphical
Simulation System.

Graphics hardware. Basic Raster Graphics
Algorithms. Introduction to Simple Raster Graphics
Package (SRGP).

Graphics Entities. Geometric Transformations.
Object hierarchy. Segmentation. Interaction
Techniques.

CS360 Graphics And Simulation Geometric Modeling in 3-D. Viewing in 3-D. Concept
of Synthetic Camera.
Dialogue Design. Graphics User Interfaces.
Windowing Systems.
Graphical Modeling of Discrete events. Simulation of
Discrete Event Displays. Animation Techniques.
Basic Rules for Animation. Graphical Simulation of
continuous motion. Role of Virtual Reality in
Graphical Simulation.
Al: Introduction
Brief history.
Agents and rationality, task environments, agent
architecture types.
Search and Knowledge representation.
Search spaces.
Uninformed and informed search.
Hill climbing, simulated annealing, genetic
algorithms.
Logic based representations (PL, FolL) and
inference, Prolog.
Rule based representations, forward and backward

CS365 Avrtificial Intelligence 3-0-0-9 chaining, matching algorithms.

Probabilistic reasoning and uncertainty.

Bayes nets and reasoning with them.

Uncertainty and methods to handle it.

Learning.

Forms of learning.

Statistical methods: naive-Bayes, nearest
neighbour, kernel, neural network models, noise and
overfitting.

Decision trees, inductive learning.

Clustering - basic agglomerative, divisive algorithms
based on similarity/dissimilarity measures.
Applications to NLP, vision, robotics, etc.

CS395

Undergraduate Project - |
(UGP-1)

CS396

Undergraduate Project - Il
(UGP-2)

CS397

Special Topics In Computer
Science

This course is meant for a 3rd year BTech (CSE)
student to study a topic of their interest, somewhat
independently. A student may also carry out a
project in this course.

In this course, there will be a faculty member
associated with each student whose responsibility
will be to suggest reading material, hold discussion
sessions, monitor the progress of the student,
examine the student, and give a grade at the end of
the semester.

CS422

Computer Architecture

3-0-0-9

Overview of computer architecture, performance
evaluation of processors.

Pipelining, super-pipelines, advanced pipelines,
static and dynamic scheduling, instruction-level
parallelism, loop unrolling, VLIW and superscalar
processors, vector processing and array processing.
Memory bandwith issues, memory organization,
cache hierarchy.

Symmetric multiprocessors (SMP), NUMA-MPs,
massively parallel processors, cache coherence
protocols, interconnection networks, 1/0 processing,
multiprocessing, multiplexing, examples of
contemporary architectures, RAS (Reliability,
Availability, Scalability) features.

CS423

Multi-Core And
Multiprocessor Architecture

3-0-0-0 (9)

Objectives:

The primary objective of the course is to discuss the
principles and practices of the design of the
contemporary multi-core and multiprocessor
architectures.

Summary:

This course studies the principles and practices of
multi-core and multiprocessor design. It introduces
students to the broad topics such as cache
coherence, memory consistency models,
synchronization primitives, on-chip interconnection
networks, and performance pathologies of shared
memory parallel programs.

Contents:
No. of
Sl. . . Lectures
No. Broad Title Topics (Each 75
minutes)

Multi-cores: why and

. |Introduction| what; Moore’s law;
Dennard scaling
Fundament Virtual memory,
als of address translation
memory hardware; SRAM and
caches; DRAM and
system .
main memory
Tools and | Simulation; dynamic
techniques | binary instrumentation;
for performance counters;
evaluating | use of special
architecture| instructions such as
S cupid of x86
Types of architectures;
Introduction| problem of cache
to shared | coherence;
memory | specification of cache
multiproces| coherence protocols as
sorsand |a set of invariants;
multi-cores | basics of memory
consistency models
Hardware support for
efficient
synchronization;
Shared interplay of caghe
coherence, speculative
memory .
- lsynchroniza executlon., ' and
tion sy'nc.h.ronl'zatlon
primitives;
implementation of
efficient locks and
barriers
Brief introduction to
shared memory
parallel programming
Performanc| techniques: POSIX
e analysis | thread model,
of shared | OpenMP, fork/mmap;
memory | performance
parallel | pathologies of shared
programs | memory parallel
programs; influence of
cache coherence and
synchronization
Directory-based
Scalable coherence protocol§
cache gnd . their
coherence implementation; cgge
study of SGI Origin
2000 protocol
Memory | Sequential
. |consistency| consistency, total store
models |order, partial store

order, processor
consistency, weak
ordering, release
consistency

Topologies, integrated
router design, routing

techniques for
Interconnec .
) networks on chip,
. tion interpla of 2
networks play

deadlockfree routing
and cache coherence;
virtual channels

CS425

Computer Networks

3-0-0-9

Introduction, history and development of computer
networks, networks topologies. Layering and
protocols.

Physical Layer: Different types of transmission
media, errors in transmission: attenuation, noise.
Repeaters. Encoding (NRZ, NRZI, Manchester,
4B/5B, etc.).

MAC Layer: Aloha, CSMA, CSMA/CD, CSMA/CA
protocols. Examples: Ethernet, including Gigabit
Ethernet and WiFi (802.11). Time permitting, a quick
exposure to Token Ring and to Bluetooth, WiMax
may also be included.

Data Link Layer: Error detection (Parity, CRC),
Sliding Window, Stop and Wait protocols.

LAN: Design, specifications of popular technologies,
switching. A student should be able to design LAN
of a campus or a building.

Network layer: Internet Protocol, IPv6, ARP, DHCP,
ICMP, Routing algorithms: Distance vector, Link
state, Metrics, Inter-domain routing. Subnetting,
Classless addressing, Network Address Translation.
Transport layer: UDP, TCP. Connection
establishemnt and termination, sliding window
revisited, flow and congestion control, timers,
retransmission, TCP extensions, etc.

Design issues in protocols at different layers.
Network Programming: Socket Programming.
Session, Presentation, and Application Layers.
Examples: DNS, SMTP, IMAP, HTTP, etc.

Network Security: Conepts of symmetric and
asymmetric key cryptography. Sharing of symmetric
keys - Diffie Hellman. Public Key Infrastructure.
Public Key Authentication Protocols. Symmetric Key
Authentication Protocols. Pretty Good Privacy
(PGP), IPSec, Firewalls.

CS433

Parallel Programming

3-0-0-9

Introduction: Why parallel computing; Ubiquity of
parallel hardware/multi-cores; Processes and
threads; Programming models: shared memory and
message passing; Speedup and efciency; Amdahls
Law.

Introduction to parallel hardware: Multi-cores and
multiprocessors; shared memory and message

passing architectures; cache hierarchy and
coherence; sequential consistency.

Introduction to parallel software: Steps involved in
developing a parallel program; Depen- dence
analysis; Domain decomposition; Task assignment:
static and dynamic; Performance issues: 4C cache
misses, inherent and artifactual communication,
false sharing, computation-to-communication ratio
as a guiding metric for decomposition, hot spots and
staggered communication.

Shared memory parallel programming:
Synchronization: Locks and barriers; Hardware
primitives for efcient lock implementation; Lock al-
gorithms; Relaxed consistency models; High-level
language memory models (such Java and/or C++);
Memory fences. Developing parallel programs with
UNIX fork model: IPC with shared memory and
message pass- ing; UNIX semaphore and its all-or-
none semantic. Example case studies (see note
below for some details). Developing parallel
programs with POSIX thread library: Thread
creation; Thread join; Mutex; Condition variables.
Example case studies (see note below for some
details). Developing parallel programs with OpenMP
directives: Parallel for; Parallel section; Static, dy-
namic, guided, and runtime scheduling; Ciritical
sections and atomic operations; Barriers; Reduction.
Example case studies (see note below for some
details).

Message passing programming: Distributed
memory model; Introduction to message passing
interface (MP1); Synchronization as Send/Recv pair;
Synchronous and asynchronous Send/Recy;
Collective communication: Reduce, Broadcast, Data
distribution, Scatter, Gather; MPI derived data types.
Example case studies (see note below for some
details).

Introduction to GPU programming: GPU
architecture; Introduction to CUDA programming;
Concept of SIMD and SIMT computation; Thread
blocks; Warps; Global memory; Shared memory;
Thread divergence in control transfer; Example case
studies (see note below for some details).
Additional topics: PGAS and APGAS programming
paradigms; Transactional memory paradigm;
Introduction to speculative parallelization.

** Notes **:

The example case studies should be chosen to
cover a wide variety of parallel algorithms drawn
from nu- meric as well as non-numeric domains.
Possibilities include parallel sort, parallel prex,
parallel search, graph algorithms, parallel ranking,
reduction, algorithms using tree, fan, pipe

paradigms, matrix computa- tion, equation solvers,
n-body simulation, ray tracing, etc.

The instruction must accompany an adequate
number of programming assignments
demonstrating the concepts.

The instructors are encouraged to offer large
semester-long programming projects.

CS455

Software Engineering

3-0-0-9

Software development lifecycle.
Process models.

Requirements specifications.
Basic software architecture.
Software design, UML modelling.
Design patterns in software.
Software implementation.

Testing, verification and validation.
Static analysis.

Introduction to software model checking.
Software metrics.

Software project management.

CS497

Special Topics In Computer
Science

3-0-0-0-4

This course is meant for a 4th year BTech (CSE)
student to study a topic of their interest, somewhat
independently. A student may also carry out a
project in this course.

In this course, there will be a faculty member
associated with each student whose responsibility
will be to suggest reading material, hold discussion
sessions, monitor the progress of the student,
examine the student, and give a grade at the end of
the semester.

CS498

Undergraduate Project - llI
(UGP-3)

First semester project work.

CS499

Undergraduate Project - IV
(UGP-4)

Second semester project work.

CS601

Mathematics For Computer
Science

Linear Algebra:

Fields.

Vectors spaces, examples,Rn, Cn; subspaces.
Linear independence, dependence and dimension.
Linear transformations.

Matrices, matrix algebra, determinants. Properties
of matrices and determinants.

Systems of linear equations.

Eigenvalues, eigenvectors, eigenspaces,
diagonalization and the spectral theorem.
Factorization and singular value decomposition.
Probability:

Sample spaces, events, axioms of probability.
Conditional probability and independence.

Random variables. Discrete and continuous random
variables, densities and distributions.

Expectation and its properties.

Normal distribution and its properties.

Law of large numbers, central limit theorem.
Bounds on deviations: Chebyshev, Markov,
Hoeffding, Chernoff.

Introduction to Markov chains, random walks.
Logic:

What is a proof? And proof methods.
Propositional logic syntax and semantics.
Tautologies, axiom system and deduction.
Proof of soundness and completeness.

First order logic syntax and semantics.
Converting natural language into FoL wffs.
Structures, models, satisfaction and validity.
Axiomatization, soundness and completeness.
Refutation and logic programming.

CS602

Design And Analysis Of
Algorithms

Sorting: Review of various sorting algorithms,
topological sorting. (2 lecture)

Graph Definitions and Elementary Algorithms:
Shortest path by BFS, shortest path in edge-
weighted case (Dijkasra's), depth-first search and
computation of strongly connected components,
emphasis on correctness proof of the algorithm and
time/space analysis, example of amortized analysis.
(4 lectures)

Matroids: Introduction to greedy paradigm, algorithm
to compute a maximum weight maximal
independent set. Application to MST. (3 lecture)
Graph Matching: Algorithm to compute maximum
matching. characterization of maximum matching by
augmenting paths, Edmond's Blossom algorithm to
compute augmenting path. (3 lectures)
Flow-Networks: Maxflow-mincut theorem, Ford-
Fulkerson Method to compute maximum flow,
Edmond-Karp maximum-flow algorithm. (3 lectures)
Matrix Computations: Strassen's algorithm and
introduction to divide and conquer paradigm, inverse
of a triangular matrix, relation between the time
complexities of basic matrix operations, LUP-
decomposition. (3 lectures)

Shortest Path in Graphs: Floyd-Warshall algorithm
and introduction to dynamic programming paradigm.
More examples of dynamic programming. (3 lecture)
String Matching: Knuth-Morris-Pratt algorithm,
Rabin-Karp algorithm, testing the membership of a
regular language. (3 lectures)

Basic Number algorithms: Reciprocal and square
algorithms to show that the time complexities of
multiplication, squaring, reciprocal, and division are
same. Extension to polynomials. (3 lectures)
Modulo Representation of integers/polynomials:
Chinese Remainder Theorem, Conversion between
base-representation and modulo-representation.
Extension to polynomials. Application: Interpolation
problem. (3 lectures)

Discrete Fourier Transform (DFT): In complex field,
DFT in modulo ring. Fast Fourier Transform
algorithm. Schonhage-Strassen Integer
Multiplication algorithm. (4 lectures)

Linear = Programming: Geometry of the
feasibility region and Simplex algorithm. (2 lectures)
NP-completeness: Examples, proof of NP-hardness
and NP-completeness. (2 lectures)

One or more of the following topics based on time
and interest:

Approximation algorithms

Randomized Algorithms

Interior Point Method

Advanced Number Theoretic Algorithm

CS603

Fundamentals Of
Theoretical Computer
Science

Logic: basics of propositional and first order logic,
completeness & compactness results. Some
applications to computer science. (E.g., theorem
proving, logic programming).

Theory of computation: Church's thesis,
undecidability.

Computational complexity: time & tape bounds, time
& tape bounded simulations, notion of complexity
classes, classes P & NP, NP-completeness, some
natural NP-complete problems.

CS610

Programming For
Performance

3-0-0-0-[9]

The course will primarily focus on the following
topics:

Introduction: Challenges in parallel programming,
correctness and performance errors, understanding
performance, performance models

Exploiting spatial and temporal locality with caches,
analytical cache miss analysis

Compiler transformations: Dependence analysis,
Loop Transformations

Shared-memory programming and Pthreads
Compiler vectorization: vector ISA, auto-vectorizing
compiler, vector intrinsics, assembly

OpenMP: Core OpenMP, Advanced OpenMP,
Heterogeneous programming with OpenMP
Parallel Programming Models and Patterns

Intel Threading Building Blocks

GPGPU programming: GPU architecture and CUDA
Programming

Performance bottleneck analysis: PAPI counters,
Using performance analysis tools

Optional Topics

Heterogeneous Programming with OpenMP
Fork-Join Parallelism

Concurrent data structures

Shared-memory synchronization

Memory consistency models

Transactional memory

CS614

Linux Kernal Programming

Understanding a full fledged operating system is
desirable to develop new OS level functionalities in
research and technology development. The goal of
this course is to expose students to Linux OS (a.k.a.
Linux Kernel) internals to provide an up-close view
of its design and features. At the end of the course,
students are expected to be confident to approach
designing new OS level features when required. The
course will primarily be structured around exercises,
assignments and a project. Every topic will be
introduced before its corresponding hands-on
component. The exercises and assignments, meant
to get an inside view of the kernel, will lead up to a
project that will have to be submitted as the final
submission for the course. For some of the
concepts, recent research works proposing
extensions/optimizations will also be covered.

Course Obijectives:

1. Understanding the design of Linux kernel
components

2. Experiencing the kernel by passive/active
observation

3. Extending the Linux kernel for understanding,
self-satisfaction/falsification
4. Exploring current research trends in OS, Linux
being the reference OS

Prerequisites:

1. Undergraduate OS course, C programming
proficiency

2. Access to a personal laptop or remote computer
from the class room

Syllabus

1. Introduction: OS concepts catch-up, Linux kernel
overview, Extending the kernel: building a modified
kernel, writing simple kernel modules
2. User-kernel interfacing: system calls, proc/sysfs,
character devices, device memory maps
3. Kernel execution contexts: processes, threads,
kernel threads, interrupts, bottom halves/softiRQs
4. Process management: Linux kernel scheduler,
context switching, kernel synchronization
5. Memory management: Virtual memory, page
cache

6. Filesystems: The VFS layer, kernel-Filesystem

interfacing
7. Generic block layer: Block 1/O interfacing, kernel
block I/O scheduler

8. Device drivers: Device probe and sw/hw
configurations, event registration, communication

Grading

In class exercises: 10%
Assignments: 30% (3 to 4 assignments)
Project: 30% (Group of maximum two students)
Midsem/Quizzes + Endsem : 30%

CS615

Skyline Queries In
Database

Skyline Queries

CS616

Human-Centered
Computing

Human-centered computing(HCC) studies
computing systems that are designed to support
human activity. For example, search engines
support information search, e-commerce supports
economic consumption; increasingly, computing
systems are also taking over managerial and
organizational roles in service-sharing ecosystems.
At the core of all such systems lie assumptions
about the needs and expectations of humans, their
eventual design is meant to facilitate these
expectations. How specifically should a natural
language search query be interpreted, based on a
user’'s past search history? How diverse should a
music playlist recommendation be, based on the
current pattern of song choices of the user? The
academic discipline of HCC studies such questions
in the bigger theoretical structure of a two-way
interaction between agent expectations and system
design: systematizing various elements of human
behavior that can be reliably measured by
computing systems; and determining how best to
design computing systems that can adaptively
interact with such behavioral elements.
This course offers a hands-on introduction to
human-centered computing: reviewing a subset of
current applications and open problems. The course
comprises four modules, each one built, studio-
style, around a hands-on mini-project that students
will work on, individually or in groups. Theory and
empirical methods will be introduced to the extent
that they help the students with their projects. The
course will begin with addressing topics relevant to
currently mature technologies (search), transition to
address currently active (recommender systems)
and inchoate(affective computing) research areas
and finally touch upon the common core of Al
research that is the theoretical frontier in human-
facing computing (goal-directed agents).

Sample Course Outline

Prelims

Lesson 1: Intro, logistics, overview
Lesson 2: Math basics (matrix operations,
probability)

Lesson 3: Different flavors of mathematical models
Lesson 4: Model fitting, regularization
Lesson 5: Programming basics (Matlab/python)
Quiz

Module 1: Search

Mini-project (Topic model)
Lesson 1: Classical search/information retrieval
Lesson 2: Query completion
Lesson 3: Contextual/topical search foci
Project intro lecture

Lesson 4: Information scent and other foraging
models

Lesson 5: Temporal information retrieval
Lesson 6: Serendipity, discovery
Quiz

Project presentations

Module 2: Recommendations

Mini-project (Movielens)
Lesson 1: Recommender systems
Lesson 2: Collaborative filtering
Lesson 3: Feature selection, SVD
Project intro lecture

Lesson 4. Different flavors of REs
Lesson 5: Validation, measurement metrics
Lesson 6: Diversity
Quiz

Project presentations

Module 3: Emotions

Mini-project (Sentiment analysis)
Lesson 1: Theories and schema
Lesson 2: Sentiment analysis
Lesson 3: Affect measurement (computer vision,
survey instruments, activity monitoring)
Project intro lecture
Lesson 4. Bots
Lesson 5: BCI
Lesson 6: Boredom/ennui
Quiz

Project presentations
Module 4: Goals

Project (Roomba)
Lesson 1: Basic goal-directed agents
Lesson 2: Hebbian/reinforcement learning
Lesson 3: Explore-exploit dilemma
Project intro lecture

Lesson 4: Curiosity, perseverance, fluctuations
Lesson 5: Deep principles — flow, connectedness,

homeostasis, etc.
Lesson 6: Gamification
Quiz

Project presentations

CS617

Database Queries

Optimization and evaluation of relational queries:
conjunctive query optimization, optimization of
queries involving union and difference operators,
algorithms for performing joins. Limitations of
relational algebra as a query language.

Fixed-point queries and Horn-clause queries.
Optimization and evaluation of Horn-clause queries:

filtering data flow method, magic set and
generalized counting methods, clause and literal
deletion problems. The boundedness problem,
reducing the complexity of recursion, Duplicate
clause removal.

Incorporating functions, sets and negations into
Horn-clause queries.

CS618

Indexing And Searching
Techniques In Databases

Database Queries

Hashing

Memory-based Index Structures
Hierarchical Structures

Distance Functions

Distance-based Structures

Curse of Dimensionality
High-dimensionality Structures
Dimensionality Reduction Techniques
Data Representation Techniques

CS619

Advances In DBMS

User interfaces: forms, graphics, semi-graphics,
spread sheet, natural language.

Query optimization: techniques like query
modification;

Object oriented databases: notion of abstract data
type, object oriented systems, object oriented db
design.

Expert data bases: use of rules of deduction in data
bases, recursive rules.

Fuzzy data bases: fuzzy set & fuzzy logic, use of
fuzzy techniques to define inexact and incomplete
data bases.

CS621

Topics In Contemporary
Microarchitecture

Performance as well as non-performance issues in
current michroarchitecture research and
development. Modern techniques to fight control
dependence (advanced branch predictors), and
data dependence (perfecting algorithms, data
speculation techniques), and techniques to scale
michroarchitectures for supporting large number of
in-flight instructions. Design of microprocessors for
low power, reliability, and security.
Power/performance trade-offs and metrics, transient
fault detection and recovery, designs for reliability
and hardware level security (memory integrity and
code pointer protection).

CS622

Advanced Computer
Architecture

Single-threaded execution, traditional
microprocessors, DLP, ILP, TLP, memory wall,
Parallel programming and performance issues,
Shared memory multiprocessors, Synchronization,
small-scale symmetric multiprocessors on a snoopy
bus, cache coherence on snoopy buses, Scalable
multiprocessors, Directory-based cache coherence,
Interconnection network, Memory consistency
models, Software distributed shared memory,
multithreading in hardware, Chip multiprocessing,
Current research and future trends.

CS623

VLSI Design For Parallel
Architectures

Introduction to hierarchical structural design.

Role of CAD in VLSI design process. Techniques
and algorithms for symbolic layout and routing.
CMOS processing technology, CMOS building
block.

Use of pipelining and parallelism, self-synchronized
esigns, VLSI computing structures. Introduction to
systolic arrays, mapping algorithms on systolic
arrays, design of systolic arrays, system examples
and design exercises.

CS624

Topics In Embedded
Systems

Current topics in the design, specifications and
analysis of embedded systems. The course will
have the contemporary coverage of topics such as
specifications of embedded systems, analysis of
embedded systems, interface to the real-time
operating systems, design case studies, design
methodologies, etc. Other topics may include
verification of embedded systems like formal
verification, co-simulation, etc., estimation of
hardware and software costs, partitioning, synthesis
(hardware, software, memory, bus), retargetable
usage of the software, specification and verification
of the OS schedules, hard and soft real-time
operating systems, and fault tolerant systems.

CS625

Advanced Computer
Networks

Introduction: Overview of computer networks,
seven-layer architecture, TCP/IP suite of protocols,
etc.

MAC protocols for high-speed LANS, MANs, and
wireless LANs. (For example, FDDI, DQDB, HIPPI,
Gigabit Ethernet, Wireless ethernet, etc.)

Fast access technologies. (For example, ADSL,
Cable Modem, etc.)

IPv6: Why IPv6, basic protcol, extensions and
options, support for QoS, security, etc., neighbour
discovery, auto-configuration, routing. Changes to
other protocols. Application Programming Interface
for IPv6. 6bone.

Mobility in networks. Mobile IP. Security related
issues.

IP Multicasting. Multicast routing protocols, adderss
assignments, session discovery, etc.

TCP extensions for high-speed networks,
transaction-oriented applications. Other new options
in TCP.

Network security at various layers. Secure-HTTP,
SSL, ESP, Authentication header, Key distribution
protocols. Digital signatures, digital certificates.

CS626

Fault Tolerant Computing
Systems

The course will discuss the principles & practice of
fault tolerance in software and distributed systems.

Some of the topics to be covered in the class are:
system model - error, failure, faults, software fault
tolerance, Byzantine agreement, fail-stop
processors, stable storage, reliable and atomic
broadcasting, process resiliency, data resiliency &

recovery, commit protocols, reliability modeling &
performance evaluation, crash recovery in
databases, and voting methods.

CS627

E-Commerce

The objective of this course is to study the
technologies and architectures that are in use in E-
commerce today. The topics to be covered include:
Supporting technologies and tools, Architecture
(e.g. Java commerce solution), Protocols and
standards, Security, Business models, Payment
mechanisms, and Case studies.

CS628

Computer Systems Security

The course requires sufficient programming
knowledge, system knowledge, and immense
interest in understanding cyber security and cyber
defense. So please decide whether you would like
to consider this.

Syllabus

Major, Measurable Learning Objectives

Having successfully completed this course, the
student will be able to:

Discover software bugs that pose cyber security
threats, explain and recreate exploits of such bugs
in realizing a cyber attack on such software, and
explain how to fix the bugs to mitigate such threats
Discover cyber attack scenarios to web browsers,
and web servers, explain various possible exploits,
recreate cyber attacks on browsers, and servers
with existing bugs, and explain how to mitigate such
threats

Discover and explain cyber security holes in
standard networking protocols, both in network
architecture, standard protocols (such as TCP/IP,
ARP, DNS, Ethernet, BGP etc), explain mitigation
methods and revisions of standards based on cyber
threats.

Discover and explain mobile software bugs posing
cyber security threats, explain and recreate exploits,
and explain mitigation techniques.

Articulate the urgent need for cyber security in
critical computer systems, networks, and world wide
web, and explain various threat scenarios
Articulate the well known cyber attack incidents,
explain the attack scenarios, and explain mitigation
techniques

Explain the difference between Systems Cyber
Security, Network Cyber Security, and
cryptography, crypto-protocols etc.

Articulate the cyber threats to critical infrastructures
Prerequisites And Co-Requisites

Prerequisites for this course is a very strong
programming background with knowledge of
program run-time environment, usage of debuggers,
and knowledge of shared libraries or dynamically
linked libraries. Some knowledge of x86 assembly
language or similar assembly language will be

assumed. Some knowledge of Operating Systems
especially memory management, virtual memory etc
will be assumed. We will also assume that the
student knows basic network protocols such as
TCP/IP, DNS, routing etc. We will further
assume that the student is familiar with a
client/server architecture of the world wide web --
where browser is a client to a web server. Further,
prior knowledge of a scripting language such as
shell scripting, perl, python and/or Ruby will be
beneficial. Knowledge of Javascript, PHP or other
web programming might be very useful. Prior
familiarity with preliminaries of cyber security would
be helpful but not required.

A quiz will be administered in the very first class in
the beginning. The quiz will help you determine your
standing with respect to above mentioned prior
knowledge.

Texts and Special Teaching Aids

There is no specific text. We will provide all material
via moodle. When the class moodle website will be
up, each student should immediately register
him/herself for this class on moodle. Most
communications, assignments, course material will
be only available via moodle. So it is extremely
important that all students must be on the course
moodle site.

Outline

Here is a tentative outline for the course -- but this is
not set in stone. Some topics may be excluded, and
some other topics may be included depending on
the progress of the course.

Section 1: Software and System Security [30%]

1. Control hijacking attacks — buffer overflow,
integer overflow, bypassing browser memory
protection

2. Sandboxing and Isolation

3. Tools and techniques for writing robust
application software

4. Security vulnerability detection tools, and

techniques — program analysis (static, concolic and
dynamic analysis)

5. Privilege, access control, and Operating
System Security
6. Exploitation techniques, and Fuzzing

Section 2: Network Security & Web Security [40%]

1. Security Issues in TCP/IP — TCP, DNS,
Routing (Topics such as basic problems of security
in TCP/IP,, IPsec, BGP Security, DNS Cache
poisoning etc)

2. Network Defense tools — Firewalls, Intrusion
Detection, Filtering
3. DNSSec, NSec3, Distributed Firewalls,

Intrusion Detection tools

4. Threat Models, Denial of Service Attacks,
DOS-proof network architecture

5. Security architecture of World Wide Web,
Security Architecture of Web Servers, and Web
Clients

6. Web Application Security — Cross Site
Scripting Attacks, Cross Site Request Forgery, SQL
Injection Attacks

7. Content Security Policies (CSP) in web

8. Session Management and User
Authentication, Session Integrity

9. Https, SSL/TLS

10. Threat Modeling, Attack Surfaces, and other
comprehensive approaches to network design for
security

Section 3: Security in Mobile Platforms [15%)]

1. Android vs. ioS security model, threat models,
information tracking, rootkits

2. Threats in mobile applications, analyzer for
mobile apps to discover security vulnerabilities

3. Viruses, spywares, and keyloggers and
malware detection

Section 4: Introduction to Hardware Security, Supply
Chain Security [5%)]

1. Threats of Hardware Trojans and Supply
Chain Security

2. Side Channel Analysis based Threats, and
attacks

Section 5: Issues in Critical Infrastructure and SCADA

Security [10%)]
1. Security issues in SCADA
2. IP Convergence Cyber Physical System

Security threats
3. Threat models in SCADA and various
protection approaches

4. Machine learning and SCADA Security
Grading

Semester grades will be based on the following
weights:
Attendance & In

Class Exercises 207 (including pop quizzes)

Projects &60‘7 (10% each for 6 assignm
Assignments ° projects)

Midterm Exam 10%

Final Exam 10%

Semester grades will be determined after all work is
completed and graded. Point ranges for letter
grades will be based on a several factors, including
absolute and relative performance. Letter grades
will not be based on a fixed, predetermined curve or
point range.

Unless otherwise stated on the class all graded
assignments must be submitted by 11:55 pm on the
specified due date. There will be a 10% penalty for
each 24 hour delay in submitting an assignment.

If you feel that an error is made in grading an
assignment or an exam, you must present a written
appeal within one week after the assignment or
exam is returned to you. Verbal appeals are not
allowed and grades will not be changed after the one
week period. Your appeal should be
specific. Submit all appeals to the instructor.

CS629

Parallel Execution Of
Programs

The course explores major avenues for extracting
parallelism from a sequential program in addition to
introducing conventional dependence analyses. The
techniques include shape analysis, may-alias
analysis, points-to analysis, thread-level
speculation, hardware transactional memory, and
promising hardware/software hybrid techniques that
take help from a managed run-time system to
improve parallelism such as software transactional
memory, hybrid transactional memory, and hybrid
analysis techniques (such as inspector/executor,
dynamic parallelization, etc.).

CS630

Advanced Operating
Systems For Embedded
Systems, Pervasive
Computing And Internet Of
Things

2-0-3-0-9

The course teaches operating systems for
embedded systems, mobile computers and a
diversity of devices with network connectivity
(internet of things). A significant component of the
course are the hands-on lab assignments that will be
done by the students using a state-of-the-art and
open source operating system, namely Tizen
(already in use in some of the Samsung
smartphones: http://www.tizenphones.com/).

The goal of the courseis to provide a platform for
students to understand and develop hands-on
knowledge of advanced operating systems. The
course will be primarily taught by researchers from
Samsung Research India. Tizen is an open source
OS from Samsung. The course has a significant
project component. A list of projects will be provided
to the students. There are multiple tracks in the
course, including, Multimedia, Network and
Connectivity+Bluetooth, Web framework, Graphics
etc.. Students will take a project in one of these
tracks. Experts in each track will also come to guide
the students from time to time.

The course is meant for those who are seriously
interested in advanced OS and have strong hands-
on grasp of operating systems at the level of CS330
or equivalent.

Topics: (Given on the next page)

CS631

Cyber Security Of Critical
Infrastructures

Prerequisites And Co-Requisites
Prerequisites will include at least one course in
operating systems, and one course in networking.

http://www.tizenphones.com/

Prior familiarity with preliminaries of cyber security
would be helpful but not required. With the
instructor's permission, one or both prerequisites
can be waived provided the instructor feels that the
student has adequate exposure to the relevant
topics in those courses.

Major, Measurable Learning Objectives

Having successfully completed this course, the student
will be able to:

Identify the key research questions in the area of
cyber-security of critical infrastructure

Apply research methods which includes survey,
experiments, and articulation of research problems
in this area, and methods for finding solutions to
selected problems

Present in written and/or verbal form key findings in
the specific subject area of the course from
contemporary research papers.

Read and analyze research papers from journals
and conferences in the specific subject area of the
course.

Syllabus

The students will be exposed to the following topics:
Stuxnet worm and its after effects in the Critical
Infrastructure security

Consequent Presidential Executive Order for
Securing Critical Infrastructure in 2013 and its
impact: Policy Issues in Security of Critical
Infrastructure

Security and Vulnerability of Cyber-Physical
Infrastructures

Game Theory and other analytical modeling of the
security problems of critical infrastructures

Security of the Networked Infrastructure

Event monitoring, Event Correlation, and Situational
Awareness

Case Studies — Smart Grid, Smart Infrastructure etc.
Vulnerability Database and its importance

The course will consist of instructor presentations,
student presentations, guest lectures, and group
discussions. This course will be quite research
focused, and the goal of the course will be to enable
students to find research topics in the domain of
cyber-security of critical infrastructure.

. No. of
Module Topic
Lectures
Critical Infrastructures
. such as Power Grid,
Introduction . 4
Railways Systems,
Transportation Systems,

Water/Sewage Systems
and their automation
architecture,

Vulnerabilities, and Past

Cases of Cyber
Security Compromises
and Trends
Stuxnet Case Study, and
Reaction through US
Presidential Executive
Order
Industry SCADA Based Control,
Automation | Sensors (IEDs, PLCs), field 8
and SCADA | network and its protocols
Systems (profibus, DNP3 etc)
Modeling Cyber Physical System
SCADA Modeling, Plant Models,
Systems as a | Feed Back Control Model, 2
Cyber Physical| and Anomaly Detection
System Model| Models
Various Types of Cyber
Threats to Industrial
Critical System Modeled in
Cyber Threat | a 3 dimensional Attack 6
Modeling Space in terms of
adversary Model and
Understanding various
attacks in this Model
Various Techniques to
Cyber Threat mitigate various attacks
Mitigation such as rfeplay attack, 4
zero-dynamics attack,
stealthy attacks etc
Virtual SCADA Simulation
Virtual SCADA PIat.form to be used in
Simulation Projects and Hom.eworks, a
Platform !ts .archltecture,
implementation, and
instruction on installation
Cyber Physical Systems
under attacks and study
of their physical dynamics
Machine to distinguish between a
Learning normal behavior vs. 10
Techniques | behavior under attack, use
of machine learning
techniques to distinguish
and detect in real-time
Game Modeling an attacker vs.
Theoretic Defender game, Nash 4
formulation | Equilibrium criteria, and

understanding
advantages of game
theoretic modeling

Grading

Semester grades will be based on the following
weights.

In-Class Exercises : 10% (Based on participation as
described below)

At-Home Exercises: 40% (10% each for 4 at-home
exercises)

Midterm Exam: 10%

Final Exam: 10%

Projects: 30% (Number of Projects yet to be
determined)

CS632

Topics In Distributed
Systems

Local area networks, concurrency control and
recovery, distributed languages and communication
primitives, file servers, case studies of distributed
systems.

CS633

Parallel Computing

3-0-0-9

S, _ . No. of
No, |Broad Title Topics Lectures

Why parallel
computing? Shared
memory and
distributed memory
parallelism, Amdahl’s
law, speedup and
efficiency,
supercomputers.

1. |Introduction

MPI basics, point-to-
point communication,
collective
communication,
synchronous/asynchr 8
onous send/recyv,
algorithms for gather,
scatter, broadcast,
reduce.

Message
passing

Network topologies,
network evaluation
metrics,
communication cost,
routing
ininterconnection
networks, static and
adaptive

routing, process-to-
processor mapping.

Parallel
3. |communicati
on

Scalability,

benchmarking,
4. |Performance|performance 7
modeling, impact of

network topologies,

parallel code analysis
and profiling.

Domain
decomposition,
communication-to-
Designing [computation ratio,
5. parallel |load 7
codes [|balancing, adaptivity,
case studies: weather
and material
simulation codes.

MPI 1/0O algorithms,
contemporary large-
scale I/O architecture,
I/0 bottlenecks.

6. | Parallel I/O

Job scheduling,
RDMA, one-sided
Additional |communication, NVM,
topics |extreme scale
computing: issues
and trends.

CS634

Mobile Computing

Introduction: Challenges in mobile computing,
coping with uncertainities, resource poorness,
banwidth, etc. Cellular architecture, co-channel
interference, frequency reuse, capacity increase by
cell splitting. Evolution of mobile system: CDMA,
FDMA, TDMA, GSM.

Mobility Management: Cellular architecture, Co-
channel interference, Mobility: handoff, types of
handoffs; location management, HLR-VLR scheme,
hierarchical scheme, predictive location
management schemes. Mobile IP, cellular IP.
Publishing & Accessing Data in Air: Pull and push
based data delivery models, data dissemination by
broadcast, broadcast disks, directory service in air,
energy efficient indexing scheme for push based
data delivery.

File System Support for Mobility: Distributed file
sharing for mobility support, Coda and other storage
manager for mobility support

Ad hoc Network Routing Protocols: Ad hoc network
routing protocols, destination sequenced distance
vector algorithm, cluster based gateway switch
routing, global state routing, fish-eye state routing,
dynamic source routing, ad hoc on-demand routing,
location aided routing, zonal routing algorithm.
Mobile Transaction and Commerce: Models for
mobile transaction. Kangaroo and joey transactions,
team transaction. Recovery model for mobile
transactions. Electronic payment and protocols for
mobile commerce.

CS635

CS636

Analysis Of Concurrent
Programs

Programming Language Basics: Syntax, Semantics,
Types

Review of concurrent programming paradigms:
shared-memory, message-passing, partitioned
global address space

Synchronization primitives: locks, monitors,
semaphores, flags, barriers, condition variables
Concurrency bugs: data races, race conditions,
atomicity violations, deadlocks. livelocks
Consistency models: strict consistency, sequential
consistency, linearizability (atomic consistency),
relaxed memory models, memory fences

Dataflow analysis for concurrent programs
Deductive Verification: Hoare Logic, Owicki-Gries,
Rely-Guarantee, Concurrent Separation Logic
State-space reduction techniques: Formal modeling
of a concurrent system, Mazurkiewicz traces,
Partial-Order reduction techniques (persistent sets,
sleep sets), dynamic partial-order reduction
Dynamic Analysis: Fuzzing, probabilistic
concurrency testing, statistical analysis

Bounded model-checking for concurrent programs
Analysis of message-passing programs

CS637

Embedded And Cyber-
Physical Systems

Modeling Dynamic Behaviors and
Control: Continuous Dynamics, Feedback Control,
Discrete Systems, Hybrid Systems, Composition of
State Machines, Concurrent Models of Computation
Design and Implementation: Sensors and
Actuators, Embedded Processors, Memory
Architectures, Input and Output Interface,
Multitasking, Scheduling

Analysis and Verification: Invariants and Temporal
Logic, Equivalence and Refinement, Rechability
Analysis, Model Checking, Timing Analysis

CS638

Formal Methods In
Robotics And Automation

3-0-0-9

Basics of Verification: Finite State Machines, Linear
Temporal Logic (LTL), Computation Tree Logic
(CTL), Automata-Based LTL Model Checking, u-
Calculus Model Checking, Markov Decision
Process, Probabilistic Computation Tree Logic
(PCTL), Probabilistic Model Checking, Bisimulation
Equivalence, Reactive Synthesis, Binary Decision
Diagram, SAT and SMT Solvers

Control Theory: Basics of Feedback Control Theory,
Hybrid Systems, Discrete Abstraction of Hybrid
Systems

Motion Planning: Basics of Motion Planning,
Sampling-Based Motion Planning, Feedback Motion
Planning, Multi-Robot Motion Planning

Formal Methods for Robotics: Motion Planning from
LTL and p-Calculus Specification, Motion Planning
from Temporal Logic Specifications with
Probabilistic Satisfaction Guarantees, Reactive
Motion Plan Synthesis, Explaining
Unsynthesizability for High-Level Robot Behaviors,

Multi-Robot Motion Planning using SMT Solvers,
Software Synthesis for Semi-Autonomous Systems

CS639

Program Analysis,
Verification and Testing

The long yearned dream of establishing the
correctness of programs has cata-pulted program
analysis, verification and testing into the league of
the one of the most exciting research areas. This
course aims to impart the students a grasp of the
theoretical fundamentals of the subject; alongside, it
also intends to provide them a purview of the
practise via the study of some of the modern
verification and testing tools.

Following is the outline of the proposed course:
Dataflow Analysis;

Interprocedural Analysis: functional, call-string and
graph reachability based approaches

Abstract Interpretation;

Weakest Precondition, Floyd-Hoare Logic,
Separation Logic;

SoftwareModel Checking: symbolic execution,
state-space reduction, state-less model checking,
counter-example guided abstraction refinement,
model checking of concurrent programs

Program Testing: program testing basics, automatic
test-case generation, directed testing.

CS640

Computational Complexity

Complexity Classes. NP and co-NP, Results on the
structure of NP-complete sets, Sparse NP-hard
sets, Basic Inclusions and Separations,
Nondeterministic Space Classes, Logarithmic
Space, A PSPACE complete problem, Polynomial
Hierarchy, PH through Alternating Quantifiers,
Universal Relations, Probabilistic Classes,
Schwartz-Zippel Lemma and BPP, BPP and its
relationship with other Complexity Classes.

CS641

Modern Cryptology

Basics of finite fields.

Private and Public-key cryptography, existing
cryptosystems and their security.

Cryptanalysis of existing systems.

Zero-knowledge protocols, One-way functions.
Advanced protocols for different applications, e.g. e-
cheque, e-cash etc.

Network and System level security issues.

CS642

Circuit Complexity Theory

The course aims at a comprehensive overview of
results on the circuit complexity classes and their
relationship with the Turing based classes. The
topics to be covered in the course are as follows:
The class NC and its properties;

Charecterization of class P by circuits

The classes DLOG, NLOG, LogCFL and their
properties

The class SC, proof of the relationship RL is a
subset of SC

The class NC1 and its charecteriztions

The class TCO and its charecterizations

The class ACC and its charecterizations

The class ACO and its charecterizations

Lower bounds for ACO, for ACO[m] where_m_is a
prime power and for TC02.

CS643

Abstract State Machines

Examples of sequential abstract state machines
(ASMs, for short) specifying some familiar
algorithms. Proof of sequential ASM thesis which
states that all sequential algorithms can be captured
by sequential ASMs. Computations with abstract
structures, choiceless polynomial time. ASM
specification of parallel and distributed algorithms.
ASM methodology for specifying semantics of
programming languages, and for verification.
Comparison of ASM approach with other existing
methodologies for specification and verification.
ASM defined fine complexity classes. ASMs and
meta-finite models.

CS644

Finite Automata On Infinite
Inputs

Finite automata on infinite words and trees:
Complementation, determinization and algorithms
for checking emptiness.

Connections with logic: Finite automata and
monadic second order (MSO) logic on words and
trees. Decidability of MSO theory of various infinite
graphs, methods of interpretation and unfolding.
Applications: Decision procedures for temporal
logics. Modelling, verification and synthesis of
systems. Effective theory of infinite games.
Miscellaneous : Timed and hybrid automata.
Probabilistic transition systems. Visual pushdown
automata.

CS645

Topics In Design And
Analysis Of Algorithms

Introduction.

Linear time special cases for Disjoint set Union-Find
algorithms.

Topics in Computational Geometry like Selection
algorithms and application to convex hull (ultimate
convex hull algorithm), linear programming in two
and three dimensions.

Topics in Algorithmic Graph Theory like Planar
graph separators.

Integer sorting and improved algorithms for shortest
paths and minimum spanning tree (general and
integer weights).

Polynomial time algorithms for matching and
minimum cost network flow problems.

Scaling algorithms for network flow problems.

CS646

Parallel Algorithms

Complexity measure for a parallel algorithms.
Parallel searching algorithms: maximum/minimum,
median, K-th largest/smallest element. Parallel
sorting algorithms.

Parallel graph algorithms: parallel graph search &,
tree traversal algorithms, parallel algorithms for

connectivity problems, parallel algorithms for path
problems.

CS647

Advanced Topics In
Algorithms And Data
Structures

The course intends to deal with advanced aspects
of algorithm: design and analysis including data
structures, analysis and lower bound proofs,
amortized complexity of algorithms.

Fibonacci heaps and self-adjusting search trees,
Splay trees, linking and cutting trees.
State-of-the-art algorithms for minimum spanning
trees, shortest path problem. Network flows --
preflow-push algorithms, max flow algorithm, and
scaling algorithms.

Matching, blossoms, Micali-Vazirani algorithm.
Lower bound theory for parallel computations.

CS648

Randomised Algorithms

Review of discrete probability; Notion of randomized
algorithms, motivating examples; Markov,
Chebyshev inequalities, Chernoff bounds;
Probabilistic method; Hashing, fingerprinting;
Random walks and Markov chains. Program
checkers; Polynomial identities; Randomized
complexity classes, Probabilistically checkable
proofs; some number theoretic problems;
Approximate counting.

CS649

Logic In Computer Science

The aim of this course will be to provide introduction
to some applications of logic in computer science.
Following are some possible topics. At least three of
these will be covered in some detail. Actual choice
of topics, including depth and breadth, will depend
on interest/background of the class.
Communication and Concurrency: Processes as
transition systems, operations on these processes
(composition, hiding etc.). Bisimulation and
observational equivalences. Calculus of mobile
systems: pi-calculus. Some theory related to pi
calculus. Logics to reason about transition systems,
LTL, CTL* and modal mu calculus.

Reasoning about Knowledge: Knowledge as
modality, axioms of knowledge. @~ Common
knowledge, distributed agents exchanging
messages, agreeing to disagree. Logical
omniscience.

Finite Model Theory: Expressiveness of FO and its
extensions on finite structures. Games for lower
bounds. Connections with complexity classes, role
of order on the domain.

Feasible Proofs: Propositional proof systems for
tautologies. Simulation and lower bounds on length
of proofs for specific systems (e.g. PHP requires
superpolynomial length using resolution). Theories
of weak arithmetic, provably total functions and
relations to complexity theory.

Full Abstraction problem for PCF: PCF as an
extension of lambda calculus. Operational and
denotational semantics and the full abstraction

problem. Solutions to the full abstraction problem.
Games semantics.

CS650

Topics In Lambda Calculus

Optimal reductions in lambda calculus: Levy's
formalization of the problem, Lamping's algorithm
and its correctness. Connections to linear logic and
geometry of interaction. Inherent complexity of
implementing optimal reductions.

Categorical semantics of lambda calculus:
Introduction to category theory. Cartesian closed
categories and typed lambda calculus. Relation to
deductive systems. Categories with reflexive
elements, a construction by D. Scott.

Games semantics: Games semantics for lambda
calculus. Solution to full abstraction problem via
games. PCF, an extension of typed lambda
calculus.

CS651

Concurrent Data Structures
And Algorithms

The parallelizing compilers have come a long way in
helping the programmers automatically transform
sequential programs into parallel ones. However, a
compiler can only restructure a program and cannot
change the underlying algorithm. As a result,
parallelizability of a particular sequential program
ultimately depends on how the computation is
expressed. This course will emphasize the well-
known fact that every computation, after all, is a
composition of the data structures used and the
algorithms supported on those data structures. The
algorithms supported by the data structures greatly
influence the chances of parallelizing the
computation.

This course is divided into three parts. The first part
will develop some of the general tools needed to
design and argue about the correctness of
concurrent algorithms. These include the concepts
of linearizability, compositional linearizability, non-
blocking and blocking synchronization on shared
memory, and memory consistency models. The
second part of the course will focus on developing
efficient parallel algorithms for some of the
frequently used data structures such as linked lists,
queues, stacks, hash tables, skiplists, priority
queues, etc. The primary emphasis will be on
minimizing synchronization, often resorting to
optimistic parallelization via dynamic conflict
detection with the help of checkpoints. The third part
of the course will establish the connection of
transactional computation with these concurrent
algorithms and present a brief overview of software
and hardware implementation of transactional
computation.

CS652

Computer Aided
Verification

3-0-0-0-9

Pre-requisites: The course does not have any formal
prerequisites. The students are expected to have

mathematical maturity of the level of an
undergraduate degree in engineering. However,
some fa-

miliarity with _nite state machines and theory of
computation, and programming experience will be
helpful.

Proposed by: Indranil Saha

Estimated Enroliment: 30

Other faculty members who could be interested in
teaching the course: Prof. Amey Karkare (CSE),
Prof. Subhaijit Roy (CSE), Prof. Anil Seth (CSE),
Prof. Sandeep K. Shukla (CSE), Prof. Sunil Simon
(CSE) and others

Departments which may be interested: Electrical
Engineering, Mechanical Engineering, Aerospace
En-

gineering, Mathematics

Level of the course: PG (6xx level).

Short Description

Correctness of the hardware, software and cyber-
physical systems is of prime importance to prevent
_hancial

loss or loss of life. With the increase in the
complexity of the systems, ensuring the correctness
of the systems

becomes a signi_cant challenge and entails
algorithmic methods that can automatically ensure
correctness

of the systems without manual intervention. This
course will discuss the mechanisms for modeling a
system

and capturing its requirements formally, and
algorithms and techniques for verifying the model
with respect

to its formal speci_cation. The course will also look
into various software tools that have been
successful in

utilizing the algorithmic techniques to solve practical
veri_cation problem.

Topics

Modeling of Systems: Modeling of concurrent
systems, timed systems, hybrid systems and
probabilistic

systems.

Speci_cation Languages: Linear time properties,
regular properties, Linear Temporal Logic (LTL),
Com-

putation Tree Logic (CTL), Timed Computation Tree
Logic (TCTL), Probabilistic Computational Tree
Logic (PCTL)

Techniques for Model Checking: Explicit-State
Model Checking, Symbolic Model Checking,
Bounded

Model Checking, Equivalence and Abstraction,
Partial Order Reduction

BDD, SAT and SMT: Binary Decision Diagrams,
Satis_ability Solvers, Satis_ability Modulo Theories
(SMT) Solvers.

Software Tools: Popular formal methods tools such
as Spin, NuSMV, SAL, UPPAAL, SpaceX, Prism, Z3
and CUDD.

CS653

Functional Programming

ML (CAML dialect) or Haskellor some other
functional language; lambda-calculus and
combinators; abstraction and higher-order
functions; lazy and eager evaluation; types,
polymorphism, and type inference; Equations and
pattern matching; SECD machine/G machine;
denotational semantics of functional languages;
implementing functional languages.

CS654

Software Architecture

Complex software systems require abstraction and
analysis at an architectural level of abstraction. In
this course we study, typical software system
structures (architectural styles), techniques for
designing and implementing these structures,
models for characterizing and reasoning about
architectures, and tools architectural modelling.
Role of architecture in Software engineering;
Enterprise Architectures, Zachman's Framework;
Architectural Styles, Design Patterns; Architecture
Description Languages; Product-line architectures;
Component based development

CS655

Topics In Linear
Programming

3-0-0-0-4 (CS655A,
PG),

3-0-0-0-9 (CS655B,
uG)

The course will focus on basics of convexity theory,
linear programming and application of linear
programming in computer science. There will be
broadly three parts of the course interrelated with
each other.

The first part will cover the basics of convex sets,
cones and polyhedras; essential to understand the
structure behind convex optimization and motivate
why so many special cases of it can be solved
efficiently. This will also cover hyperplane
separation theorems. Linear programming will be
introduced and duality theory will be covered in
detail.

The second part will talk about major algorithms
which are used today to solve linear programming.
The major three algorithms, simplex, ellipsoid and
interior point method will be discussed. As an
assignment they will have to convert a problem into
a linear program and solve it using the existing linear
programming solvers.

The final part will cover some applications in
computer science. Specifically we will cover the
multiplicative update method and a recent result
where linear programming gives best approximation
algorithm for a set of constraint satisfaction
problems. Applications in network flows will also be
covered.

Basics of utility theory - the von Neumann-
Morgenstern axioms for utility theory and
characterisation theorem.

Definition of strategic form games, examples.
Some fundamental types of solutions concepts
based on dominance (strict, weak), stability
(equilibrium) and security (maximin). Relationship
between these solution concepts in general games
and in the special case of two player zero sum
games.

Mixed extension of a strategic form game. Solution
concepts based on mixed strategies.

Nash’s Theorem.

Complexity of computation of Nash equilibrium.
Special case - 2 player zero sum games,
correspondence between strong duality in LP and
minimax theorem.

CS656 Algorithmic Game Theory 3-0-0-9 Improvement dynamics and potential games.
Monderer-Shapley characterisation.
Congestion games
Computation of pure strategy equilibria in potential
games - PLS completeness
Graphical games. 0/1 polymatrix games and
hardness of computing equilibria.
Some subclasses of games which allow efficient
computation of equilibria.
Efficiency of equilibria (price of stability, price of
anarchy)
Introduction to auction theory, first price auction,
second price auction, incentive compatibility.
Introduction to mechanism design, Groves
Mechanism, pivotal mechanism and Bailey Cavallo
mechanism. Green-Laffont result.
Stable matching.
Matching markets and sponsored search.
Search engines have become ubiquitous with
modern information needs. What is it that enables
finding a document in the blink of an eye from a
seemingly unending catalogue of documents,
CS657 Information Retrieval namely, the Internet? The answer is "information

retrieval", essentially defined as the retrieval of
information (mostly text) efficiently from a large
collection of objects (mostly documents). In recent
years, information retrieval needs have expanded to
music, image, videos, graphs, and so on.

This course will cover the basic methods of
information retrieval. In particular, it will cover the
entire pipeline of building an information retrieval
system, starting from the basic boolean retrieval
model to designing web-scale engines. Emphasis
will also be given on the recent trends in the field.
The tentative topics to be discussed are:

1. Motivation for information retrieval
Basic document retrieval
1. Inverted index
2. Querying using inverted index
3. Tokenization
1. Word segmentation
2. Stopwords
3. Stemming
4. Document scoring
1. Zone scoring
2. Term Frequency
3. Inverse Document Frequency
4. Tf-idf
5. Document as a vector
1. Vector model
2. Document similarity
3. Document vector models

1. LDA
2. GLoVe
3. Word2Vec
6. Scalability
1. Skip list

2. Champion list
3. Tiered index
IR as a system
IR for non-documents
1. Images
2. Graphs
3. Audio

® N

CS658A

Malware Analysis And
Intrusion Detection

3-0-0-0- [9]

A recent report by the IDC for smartphone operating
system global market share shows that in
the 3rd quarter of the year 2018, the total market
share of Android was 86.8%. In May 2019, Google
revealed that there are now more than two and half
billion Android devices that are being used actively
in a month. With the increase in popularity of
Android, the number of active users and the day to
day activity of each user on Android devices have
also increased a lot. This allows malware authors to
target Android devices more and more. Itis reported by
Gadgets360 that 8400 new instances of Android
malware are found every day. This implies that a new
malware surfaces every 10 seconds. Malware is one of
the serious cyber threats which evolve daily, and
can disrupt various sectors like online banking,

social networking, etc. According to the reports
published by AV-Test Institute, across various
platforms — android, windows, Linux etc., there has
been a tremendous growth in the number of
malicious samples registering over 250,000 new
malicious samples every day. Analyzing these
samples manually using reverse engineering and
disassembly is a tedious and cumbersome task. It is
therefore not convenient for the security analysts.
Thus, there is a dire need for automated malware
analysis systems which produce effective results
with minimal human intervention. Antivirus systems
use the most common and primitive approach,
which involves the generation of signatures of
known malware beforehand and then comparing
newly downloaded executables against these
signatures to predict its nature. This technique
drastically fails in case of any zero-day malware, a
malware which has been newly created and thus a
signature is not available. Other common
techniques are static analysis and dynamic analysis.
Static analysis analyzes the executables without
executing it and predicts the results. It is generally
used because it's relatively fast but fails if the
malware is packed, encrypted or obfuscated. To
overcome the limitations of static approaches
another approach, i.e., dynamic analysis is used. It
involves collecting behavioural data by executing
the sample in a sandboxed environment and then
using it for detection and classification. The dynamic
analysis also has some limitations such as the
detection of virtual environment and code coverage
issues. As a result, researchers have started using
the combination of both the approaches known as a
hybrid approach.

Intrusion into IT networks of organizations, and OT
network of utilities, factories, power generation
stations is another growing cyber threat that one has
to cope with. Intrusion detection is the technique for
analyzing various signals (network traffic, variations
in CPU activities, variations in sensor data,
variations in attempts to gain access etc.) in order to
ascertain if an intrusion attempt is on-going or if the
intrusion is taking place. Intrusion detection also can
be done by rule-based techniques, signature-based
techniques or anomaly detection.

For those wanting to pursue a career in Cyber
Security — knowing the techniques for malware
analysis, and intrusion detection, ability to develop
tools to carry out such analyses is very important,
and that is why this course is being offered as an
advanced topics course.

On completion of this course, a student should be
able to: (i) Explain the vast scope of the malware
borne cyber-attacks, various malware types, and
platform-specific variations of malware; (ii) Explain
the threat models associated with network and host
intrusion by cyber-attackers; (iii) Explain the basic
signs of malware infection and signs of intrusion
from a security analyst’s point of view; (iv) Explain
various machine learning techniques and tools used
for malware analysis, anomaly detection and
technigues such as memory forensics; (v)
Implement tools for malware analysis employing
machine learning tools and libraries and measure
the efficacy of their tools on labelled and unlabeled
data; (vi) Implement intrusion detection tools with
machine learning libraries and measure the
efficacies of the tools; (vii) Read and explain most
recent publications in top conferences in the field of
cyber security pertaining to machine learning and
intrusion detection; (viii) prepare for further research
in malware analysis and intrusion detection.

The reason the two topics (a) malware analysis and
classification; and (b) intrusion detection are put
together in the same advanced topics course is
because they share many common machine
learning based techniques.

No.of 1
Module Topic hour
Lectures

Malware classification,
types, and platform
specific issues with
malware, Intrusion into
IT and operational
network (OT) and their
signs

Introduction

Manual Malware
Infection analysis,
signature based
Basic Malware| malware detection and
Analysis classification — pros and
cons, and need for
machine learning based
techniques
Static Analysis, Dynamic
Analysis and Hybrid
Analysis of Windows 8
Malware, Linux Malware
and Android Malware

Advanced
Techniques
Malware
Analysis

Study papers in Malware
Analysis from most
recent conferences,
Presentations and
Discussions, and
Implementations
Intrusion into network —
Firewalls, Rule based
techniques, signature
based Techniques, 4
Simple Machine
Learning Models on
Network Data
Advanced Machine
Learning Models for
Advanced Intrusion Detection in IT
Intrusion Networks, Machine 6
Detection Learning in OT network
especially with Cyber
Physical Systems
Latest Papers in
Intrusion Detection,
Their theory and
Implementations, and
Data Analysis
Techniques
Total Lecture 40
hours hours

Case Studies

Basic Intrusion
Detection

Case Studies

Text:

There is no textbook for such a course yet. Research
Papers will be the main sources of study material.
There will be other resources put on the web by the
instructor.

Lecture notes, assignments, supplemental
readings, and other resources will be provided via
the course website

The course will consist of 3 hours of lectures per
week, projects and homework, and possibly a
course project.

Grading
Semester grades will be based on the following
weights:

Attendance & In-Class o (including pop
. 10% .
Exercises quizzes)
(10% each for 7
Projects & Assignments| 50% | assignments and

projects)

Midterm Exam 20%
Final Exam 20%

Semester grades will be determined after all work is
completed and graded. Point ranges for letter
grades will be based on a several factors, including
absolute and relative performance. Letter grades
will not be based on a curve or point range.

Unless otherwise stated on the class all graded
assignments must be submitted by 11:55 pm on the
specified due date via course site on canvas. There will
be a 10% penalty for each 24-hour delay in
submitting an assignment.

If you feel that an error is made in grading an
assignment or an exam, you must present a written
appeal within one week after the assignment or
exam is returned to you. Verbal appeals are not
allowed, and grades will not be changed after the
one-week period. Your appeal should be
specific. Submit all appeals to the instructor.

CS659

Autonomous Cyber-
Physical Systems

The purpose of this course will be to educate
undergraduate and graduate students on state-of-
the-art techniques in autonomous systems from
both a theoretical and practical perspective. The key
difference in this course and other courses taught in
robotics, artificial intelligence, machine learning and
control will be that it will eschew a purely practical
focus that many of the other courses favor. It will
instead teach students to reason about aspects
such as safety, and reliability for autonomous
systems using tools from control theory, formal
methods, automata theory, artificial intelligence, and
logic.

The Course Will Cover The Following Topics

- Formal modelling and specification for CPS
models

- Model-based verification and testing

- Various ingredients for autonomy based on Al
techniques such as path planning, reinforcement
learning

- Basics of the software stack for autonomous
systems such as sensing, perception,
communication, and feedback control

CS660

Fundamentals Of
Interactive Computer
Graphics

Overview of the programmer's model of interactive
graphics. Computer graphics and image processing
and techniques. Implementation of a simple
graphics package.

Geometric transformations, viewing
transformations, advanced display architecture.
Raster algorithms and software. Techniques of
visual realism.

Algorithms for hidden edge and surface removal.
Shading models, colour displays and concepts of
shadows.

Introduction to visual analytics

Data

Different types of data

Big data and its characteristics
Foundations of data visualization

Visual perception

Information analysis and visual variables
Data and task abstraction

Software

Overview of available visualization software
ParaView, VTK, D3.js

Scientific visualization

Scientific data models

Basic visualization techniques

CS661 Big Data Visual Analytics 3-0-0-0 (9) Information visualization
Techniques such as Clustering, Dimension
reduction, PCP, MDS, SPLOM etc.
High dimensional and graph data visualization
Techniques for big data visual analytics
Data compression
Statistical methods
Information theory for big data visualization
High performance algorithms for visualization
Machine/Deep learning techniques for big data
visualization
Data exploration at extreme-scale
Exascale computing
In situ visual analysis
Future paradigm in extreme-scale data visualization
CourseObijective:
Linear Logic was introduced by J. Y. Girard in 1987.
This was followed by rapid new development of this
field and its applications for a decade or so.
Currently concepts and techniques related to these
works are used in many areas of logic and
semantics of computation. Objective of this course
is to cover a set of core topics in linear logic to
provide firm background to study more advanced
topics.

CS662A Introduction To Linear Logic 3-0-0-9

Syllabus:

Sequent Calculus presentation of propositional
linear logic. Cut-Elimination theorem. Undecidability.
Connection with computation via Curry-Howard
isomorphism. Computational interpretaions.
Connection with computation via linear logic
programming. Uniform proofs, an example
programming language like Lolli.

Categorical framework for semantics of linear logic.
Games and other models.

Proof nets.

Depending on availaility of time, basics of some
topics like Geometry of interaction, Abstract
machines, Bounded linear logic may be taken up.

CS663

Computational Geometry

Historical perspective: complexity notions in
classical geometry. Towards computational
geometry, geometric preliminaries, models of
computation.

Geometric searching: point location problems,
location of a point in a plannar subdivision, the slab
method, the chain method, range - searching
problems.

Convex hulls: problem statement and lower bounds.
Graham's scan, Jarvis's march, quick hull technique,
convex hulls in two and higher dimensions,
extension and applications.

Proximity: divide and conquer approach, locus
approach; the Voronoi diagram, lower bounds,
variants and generalizations. Intersections, hidden-
line and hidden surface problem.

The geometry of rectangles: application of the
geometry of rectangles, measure and perimeter of a
union of rectangles, intersection of rectangles and
related problems.

CS664

loT System Design

Internet of Things (loT) has gained prominence with
the ever increasing connected devices, sensor
systems and capability of computing resources.
Thanks to the advancement of fabrication
technology which has now made loT devices and
systems integral part of our daily life.

An |oT system typically comprises of smart sensor
nodes to collect data either real-time or offline, data
communication over a network and the back-end
data management & processing to extract intelligent
information. The typical use cases of loT are
wearables, smart homes, smart vehicles, traffic
prediction & control, weather monitoring &
forecasting, indoor location-based services, health
monitoring of machines & structures,
augmented/virtual reality etc. Consumers and
industries are the beneficiaries of such applications.

Course Objectives:

The focus of this introductory course would be “the
smart sensor node” with emphasis on design,
requirement, data interfacing and capabilities. The
course would cover engineering fundamentals,
blended with good industrial practices, which lead to
the first-time success of the design and
development of sensor node. APl development,
cloud computing, and data analysis would also be
covered in brief. Lab sessions and case studies will
supplement the classroom interactions.

After completing this course, students will be in a
position to understand various building blocks and
working of state-of-the-art loT systems. Students would
also gain enough insights to conceive and build loT
systems on their own.

CS665

Secure Memory Systems

Course Obijective

Memory subsystem is an important layer in the
computing system that has to be efficient for the
whole system to operate efficiently. In the current
era of computation, multiple cores are deployed in
devices that range from smart-phones, laptops,
desktops, servers, and cloud based systems.
Though, innovations in the world of hardware and
computer architecture have resulted in faster
computation in terms of better performance, a lot of
sensitive data that is stored and processed by these
devices can get leaked through various hardware
components, such as branch predictors, caches,
Translation look-aside buffers (TLBs), page tables,
prefetchers, Dynamic Random Access Memory
(DRAM) controllers, DRAM, and non-volatile
memories (NVMs). Basically, these hardware
components become side-channels and/or covert-
channels and become source of information leakage
in the form of side-channel and covert-channel
attacks (for example, the recent meltdown and
spectre attacks). The goal of the course is to make
students understand the various sources of attacks
and their mitigation techniques at the memory
systems, and design secure memory systems. The
course will be a fusion of fundamentals and state-of-
the-art research on secure memory systems.
Course Contents

10K feet view: Spying on passwords through memory
systems

The course comprises of four main modules apart
from a module on preliminaries.

Module 0: Preliminaries on Caches, DRAM, and
Virtual memory systems

Module 1: Secure Caches

Side-channel and covert-channel attacks at different
levels of cache hierarchy

Cache attack mitigation techniques

Trade-off between system performance, power, and
security

Module 2: Secure DRAMs

Side-channel and covert-channel attacks at the
DRAM controllers

Side-channel and covert-channel attacks at the
DRAM chips

Attack mitigation techniques

Module 3: Secure Virtual Memory Systems

https://www.youtube.com/watch?time_continue=13&v=RbHbFkh6eeE
https://www.youtube.com/watch?time_continue=13&v=RbHbFkh6eeE

Side/covert-channel attacks at the TLBs, MMU
caches, Page-table walkers

Mitigation techniques at different levels of virtual
memory system

Module 4: Other Topics

Reverse engineering memory systems

Interface between secure memory system, secure
processor, and secure OS. Intel SGX, ORAMs
Security issues in NVMs

Guest Lectures

Clementine Maurice

Vinod Ganapathy

CS666

Hardware Security For
Internet-Of-Things

3-0-0-0 (9)

Prerequisites:
Knowledge equivalent of C5220 and CS641

Who Can Take The Course:
PhD, Masters, 3rd and 4th year UG Students

Departments That May Be Interested:
CSE, EE

Course Obijective
The domain of hardware security mainly covers the
protection of physical device from different security
threats posed by information leakage through
covert channels, Trojan insertion, machine learning
attacks, in- vasive or semi-invasion attacks etc.
Even, secure deployment of various hardware
security primitives in the untrusted environments
entails several hardware and protocol level
challenges. In this course, we will focus on the
ever-increasing number of connected devices in
loT framework and analyse the impact of real world
threats. And then, we will intro- duce various
hardware security primitives for authentication and
secure communication. The contents selected for
the course are based on research papers from top-
tier journals and conferences such as IEEE TIFS,
IACR TCHES, IEEE TDSC, ACM TECS, CCS,
S&P, USENIX, DAC, DATE etc. covering advanced
topics of hardware security.

Course Contents

S. Broad Title Topics No. of
Lectures

loT Technology
loT Building | Stack, Protocols,
Blocks Applications, Role of

Hardware
Symmetric | Design Principles of
2 Key AES, PRESENT and 2

Cryptography| SIMON

https://cmaurice.fr/
https://www.cs.rutgers.edu/~vinodg/

Asymmetric

Design Principles of

3 Key |RsAand ECC
Cryptography
Hardware Motivation,
4 Design Advantages,
Usecase: AES
Power Models,
Power Diﬁeren’;ial and
5 Attacks Correlation Power
Attacks,
Countermeasures
Differential Fault
6 | Fault Attacks | AalYs's, Fault
Models,
Countermeasures
Timing Attacks,
Timing Side | CaChe Attacks,
7 Channel Micro-Architectural
Attacks, Impact on
loT
. Use cases: Smart
. Side Channel| tovt “Smart Home,
on Smart .
Devices Mobile App,
Wearables
Design Principles,
Physically | Compositions,
9 | Unclonable |Machine Learning
Functions | Attacks, Side

Channel Attacks

True Random

Design Principles,

10 Number NIST and AIS Test,
Generator | Attacks on TRNG
Impact, Design
11 Hardware | methodologies,
Trojan Detection
Techniques
Basic attack notions
of protocols, Use
cases: Attacks on
Security WPA2 handshake,
12 P Keyless entry
rotocols
systems of
automotive system,
logjam attacks in
TLS Layer
Authentication
Protocols,
Applications,
13| PUF Based /80 % Bit
Authentication)
commitment and
oblivious transfer
protocols
14 Remote Difference between
Attestation | Attestation,

Authentication and
Identi cation,
Attestation with
software RoT and
hardware RoT

Applicability in loT

Anonymous Framework, Intel
15 Authetication EPID Technology, 3
PUF based
Anonymity

CS667A

Introduction To Internet Of
Things And Its Industrial
Applications

3-0-0-0 (9)

Prerequisites
Knowledge equivalent of C5253 and CS455

Who Can Take The Course
PhD, Masters, 3rd and 4th year UG Students

Departments That May Be Interested
CSE, EE

Course Obijective

This course will be focused on introducing students
to new trends, applications, system architecture and
challenges involved in developing/deploying internet
of things systems using real industrial use cases. A
number of systems are getting connected to the
internet, where the sensor data is analyzed to
monitor and control the systems. Correctly analyzing
data coming from multiple sensors, choosing the
right hardware given the power and performance
tradeoff, hardware heterogeneity and security are
some of the challenges involved in developing loT
applications. In this course, students will read
research papers from top-tier conferences and
journals for loT to learn the most recent
advancements in loT research. The course will
cover the real-world use cases of loT applications
and hands-on projects related to those based on the
concepts learned in the class.

Course Contents

Here is a broad list of topics to be covered in the
course:

SNo| Broad Title Topics
y Overview of | New trends, applications and
loT systems challenges
Edge devices, sensors,
> loT system actuators, gateway, data
architecture | storage and historical analysis
in the cloud

Wireless sensor networks
Sensor (WSN), localization, node
networks | mobility, energy efficiency in
WSN
Communicat MQTT, wifi, Bluetooth, RFID,
ion LoRa, LoRaWAN,
communication security
Low power devices, energy
loT system | harvesting, performance
optimization| trade-off, choosing the right
hardware
Applications| Introduction to deep learning,
of deep camera-based loT
learning in | applications in healthcare,
loT retail and agriculture
Smart and Rggpberry-pl, Google home
mini, Alexa, Echo show
connected .)
. Industrial use cases: smart
devices :
home and agriculture
Case Smart cities, transportation,
studies manufacturing, automobile
No. of
Module Topic 1hour
Lectures
Cyber Security
Operations (CyOps),
and integration of
cyber security
operations to
Introduction software 5
development and
operation process
(DevSecOps), and
integration of relevant
operations (MLops,
Alops, DevOps)
Practical Cyber Security 3-0-0-0- [9] Planning of a Cyber
CS668A " : A
For Cyber Practitioners . Security operation in
Cyber Operation T o
Planning and an IT organization vs 8
Analvsis an OT/ICS
y Planning and Risk
Analysis
: Incident Indicators
Incident :
. and Incident
Detection and . 4
o Detection
Characterization . .
Analyzing Incidents
Vulnerability
Detection = Methods
Vulnerability and| and Tools, System
Consequence | Model and 6
Analysis Consequence
analysis, Threat
Intelligence and

Threat activation of
Vulnerabilities

Data Analytics
support for Incident
Incident Response,
Response and | Backup and 4
Recovery Recovery, Recovery
from Incident
Methods
Cloud and API | Cloud Security, Cloud 5
security issues | and API security
. Industrial Case
Case Studies Students 8
Total Lecture 40 hours

hours

CS669

Design For Security

3-0-0-9

Module 1: Finite Field Arithmetic Hardware
Introduction to finite field

Finite field operations: Addition, Multiplication and
Inversion

Application of finite field in cryptography

Finite field addition architectures

Finite field multiplication architectures

Finite field inversion architectures

Introduction to FPGA architecture

Module 2: Secure Constructions of Block Cipher:
AES

AES S-Box Construction

Iterative AES Architecture

Power based side channel attack on AES

Side channel evaluation methodology

Side channel countermeasure: Threshold
Implementation

Fault attack on AES: DFA and Trojan based

Fault attack countermeasure: Redundancy and
Infection

Module 3: Secure Constructions of Stream Cipher:
Grain

Introduction to linear feedback shift register (LFSR)
Berlekamp—Massey algorithm

Issues with LFSR based encryptions
Implementations of stream cipher Grain

Module 4: Efficient Implementation of Elliptic Curve
Architectures

Introduction to public key cryptosystem

Introduction to elliptic curve cryptography

Elliptic curves in GF(2m)

Elliptic curves in GF(p)

Secure scalar multiplication algorithm

Montgomery elliptic curve: Implementation of
Curve25519

Side channel attack on elliptic curve and
countermeasure

Elliptic curve isogeny based cryptosystem for post
quantum computing

CS671

Introduction To Natural
Language Processing

A computational framework for natural language. A
framework such as LFG, GPSG or Panlni in some
depth. Partial description of English or an Indian
language in the frame work, lexicon, algorithms and
data structures for implementation of the framework.
Introduction to semantics and knowledge
representation. Some applications like machine
translation, database interface.

CS672

Natural Language
Processing Semantics

Introduction to semantics, semantic interpretation,
knowledge representation, context and world
knowledge, plans and actions, discourse structure,
belief models, speech acts. Selected applications.

CS673

Machine Translation

Overview of Natural Language Processing;

Syntax, semantics, context and world of knowledge;
Strategies for machine translation, Direct, Transfer
and Interlingua approaches;

Rule based, Example based on Hybrid
Methodologies;

Construction of lexical data-base, Text generation,
Machine-aided translation, user interfaces;
Examples of English-Hindi and Hindi-English
machine translation.

CS674

Knowledge Discovery

This course will explore different machine learning,
knowledge discovery and data mining approaches
and techniques: Concept Learning, Decision Tree
Learning, Clustering and instance based learning,
Rule induction and inductive learning, Bayesian
networks and causality, Neural networks, Genetic
algorithms, Reinforcement learning, Analytical
learning.

CS674A

Post Quantum Security

3-0-0-0 (9)

* Module 1: Quantum Computing

— Basics of Quantum Computing

— Shor’s Algorithm

— Finite Field Operations

— Karatsuba and Number Theoretic Transformation
Based Multiplication

— Montgomery Multiplication

* Module 2: Lattice Based Cryptography

— Basics of lattice based cryptpgraphy

— NewHope, Kyber and Saber (NIST post-quantum
candidates)

—NTRU, NTRU Prime

— Digital Signature Algorithm: Dilithium, Falcon

* Module 3: Code Based Cryptography

— Classic McEliece
-HQC

* Module 4: Isogeny Based Cryptography

— Supersigular Isogeny based Key Exchange
(SIKE)
— Digital Signature Algorithm based on Isogeny

Computer Vision And

Human and Computer Vision.

Image Representation and Modelling.

Line and Edge detection, labeling, Image
Segmentation.

Pattern Recognition: Statistical, Structural, Neural
and Hybrid Techniques.

CS676 Image Processing Training and Classification.
Document Analysis and Optical Charecter
Recognition.
Object Recognition.
Scene Matching and Analysis, Robotic Vision.
Role of Knowledge.
S. Topic Lecture
No. hours

y Introduction to scientific simulations >

and data analysis

2 |Introduction to parallel computing 1

3 |Introduction to scientific visualization 1

Research paper discussion on topics
related to:
1. Visualization of time-varying

4 data 6
2. Visualization of multivariate
data
3. Flow visualization
4. Ensemble data visualization

Research paper discussion on topics

related to:
5.Statistical data analysis and

Topics In Large Data 5 visualization 5
CS677A Analysis And Visualization 3-0-0-0(3) 6.Information theory-based data

analysis and visualization
7.Visualization using Al

Research paper discussion on topics

related to:

6 8.High performance visualization 4
9.Performance data visualization
10.Scalable analysis and
visualization

Research paper discussion on topics
related to:
11.Remote visualization

7 12.In situ analysis and 4
visualization
13.Resource-constrained analysis
and visualization

8 Research paper discussion on topics 3

related to:

14.Information visualization
15.Application-specific
visualization (e.g. climate,
cosmology)

Kernel based methods in machine learning have
become a major paradigm in machine learning in the
last decade. The methods have also found
widespread application in pattern classification
problems. This course aims to first discuss the basic
principles of kernel based learning methods and
then branch off into some areas of current research
like: techniques for finding optimal kernels, error
bound analysis, novelty detection etc.

Topics:

Mathematical preliminaries: a) Probability -
probability measures, densities, distributions, mean,
variance, co-variance, sampling, stochastic process
b) Linear algebra A- vector spaces, linear
combinations, convex combinations, norms, inner
products, basis, inequalities c¢) Functional analysis

CS678 Learning With Kernels A- function spaces, norm, Banach and Hilbert
spaces, basis, completeness, inequalities,
reproducible kernel Hilbert spaces.

Data representation, similarity, classification
methods, function estimation, measures of
classification performance.

Kernels, representing similarity and dissimilarity.
Risk and loss functions, estimators.

Regularization, representer theorem.

VC dimension and VC bounds.

SVM and support vectors, multi-class classification,
semi definite programming.

Applications to biology and text categorization.
Principal component analysis.

Leave-1-out, leave-m-out bounds.

Kernel design, hyper-kernels, optimality of kernels.
Novelty detection.

Introduction: Basic definition and diagram; sources
and sinks; monicity and epicity; isomorphisms of
objects and morphisms; duality; Universal
Structures: Initial terminal and zero; Category of
sources and sinks; product; equalizer; regular
epicity and monicity; pullback; completeness;
kernel; Normal Categories: Normal hierarchy;

CS680 Category Theory And extension of categories; factorization; chains and

Applications In Computing

exactness; Morphism algebra: Biproduct;
semiadditive category; Additive category; Functors:
Natural transformation; categories on natural
transformation; property preserving and reflecting
functors; Diagram isomorphism; Similar categories;
generalization of limit and colimit; H-reflection
morphism and adjoint functor; Representable
functors Category in context of another category;

Application to Logic (Topoi); application to
Programming Languages.

CS681

Computational Algebra And
Number Theory

Elementary operations: the complexity of basic
operations like additions, multiplications for integers
and polynomials. Polynomials: The complexity of
factorization, irreducibility testing, ideal membership
etc for polynomials over finite fields. Motivating
example: Reed-soloman codes. Integer Lattices: the
complexity of finding a short vector in an integer
lattice. Motivating example; polynomial factorization.
Integers: The complexity of factorization, primality
testing, discrete log computation etc for integers.
Motivating examples: RSA and ElI Gamal
cryptosystems. Elliptic curves: the complexity of
addition, point counting etc. for elliptic curves.
Motivating examples: Elliptic curve cryptosystems
and integer factoring.

CS682

Quantum Computing

Foundations:
Hilbert spaces (finite dimensional). Axioms of
quantum probability. Quantum vs Classical
probability.

Quantum Computing:

Turing machines, Boolean circuits, Quantum
Circuits, Universality. Simon's problem, Phase
finding, Shor's algorithm, Grovers algorithm,
Probability amplification. Some applications.

Quantum Information Processing:
Quantum error correction.Knill-Laflamme theorem,
Stabiliser codes

Additional Topics:
To be decided as the course progresses and if time
permits.

CS684

Introduction To Algorithms
And Logics In Game
Theory

Games, payoffs and strategies; Two player zero
sumgames, minmax theorem and computing mixed
strategies via LP; Thegeneral case: Nash
equilibrium: existence, algorithms to find equilibrium
and complexity Issues; Examples and some other
kinds of equilibriums. Social choice theory, Arrow's
theorem; Elements of Mechanism design, VCG
mechanism. Some extensions such as games
modelswith partial information, randomized
mechanisms. Extensive games: turn based games,
deterministic and stochastic games, winning
conditions, determinacy, solving these games.
Logics to reason about games and strategies:
Alternating time temporal logic and its extensions.

CS685

Data Mining

We are witnessing an unprecedented growth in the
amount of data, starting from protein sequences and
structures to biomedical images, sensor readings
and chemical data. In order to render this vast

amount of data more useful than just a digital data
storage structure, the ability to mine for knowledge
inherent in the collection must be supported. This
course will cover the standard algorithms for such
data mining techniques. Special emphasis will be
given on the recent trends in mining text data, mining
graphs, mining spatio-temporal data, etc.

Besides the lectures by the instructor, the students
will be asked to coordinate a dis-cussion about a
recent paper in the class. They will also be required
to complete a group project that will provide them
with a hands-on experience on working with the
techniques taught in the class.

CS686

Data Driven Program
Analysis

The course will cover recent applications of data
mining techniques such as frequent itemset mining,
anomaly detection, and classification in analyzing
programs for automated testing, debugging, fault
isolation, repair, synthesis, etc.

The detailed contents are:

Overview of interesting problems in programming
languages and software engineering; motivation of
applying data-driven techniques for addressing
these problems.

Fundamentals of data mining: Data pre-processing,
statistical measures, classification and clustering,
frequent itemset mining, anomaly detection, graph
mining.

Fundamentals of program analysis: Control-flow
analysis, dataflow analysis, program dependence
graphs, efficient profiling algorithms, static and
dynamic instrumentation techniques.

Data mining for program analysis: Data-driven
techniques for bug localization, program synthesis
and repair, invariant generation, automated testing
and debugging.

CS687

Algorithmic Information
Theory

I'll provide you with a bibliography as the course
progresses.

1. Introduction Motivation and History, Brief
Review of Prerequisites

2. Kolmogorov Complexity Plain Kolmogorov
Complexity and its Problems, Self-delimiting
machines and Kolmogorov Complexity,
Symmetry of Information, the Coding
Theorem, Algorithmic Probability.

3. Randomness. Uniform Distribution,
Computable Distributions, Definition of a
finite random string, Abundance of
randomness, Dentin of an finite random
sequence, Martingale Characterizations.

4. Information Theory Information Theoretic
Inequalities, Algorithmic Entropy,
Randomness and Complexity.

5. The Incompressibility method Some basic
lower bounds, The incompressibility method,
A lower bound for Shell sort.

6. Resource-bounded Kolmogorov
Complexity Hartmanis' results, Levin's
Optimal Search, A Hierarchy theorem for
Probabilistic Classes with advice, Hutter's
Optimal Search, Kolmogorov Complexity
and Communication Complexity.

CS688

Computational Arithmetic-
Geometry And Applications

We want to count the number of roots of an algebraic
system (over finite fields). This is a very difficult
question in general (eg. #P-hard). However, there
are fast algorithms known for special cases. In this
course we will focus on the "2-variable" case, i.e.
curves. This case already demands significant
theory and has an amazing list of applications in
computer science. We will cover some important
aspects of the theory in a self-contained way, and
see as many applications as time permits. .
Fundamentals:

- Algebraic-geometry notation
- Zeta function of curves over finite fields
- The relevant Riemann hypothesis
- Finally, its proof and Weil bound for curves
Applications:

- Counting points on curves
- Integer factoring via curves

- Hyperelliptic curve cryptography
- Algebraic geometry codes

Computing roots of unity in finite fields

CS689A

Computational Linguistics
For Indian Languages

3-0-0-0 (9)

Natural language understanding, processing and
conversation have always been a goal for computer
science. This course will cover the basics of how a
computer deals with this subject. The course will
start from the basic units of a language (words or
tokens). It will also include more semantic order
tasks such as lemmatization, parts-of-speech
tagging, co-reference resolution, parsing a
sentence, etc. Higher order tasks such as question-
answering, discourse analysis, etc. will be covered
as well. The field of natural language processing
has made enormous advancements mostly due to
deep learning algorithms. However, availability of
large amounts of data along with annotations is a
necessity for deep learning. In this course, the focus
will be on Indian languages, where abundance of
such high quality data is still not very common. In
addition, traditional theories of what a word or a
sentence constitutes and how a sentence should be
parsed/understood will be covered.

CS690

Computational Genomics

Computational genomics is a novel and very active
application field of computer science where

biological mechanisms are deciphered from genome
sequencing data using computational and statistical
analyses. In the past twenty years, an explosion of
genomic data (from human and several other
organisms) has revolutionized a number of subfields
of biology — cell and molecular biology, developmental
biology, disease biology and so on. Computer
science plays a central role in genomics — from
sequencing and assembling of DNA and RNA
sequences to analyzing genomes (or transcriptomes)
for elucidating diverse biological
mechanisms through innovations in machine
learning, data structure and algorithms. In this
course, you will be introduced to some of the most
seminal machine learning and algorithmic
approaches for sequence analysis as well as the
most recent advances in the field. The course will be
structured as a combination of lectures and
discussion of recent publications in the field. The
lectures will introduce the topics and seminal
algorithms followed by research paper discussions
on advanced and most recent developments.

Tentative Topics

Fundamentals of Biological Sequence
Analysis: Sequence alignment algorithms, Hidden
Markov Models (HMMs) and modeling of biological
sequences

Genome-Scale Index Structures: Suffix array, Suffix
tree, Burrows-Wheeler transform (BWT), BWT index
and applications

Genome-Scale Short Read Alignment: Dynamic
programming along suffix tree paths, short read
alignment algorithms

Genome Assembly Algorithms: De Bruijn graphs
Variant Calling Algorithms: Probabilistic dynamic
programming

Transcriptomics: Gene expression analysis,
normalization, differential expression analysis,
clustering

Single-cell omics: Dimension reduction algorithms,
Generative processes, Manifold learning, Trajectory
inference, Regulatory networks

Cancer Genomics: Probabilistic graphical models for
tumor heterogeneity analysis, somatic mutation
detection algorithms, driver mutation detection,
matrix factorization problems in cancer genomics
Deep Learning in Genomics: ChlP-seq
data, transcription factor binding sites, Graph-
convolutional neural networks, transfer learning
Phylogenetics: Markov models of molecular
evolution, character-based phylogeny algorithms —

http://www.google.com/url?q=http%3A%2F%2Fwww.genomenewsnetwork.org%2Fresources%2Fwhats_a_genome%2FChp2_1.shtml%23%3A~%3Atext%3DGenome%2520sequencing%2520is%2520figuring%2520out%2Cbillion%2520of%2520these%2520genetic%2520letters.&sa=D&sntz=1&usg=AFQjCNHhu3ipO4QcTNWkNAIunpip989G7g
http://www.google.com/url?q=http%3A%2F%2Fwww.genomenewsnetwork.org%2Fresources%2Fwhats_a_genome%2FChp2_1.shtml%23%3A~%3Atext%3DGenome%2520sequencing%2520is%2520figuring%2520out%2Cbillion%2520of%2520these%2520genetic%2520letters.&sa=D&sntz=1&usg=AFQjCNHhu3ipO4QcTNWkNAIunpip989G7g
https://www.google.com/url?q=https%3A%2F%2Fwww.nature.com%2Fscitable%2Ftopic%2Fcell-biology-13906536%2F&sa=D&sntz=1&usg=AFQjCNEqzrK7AebMaZPMytlNKCp3EJgVOA
https://www.google.com/url?q=https%3A%2F%2Fwww.sciencedaily.com%2Fterms%2Fmolecular_biology.htm&sa=D&sntz=1&usg=AFQjCNEj1i8UGJ9Q-qCEV3JiZNPJ0G19yA
https://www.google.com/url?q=https%3A%2F%2Fwww.sciencedaily.com%2Fterms%2Fdevelopmental_biology.htm&sa=D&sntz=1&usg=AFQjCNEk-gRETwWF-BqbJyF0BtOGaT_C5w
https://www.google.com/url?q=https%3A%2F%2Fwww.sciencedaily.com%2Fterms%2Fdevelopmental_biology.htm&sa=D&sntz=1&usg=AFQjCNEk-gRETwWF-BqbJyF0BtOGaT_C5w
https://www.google.com/url?q=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTranscriptome&sa=D&sntz=1&usg=AFQjCNEEB9VvJTvL9_EXYDMGDj33W8BcFA

maximum parsimony, maximum likelihood and
Bayesian inference

CS697

Special Topics In Computer
Science & Engineering

Special and advanced topics in different areas of
Computer Science and Engineering will be covered
under this course.

CS698A

Selected Areas Of
Mechanism Design

3-0-0-0 (9)

This course is based on selected topics in
mechanism design. These topics include stable
matching, auctions, selfish routing, games on
networks, potential games. This is a research-
oriented course, hence students are expected to
read and present cutting-edge research topics in this
area, and also develop writing skills towards a formal
technical report.

The tentative plan of coverage is as follows.

Part 1:

Mechanism design theory — quick recap

Stable matching theory

Auctions

Voting and fair division — cake cutting

Algorithmic aspects of Mechanism Design

Network Games

Cooperative Games

Some topics from students’ interest

Part 2:

Selected papers from leading conferences and
journals on the topic that deals with research in
mechanism design in the paradigm of artificial
intelligence and multi-agent systems

Part 1 is the lecture part by the instructor. Part 2 is
for the students to survey, read, present papers (with
help from the teaching staff) on the state-of-the-art
of the topics that includes (but are not limited to)
those discussed in Part 1. This part also requires
every student to do a course project (aim: to extend
the state-of-the-art, deliverables: writing a technical
report comparable to a formal publication and an
end semester presentation).

Evaluation:

One exam (midterm) at the end of part 1. For part 2,
the technical report and the quality of the
presentations will be counted for the evaluation.
Both parts have equal weightage.

CS698B

Linear Algebraic Tools For
TCS

3-0-0-0-9

The course will focus on two linear algebraic tools,
convex optimization and spectral graph theory,
which have played an important role in the
development of theoretical computer science. There
will be broadly three parts of the course.

The first few weeks will be devoted to the basics of
linear algebra. It will mostly be focussed on rank,
eigenvalues and eigenvectors of matrices. This will
prepare students for the two tools they will be
studying later. The first tool will be convex
optimization and its applications in the field of
complexity theory. Initially, we will look at linear

programming. Through linear programming, we will
introduce the concepts of convexity, optimization
and duality. We will move to semidefinite
programming later and generalize the concepts
studied before. Finally, we will show some
applications of linear as well as semidefinite
programming in complexity theory. This part will
introduce them to the concepts of relaxation and
rounding. The second tool we will talk about is
spectral graph theory. We will study graphs by
looking at the spectrum of the associated matrices.
It is surprising that many of the combinatorial
properties of the graph can be studied by looking at
the eigenvalues and eigenvectors of the Laplacian
matrix of the graph. We will also discuss spectral
sparsification, which helps in designing solvers for
linear equations.

CS698C

Topics In CSE: Sketching
And Sampling For Big Data
Analysis

Today, there is a tremendous interest in processing
“Big Data” due to the ubiquity of large data sets
being generated in production systems. This has led
to an interest in designing algorithms and systems
for problems with very large inputs. The problems
range from matrix problems and numerical linear
algebra, optimization problems and graph problems.
This course will highlight the recent advances in
algorithms for numerical linear algebra and
optimization that have come from the technique of
linear sketching, whereby given a matrix, one first
compresses it to a much smaller matrix by pre-
multiplying it by a (usually) random matrix with
certain properties. Much of the expensive
computation can then be performed on the smaller
matrix, thereby accelerating the solution for the
original problem. This technique has led to the
fastest known algorithms for fundamental problems
in this area. We will consider least squares as well
as |1-regression problems, low rank approximation,
and many variants of these problems, such as those
in distributed environments. We will also discuss
connections of these methods with and using graph
sparsifiers. Some of this work is partially covered in
the monograph by Prof. David Woodruff: “Sketching
as a Tool for Numerical Linear
Algebra”, Foundations and Trends in Theoretical
Computer Science, vol 10, issue 1-2, pp. 1-157,
2014, publisher: NOW Publishing.

Prof. David Woodruff will be giving a GIAN course
on this topic from Jan 2-6. Each day will have
between 3-4 hours of lecture, except perhaps the
final day. All students who wish to take the course
will be enormously benefitted by attending Prof.
Woodruff's lectures. It is mandatory for those
registering in the course to also attend the GIAN
lectures.

CS698D

Topics In Data
Compression

This course covers the introductory basics and
some recent topics in the area of lossless data
compression. We will cover the following topics.
First, we introduce the notion of a lossless
compressor. We will cover
the fundamental techniques like Shannon-
Fano coding, Huffman coding and Arithmetic co
des. We will cover Kolmogorov complexity as the
"limit notion" of a lossless code, where the
compressor can be any arbitrary program.
Special emphasis will be given to the class of
"universal codes", including the Lempel-Ziv
algorithm and the Burrows-Wheeler transform. We
then study the optimality and rate of convergence
results of the Lempel-Ziv algorithm, in the weak
sense, and in the strong sense.
We then cover some current topics in the topic of
universal codes.
Specifically,the class of universal codes
has been shown to be "non-rob
ust" with respect to small perturbations. We
will study the tools used to establish these
results, and investigate some open problems in this
area.
Finally,we
finish with some applications of the Lempel-Ziv
a Igorithm to areas like Statistical inference, and
algorithms.
Mathematical techniques used in these results i
nclude recurrence theorems from ergodic theory,
and "Rokhlin-Kakutani tower constructions" from
Ergodic theory (also known as “cutting and
stacking".
If time permits, we will consider the recent class of
optimal compressors called "Asymmetric Numeral
Systems", which were introduced in 2014.

CS698E

Topics In Computer
Architecture And Operating
Systems

Selected research papers from recent flagship
conferences such as ISCA, ASPLOS, MICRO,
OSDI, and SOSP.

Each student has to review all papers before the in-
class paper discussion. One student would act as
the lead (for one paper) for the discussion and will
kick-start the discussion with a presentation.
Papers will be made available before the first class
of the course.

Assessment Policies

50 = Research Project

25 = Paper review

20 = Paper presentation (leading the discussion)

5 = Classroom participation

CS698H

Topics In Homotopy Type
Theory

The course will assume some background in HoTT,
(Ch 1, 2, 5, 6.1-6.5 from HoTT book). We plan to
cover in the course some of the remaining material
including applications in the HOTT book.

We also plan to cover some issues in semantics of
HoTT and more recent topics like cubical type
theory.

Students are expected to participate proactively in
the course by discussion and by offerring to give
some talks.

CS698I

Relational Structures In
Games

3-0-0-0 (9)

Game theory, a field which originated in the
intersection of mathematics and economics offers
models to analyse strategic interaction of rational
agents. Game theoretic models are often used as
tools in the analysis of multi-agent systems in
computer science. From the perspective of
computer science and artificial intelligence,
representation and computational complexity of
various game models is a pertinent issue.
Representing multiplayer games using many of the
standard game theoretic models studied in
economics (like strategic games) is problematic for
various reasons. The parameters needed to
represent games in such models usually grows
exponentially with the number of players. Such
game models also abstract the underlying structure
present in the multiplayer game, which typically
plays a crucial role in the algorithmic analysis. Thus
representations which are compact and those that
naturally model the wunderlying structure of
multiplayer games are important. The main goal of
this course is to study the representational and
algorithmic aspects of models of multiplayer
interaction. This includes game theoretic models as
well as those studied in social choice theory. We will
primarily study topics and address questions at the
interface of theoretical computer science and
economics. The topics include the following.

1. Basics of game theory - models and solution
concepts
1. Strategic form games, pure and
mixed strategies
2. Extensive games with perfect
information
3. Dominance and equilibrium
2. Models with compact representations
1. Graphical games
2. Polymatrix games
3. Coalition formation games
4. Coordination games
3. Algorithmic analysis
1. Hardness in computation of equilibria
2. Efficient computation via structural
restrictions
3. Algorithmic analysis of various fair
division models

Introduction To

We plan to cover the following topics.

1. Natural deduction for propositional logic, Curry
Howard isomorphism.

2. Simply Typed lambda calculus, its extensions with
polymorphism and dependent types. Normalization
theorems.

3. Some issues in semantics, an introduction to
category theory to the extent needed in semantical
issues.

4. Intuitionistic Type theory of Martin Lof. Proof
relevance, extensional vs intensional, identity types.

CS698. Constructive Types Theory 3-0-0-9 Path induction. Groupoid model for intensional type
And Its Applications theory
5. An introduction to homotopy type theory. Type
equivalence and univalence. higher inductive types.
Some recent developments like computational type
theory will be explored if time permits.
The course will be theoretical. It will encourage
active involvement of students in terms of reading
papers, students presentations and discussions.
These will also be main part of evaluation.
s Num.
N Broad Title Topics Lec.
o}
propositional logic,
P DPLL/CDCL/Chaff,
1. | Satisfiability SAT Extensions: 3
QBF, AlISAT, etc.
first-order logic,
SMT and | SMT, approaches to
2. applica- SMT solving, 4
tions symbolic execution
using SMT
message
authentication,
I . Cryptograp | symmetric-key
CS698K Des'gn'”gs\;;rgﬁ:'y Secure| 306.0.09 | 3. hic encryption, public-| 3

Primitives | key cryptography,
modeling crypto in

SMT

explicit state,
symbolic bounded
reachability,
induction,
abstraction/refinem

Model ent, CEGAR, self-
Checking | composition and
hyper- properties,
simulation/bi-

simulation, applicati
ons to security
verification

isolation, access
control, principle of
least privilege,
implementations of
System these in HW and
5. Security SW, verification of 4
Primitives | these primitives:
noninterference,
static and dynamic
information flow
tracking

case studies with
potential examples

being enclave
Case
) platforms,
studies, , ,
hypervisor security,
synthe- .
6. sis e-voting; syntax- 4
’ guided synthesis,
machine . ;
learning applica- thns
to/of machine
learning and

statistical inference

CS698N

Recent Advances In
Computer Vision

In this course, we look at a subset of topics in the
following exciting sub-areas of research in
Computer Vision. This list of topic is adaptable
depending on the level and interests of the students
actually taking the course.

Human Analysis eg. actions, pose estimation, facial
analysis, attribute recognition, pedestrian detection
Language and Vision eg. image captioning, visual
question answering

Image segmentation eg. semantic segmentation
and multi resolution edge estimation, instance
segmentation

There will be a significant project component -- the
students are expected to mainly learn by doing.

CS6980

Special Topics In Natural
Language Processing

3-0-0-0-9

Pre-Requisites:

Instructor's consent and Must: Introduction to
Machine Learning (CS771), Proficiency in Linear
Algebra, Probability and Statistics, Proficiency in
Python Programming

Desirable:

Probabilistic Machine Learning (CS772), Topics in
Probabilistic Modeling and Inference (CS775), Deep
Learning for Computer Vision (CS776)

Departments Which May Be Interested:

CSE, EE, MTH, IME, ECO

Level Of The Course:

Senior UG and PG (6xx level)

Course Description:

Natural language (NL) refers to the language
spoken/written by humans. NL is the primary mode
of commu- nication for humans. With the growth of
the world wide web, data in the form of textual
natural language has grown exponentially. This calls
for development of algorithms and techniques for
processing natural language for the purposes of
automation and for the development of intelligent
machines. This course will primarily focus on
understanding and developing techniques/learning
algorithms/models for processing text. We will have
a statistical approach to Natural Language
Processing (NLP), wherein we will learn how one
could develop natural language understanding
models from regularities in large corpora of natural
language texts.

Tentative Topics:

1. Introduction to Natural Language (NL): why
is it hard to process NL, linguistics
fundamentals, etc

2. Language Models: n-grams, smoothing,
class-based, brown clustering

3. Sequence Labeling: HMM, MaxEnt, CRFs,
related applications of these models e.g.
Part of Speech tagging, etc.

4. Parsing: CFG, Lexicalized CFG, PCFGs,
Dependency parsing

5. Applications: Named Entity Recognition,
Coreference Resolution, text classification,
toolkits e.g. Spacy, etc.

6. Distributional Semantics: distributional
hypothesis, vector space models, etc.

7. Distributed Representations: Neural
Networks (NN), Backpropogation, Softmax,
Hierarchical Softmax

8. Word Vectors: Feedforward NN, Word2Vec,
GloVE, Contextualization (ELMo etc.), Sub-
word information (FastText, etc.)

9. Deep Models: RNNs, LSTMs, Attention,
CNNs, applications in language, etc.

10. Sequence to Sequence models: machine
translation and other applications

11. Transformers: BERT, transfer learning and
applications

CS698P

Applications Of Markov
Chains In Combinatorial
Optimization And In
Evolutionary Dynamics

3-0-0-0-9

The course deals with applications of Markov chains
technigues in certain areas of computer
science and of biology. The unifying aspect in these
applications is the role played by mixing
time analysis, which is the focus of the course.
In a typical combinatorial optimization problem, each
instance x is associated with a state
space Sx, usually of size exponential in the size of
X, where each element of Sx has an
associated cost (or a value). The problemis to nd a
state with minimum cost (or with
maximum value). In the Markov chains approach to
solving such a problem, a Markov
chain is associated with each instance with the
property that the goal state has the highest
probability in the stationary distribution of the chain.
Success of this approach crucially
depends on the mixing time of the associated chain,
that is, how quickly does the chain
come close to its stationary distribution.
Markov chains have also been used to model
evolution for the nite population case lending
themseves to stochastic e ects. For a population of
size N of m types, a state of the chain
is the labelling of the N individuals each into one of
the m types. The population goes from
one state to another through reproduction, mutation,
and selection. The speci ¢ way in
which each of these happens determine the the
transition probability matrix of the chain.
The result of the evolution modelled by the chain is

given by the stationary distribution
of the chain. In most cases however, it is not known
how to determine the stationary

distribution directly, we need to simulate the chain
‘suciently long' and then sample from
the resulting distribution to obtain statistical
properties of the distribution. We need to
determine the mixing time of the chain to nd out how
long is “suciently long'. It has
been established recently that the expected motion
of such evolutionary chains turns out
to be a dynamical system, the trajectory of which
determines the mixing time properties
like rapid mixing.
Approximate outline of the course: Ergodicity
theorem of Markov chains. Mixing time of
Markov chains. Combinatorial optimization using
Markov chains. Metropolis algorithm.
Notion of conductance and its relation to rapid
mixing. Necessary and sucient conditions
for Markov chains approach to succeed for
combinatorial ~ optimization. Markov chains
modelling of molecular evolution. Quasispecies

model. Viral evolution and notion of er-
ror threshold. Evolution for the nite population case.
Expected motion of evolutionary
Markov chains and corresponding dynamical
system. Detailed analysis when the population
is of two types. A qualitative understanding of the
general m types case.

CS698Q

Complexity Measures For
Boolean Functions

3-0-0-0 (9)

Prerequisites:
Linear algebra.

Outline

The analysis of Boolean functions has been an
important tool in many diverse areas of computer
science, e.g., complexity theory, property testing,
social choice theory and quantum computing. The
aim of this course is to provide an introduction to the
analysis of Boolean functions, different complexity
measures on these Boolean functions and the
relationship between these complexity measures.

We will start with a Fourier analysis on the Boolean
hypercube, how it is defined and what are its
important properties. These properties will be
accompanied by applications in different areas of
computer science. We will cover the concept of
Fourier degree, sign degree and approximate
degree too. This background material and
applications will constitute around half of the course.

The next half will start with combinatorial complexity
measures on Boolean functions like sensitivity,
block sensitivity and certificate complexity. We will
then talk about complexity measures coming from
the computational world like decision tree
complexity, randomized decision tree and quantum
query complexity.

The final part of the course will deal with relations
known between these complexity measures from
different domains. Most of these were polynomially
related and we will give proof of these relationships.
If time permits, we will cover the recent breakthrough
result of Huang which shows that even sensitivity is
polynomially related to other complexity measures.

CS698R

Deep Reinforcement
Learning

3-0-0-0 (9)

Pre-Requisites

Instructor's consent and Must: Solid understanding
of Machine Learning (e.g, CS771 or equivalent
course), theoretical and practical knowledge of
Deep Learning, Proficiencyin Linear Algebra,
Probability and Statistics, Proficiency in Python
Programming.

Desirable

Probabilistic Machine Learning (CS772), Topics in
Probabilistic Modeling and Inference (CS775), Deep
Learning for Computer Vision (CS776)

Level Of The Course
Senior UG and PG (6xx level)

Course Description

In this course, we will explore how an agent (via
interactions with the environment) can learn by ftrial
and error. This is quite different from supervised
machine learning and comes close to how humans
learn by interactions. Reinforcement Learning (RL)
deals with problems that require sequential decision
making. This course will explore the foundations of
reinforcement learning. We will study
different algorithms for RL and later in the course,
we will explore how functional approximation in RL
algorithms could be done using neural networks
giving rise to deep reinforcement learning.

Tentative Topics

Introduction to Reinforcement Learning
Multi-armed bandits

Markov Decision Processes

Dynamic Programming

Monte Carlo Methods
Temporal-Difference Learning
Function Approximation Methods
Policy-Based and Value-Based Algorithms:
REINFORCE, SARSA, DQN,
Advantage Actor-Critic (A2C)

Proximal Policy Optimization (PPO)

CS698V

Introduction To Lambda
Calculus, Types And
Models

Lambda calculus was proposed by Church as a
syntactic system for manipulating constructive
notion of functions. Its simplicity and expressive
power is remarkable. It also gives rise to questions
such as self application and non-termination of
reductions. Types are used to annotate terms with
more tractable properties. Many type systems, such
as simple types, intersection types and polymorphic
types have been studied these also relate to types
in programming languages. Extensions of lambda
calculs are often used to give operational semantics
of theoretical core of various programming
languages.

Semanics (or model) of lambda calculus, using
traditional sets was challenging as it requires
embedding a suitable function space over a set D
witin D so that function abstraction and applications
are definable. Several models were proposed, finally
a satisfactory model D1 was found, as a limit of

some finite constructions, whose elements have
computational significance. This led to development
of domain theory, which is also used as a foundation
for a theory of computation and semantics of
programming languages.

In the course, we will look at these ideas. The course
will be theoretical and plans to follow the following
text closely.

CS698W

Topics In Game Theory
And Collective Choice

This course deals with topics at the interface of
Economics and Computer Science. The focus will
be more on the applications of game theory in social
decision making. For example, how online
advertising slots are allocated among competing
advertisers or how the mobile telephony spectrum is
distributed among the competing service providers
such that certain “good” and “fair” properties are
satisfied. Problems of similar flavor exist in many
more applications like crowdsourcing, internet
routing, fair division of goods, matching of students
to advisors, facility location, social networks and
many more. To understand these applications and
to improve them, technology needs to partner with
economic principles that drive them. This course is
aimed to develop those economic principles. Even
though the course is mainly focused on mechanism
design (inverse game theory), it does not assume
any background on game theory. The basic
concepts will be developed in the initial phase of the
course. The later part will see a bit of cooperative
game theory and several application domains of
these ideas.

There are no specialized prerequisites for this class.
I will assume familiarity with formal mathematical
reasoning, some probability theory, basic calculus,
the basics of computational complexity. | believe
that one learns the concepts of an algorithm better
when one codes that algorithm. Therefore,
experience in programming will be useful.

Detailed plan of the course: PDF

Here is the course timetable (for figuring out clashes
with other courses etc.)

Announcement(s):

Lecture-Scribe assignment is now available. Scribes
will be updated at the beginning of the week.

Some projects ideas are shared. Check Piazza.
Problem set 1 is available (few additions/edits may be
made later). Don’t send us solutions, these are for
your practice only.

Midterm exam is on September 22, 2017, from 1-3 PM
in KD 101. It will be a closed book/notes exam.
Midterm: questions, selected solutions.

No class on Oct 27, 2017 — Antaragni Friday!

Course logistics:

https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/agenda-gt-cc-course.pdf
https://www.cse.iitk.ac.in/pages/CourseTimetable.html
https://docs.google.com/spreadsheets/d/1nURYXiJ7Md-a4_Xl2YY4ZLRV_LPqOf-uyKa1YEo9vwI/edit?usp=sharing
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/psets/pset1.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/psets/midterm.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/psets/midterm-sel-soln.pdf

Class times and venue: Tue Fri 12.00 — 13.00, Wed
14.00 — 15.00, KD 102

Instructor: Swaprava Nath (office hours: by
appointment, mail at swaprava@cse.iitk.ac.in with
[CS698W] in the subject)

TA: Rahul Jain (office hours: email at
jain@cse.iitk.ac.in, Piazza is better to communicate
though)

Evaluation: 1 Midterm exam, 1 Final exam (both
closed book), 1 group course-project (30% each) +
scribing around 2 lectures (will follow roughly the
procedure mentioned here) — 10%.

Reference texts: No specific one. The following two
books could be helpful.
“Game Theory and Mechanism Design” — Y. Narahairi,
World Scientific and [ISc Press, paperback.
“Multiagent Systems“ — Y. Shoham and K. Leyton
Brown, Cambridge University Press,

Lectures

[Will be updated as the classes go along. Disclaimer:
these scribed lecture notes resulted from a
compilation from multiple other sources, e.g., books
and other lecture notes.]

Lecture 1: Introduction to the course with examples
of game theory in practice. [slides] [badminton game
video]

Lecture 2: Game theory 1. examples of games,
preferences without utility representation, von-
Neumann-Morgenstern utilities. [scribed notes]
Lecture 3: Game theory 2: vNM theorem, rationality
and intelligence, common knowledge, dominant
strategy, ideas of equilibrium. [scribed notes]
Lecture 4: Game theory 3: Pure and mixed strategy
Nash equilibrium, best response interpretation,
examples of mixed Nash in games, characterization
theorem of MSNE. [scribed notes]
Lecture 5: Game theory 4: proof of characterization
theorem, examples of its use to find MSNE,
computation of MSNE — difficulty, Nash theorem.
[scribed notes] [MSNE hardness paper]
Lecture 6: Game theory 5: Nash theorem and its
proof. [scribed notes]
Lecture 7: Game theory 6: correlated equilibrium,
comparison with MSNE, extensive form games —
notation and examples. [scribed notes]
Lecture 8: Game theory 7: equilibrium refinement for
perfect information EFG, subgame perfect Nash
equilibrium (SPNE), computing SPNE — backward
induction, expressive power of PIEFG — imperfect
information EFG. [scribed notes]
Lecture 9: Game theory 8: IIEFG — richer
representation of games, richer strategy space,
mixed versus behavioral strategies, incomparability

https://piazza.com/class/j5owr8ykt2p4jh
http://www.cs.princeton.edu/courses/archive/spr08/cos511/scribeinfo.html
http://www.amazon.in/Game-Theory-Mechanism-Design-Narahari/dp/9814730076/ref=tmm_pap_swatch_0?_encoding=UTF8&qid=&sr=
http://www.masfoundations.org/
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/01-intro.pdf
https://www.youtube.com/watch?v=cMqmKm6vsd0
https://www.youtube.com/watch?v=cMqmKm6vsd0
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec02_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec03_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec04_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec05_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/daskalakis09nash.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec06_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec07_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec08_final.pdf

of mixed and behavioral strategies — games with
perfect recall. [scribed notes]
Lecture 10: Game theory 9: outcome equivalence of
mixed and behavioral strategies in games with
perfect recall, equilibrium notion, “equilibrium notion
tied to the belief of the players”, Bayesian belief,
sequential rationality, perfect Bayesian equilibrium.
[scribed notes]
Lecture 11: Game theory 10: classification of
standard games, application domain: peer-to-peer
file sharing. [scribed notes] [paper 1] [paper 2] [slides]
Lecture 12: Game theory 11: games with incomplete

information — Bayesian games, types, common
prior, ex-ante, ex-interim utilities, examples —
bargaining, auction. [scribed notes]

Lecture 13: Game theory 12: Bayesian games —
equilibrium concepts, Nash, Bayesian equilibria,
equivalence, existence of Bayesian equilibrium.
[scribed notes] [addendum]
Lecture 14: Game theory 12.5: examples of Bayesian
equilibrium in first and second price auctions,
Mechanism Design — examples and notation.
[scribed notes]
Lecture 15: Mechanism design 1. social choice
function, mechanisms and implementation via
indirect and direct mechanisms, dominant strategy
implementability and dominant strategy incentive
compatibility, revelation principle for DSI SCFs.
[scribed notes]
Lecture 16: Mechanism design 2: implementation in
Bayesian equilibrium, Bayesian incentive
compatibility, revelation principle for BIC, Arrovian
social welfare functions, preference ordering,
weak/strong Pareto. [scribed notes]
Lecture 17: Mechanism design 3: independence of
irrelevant alternative, Arrow’s impossibility theorem
and its proof, decisive group, field expansion lemma.
[scribed notes]
Lecture 18: Mechanism design 4: group contraction
lemma — finishing Arrow’s theorem, social welfare
function to social choice function, voting rules.
[scribed notes]
Lecture 19: Mechanism design 5: axioms for social
choice function — Pareto efficiency, unanimity,
onto-ness, monotonicity, strategyproofness,
equivalence of SP and MONO, equivalence of PE,
UN, and ONTO wunder SP. [scribed notes]
Lecture 20: Mechanism design 6: Gibbard-
Satterthwaite theorem and its proof (for two voters),
cases where GS theorem does not hold. [scribed
notes] [Ref: Chapter 6 of the lecture notes by Debasis
Mishra]

Lecture 21: Mechanism design 7: GS theorem and

https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec09_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec10_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec11_final.pdf
http://conferences.sigcomm.org/hotnets/2006/locher06free.pdf
http://ccr.sigcomm.org/online/files/p243-levin.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/p2p-lecture.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec12_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec13_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/handwritten/bayesian-addendum.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec14_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec15_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec16_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec17_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec18_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec19_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec20_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec20_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/mishra17mdnotes.pdf

unrestricted domains, domain restrictions, single
peaked preferences, example of non-dictatorial
strategyproof SCFs, median voter SCF. [scribed
notes]

Lecture 22: Mechanism design 8: properties of SCF
in single-peaked domain, monotonicity, anonymity,
Moulin’s characterization theorem with median voter
rule. [scribed notes]
Lecture 23: Mechanism design 9: proof of Moulin’s
characterization theorem with median voter rule.
[scribed notes]
Lecture 24: Mechanism design 10: private good
allocation — task sharing model, Pareto efficiency,
Anonymity, strategyproofness, some candidate
SCFs. [scribed notes]
Lecture 25: Mechanism design 11: uniform rule SCF,
characterization of Pareto efficiency, anonymity, and
strategyproofness using this rule, mechanism
design with transfers and quasi-linear preferences.
[hwnotes] [scribed notes (draft)]
Lecture 26: Mechanism design 12: examples of
allocation and payment rules in quasi-linear domain,
dominant strategy incentive compatibility and its
impact on the payment functions. [scribed notes]
Lecture 27: Mechanism design 13: Pareto optimality
of mechanisms in quasi-linear domain, relation with
allocative efficiency, implementing AE rules —
Groves class of payments, Clarke’s pivotal rule.
[scribed notes]
Lecture 28: Mechanism design 14: illustration of VCG
mechanism and its properties in single-object
allocation, public good allocation, combinatorial
allocation. [hwnotes] [scribed notes (draft)]
Lecture 29: Mechanism design 15: more properties
of VCG mechanism in combinatorial good allocation,
case study: Internet advertisements, kinds of ads,
position auctions, agent valuations, click-through-
rate, allocation rules. [hwnotes] [scribed notes (draft)]
Lecture 30: Mechanism design 16: Internet
advertisements — sponsored search auctions,
comparison of VCG and generalized second price
(GSP) mechanisms, desirable properties of VCG.
[hwnotes] [scribed notes (draft)]
Lecture 31: Mechanism design 17: limitations of
VCG, generalization of VCG — affine maximizer
allocation rules, implementability, Roberts’ theorem.
[hwnotes] [scribed notes (draft)]

Important: Lecture-Scribe assignment.

Scribing

Here is the template for scribing the
lectures. Here and here are good introductions to
LaTeX. Please email me the scribed lecture notes
within 2 days of the class (first week scribes get one

https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec21_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec21_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec22_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec23_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec24_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/handwritten/lec25.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec25.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec26_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec27_final.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/handwritten/lec28.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec28.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/handwritten/lec29.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec29.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/handwritten/lec30.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec30.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/handwritten/lec31.pdf
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/scribe/lec31.pdf
https://docs.google.com/spreadsheets/d/1nURYXiJ7Md-a4_Xl2YY4ZLRV_LPqOf-uyKa1YEo9vwI/edit?usp=sharing
https://www.cse.iitk.ac.in/users/swaprava/courses/cs698w/notes_template.zip
http://en.wikibooks.org/wiki/LaTeX
http://tobi.oetiker.ch/lshort/lshort.pdf

week’s time) — I'll immediately put them on the
course page as ‘draft’. Later when | review the notes,
you may need to update the notes and
resubmit. Less the update that is needed, better is the
credit — so consider to do the first draft carefully.
Course Project

Since this is a research-focused course, the course
project is extremely important for developing new
ideas and transforming them into workable
solutions. It is seen that in doing a project, where
a learner is required to either code a system or prove
a result independently, s/he learns very intricate
details of an idea or concept. A course project can
be (a) completely a theoretical development, (b)
completely a real-world application development, or
(c) a mix of the previous two. All topics has to have
a significant game-theoretic/mechanism design
component — however there is no restriction on
what the application area may be. It is a good idea
to keep looking for ideas when different topics are
discussed in the class — and if you have an idea
that may be converted into a project, come and talk
to me. Deadline for submitting the project proposals
will be announced later.

Virtual Classroom

This semester we will be using Piazza for class
discussion. The system is highly catered to getting
you help fast and efficiently from classmates, the TA,
and myself. Rather than emailing questions to the
teaching staff, | encourage you to post your
questions on Piazza.

Enrolment link (students and TAs, please register
yourself here)
Class link

CS698X

Topics In Probabilistic
Modeling And Inference

Probabilistic models for data are ubiquitous in many
areas of science and engineering, and specific
domains such as visual and language
understanding, finance, healthcare, biology, climate
informatics, etc. This course will be an advanced
introduction to probabilistic models of data (often
through case studies from these domains) and a
deep-dive into advanced inference and optimization
methods used to learn such probabilistic models.
This is an advanced course and ideally suited for
student who are doing research in this area or are
interested in doing research in this area.
Pre-Requisites

Instructor’s consent. The course expects students to
have a strong prior background in machine learning
and probabilistic machine learning (ideally through
formal coursework), probability and statistics, linear
algebra, and optimization. The students must also
be proficient in programming in MATLAB, Python, or
R.

https://piazza.com/
http://piazza.com/iitk.ac.in/firstsemester2017/cs698w
http://piazza.com/iitk.ac.in/firstsemester2017/cs698w/home

Topics

A tentative list of topics to be covered in this course
includes

Fundamentals of probabilistic modeling

Basics of probability distributions and their
properties

Basics of probabilistic inference:
MLE/MAP/Bayesian inference

Probabilistic graphical models (directed and
undirected models)

Probabilistic approaches for linear modeling, Sparse
Bayesian Learning

Latent variable models

Mixture models and latent factor models

Latent variable models for dynamic/sequential data
Latent variable models for networks and relational
data

Latent variable models with covariates
Approximate Inference

Expectation Maximization

MCMC methods

Variational methods

Scalable inference with stochastic optimization
Other methods: Likelihood-free methods, spectral
methods, etc.

Nonparametric Bayesian methods

Gaussian Process for function approximation
Dirichlet process and beta processes

Other stochastic processes (gamma/point
processes, etc., and their applications)

Bayesian Optimization

Bayesian Deep Learning

Theory of Bayesian statistics

Probabilistic programming

Other topics based on students’ interests

Treatment of the above topics will be via several
case-studies/running-examples, which include
generalized linear models, finite/infinite mixture
models, finite/infinite latent factor models, matrix
factorization of real/discrete/count data, sparse
linear models, linear Gaussian models, linear
dynamical systems and time-series models, topic
models for text data, etc.

CS698Y

Modern Memory Systems

The course comprises of four main modules apart
from a module on preliminaries.
Module 0: Preliminaries on Processor, Cache, and
Memory
Module 1: Shared on-chip Cache Management
(i) Cache management policies (insertion,
eviction, promotion, and bypassing)
(i) Multi-core cache hierarchies (inclusive,
exclusive, non-inclusive), static/dynamic non-
uniform cache hierarchies

(iii) Latency tolerance techniques (hardware
prefetching and cache compression)

Module 2: DRAM Systems
(i) DRAM controllers, timing constraints, DRAM
organization, DRAM modeling issues
(i) DRAM scheduling policies and DRAM
address mapping schemes
(iii) Management of DRAM capacity, bandwidth,
energy, and power

Module 3: Secure/reliable Memory
(i) Side/covert-channel attacks, cold boot
attacks at the cache and DRAM
(i) DRAM scaling challenges, reliability issues,
and row-hammer problem

Module 4: Emerging Topics
(i) 3D/2.5D DRAM stacking, DRAM cache,
PCM, 3D X-point, and processing-in-memory
(i) Memory hierarchy for approximate
computing and memory for large-scale systems

CS699

MTech Thesis

CS711

Introduction To Game
Theory And Mechanism
Design

3-0-0-0 (9)

This course is an introduction to classical game
theoretic ideas and results with the aim to design
mechanisms that satisfy desirable axioms. The
course will introduce ideas of rationality and
intelligence, cover non-cooperative games
(including complete information simultaneous move
and sequential games, and later incomplete
information games), cooperative games (ideas of
coalition, core, Shapley value, neucleolus etc), and
introduce mechanism design framework (social
choice and welfare functions, Arrow’s impossibility
result, unrestricted preferences and Gibbard-
Satterthwaite result, domain restriction: single-
peaked, task allocation domains, quasi-linear
preferences), and demonstrate applications of these
ideas in practice.

A tentative list of topics are as follows.

1. Non-cooperative game theory
1. Quantitative models of strategic
interaction: rationality, intelligence,
common knowledge
2. Complete information simultaneous

move games — normal form
representation
1. Ideas of equilibria:

domination of strategies,
Nash equilibrium

2. Existence results for mixed
and pure Nash equilibrium

3. Correlated equilibrium.

3. Complete information sequential
move games - extensive form
representation

1. Perfect and imperfect
information extensive form
games

2. Equilibria concepts -
subgame perfect equilibrium,
perfect Bayesian equilibrium,
analogies with pure and
mixed Nash equilibrium

4. Incomplete information games

1. Bayesian games

2. Equilibria concepts tied to the
belief system

3. Nash and Bayesian equilibria
in incomplete information
games

5. Cooperative Game Theory

1. Utility representation in form

of coalition
2. Transferable utilities game
1. Imputation, core,
Shapley value,
nucleolus

6. Introduction to mechanism design
1. Incomplete information to
player types
2. Social welfare function,
Arrow’s impossibility result
Social choice function,
Gibbard-Satterthwaite result
Domain restriction
Single-peaked preferences
Task allocation domain
. Quasi-linear preferences
7. Some real world applications of
mechanism design

w

No ok

CS712

Selected Areas Of
Mechanism Design

3-0-0-0 (9)

Pre-Requisites:

Familiarity with formal mathematical reasoning,
probability theory, calculus, basics of computational
complexity, and computer programming. The course
also expects familiarity with game theoretic ideas
and results — hence a course like CS711 or CS656
will be required.

Description

This course is based on selected topics in
mechanism design. These topics include stable
matching, Internet advertising, sponsored-search
auctions, selfish routing, games on networks,
potential games. This is a research-oriented course,
hence students are expected to read and present

cutting-edge research topics in this area, and also
develop writing skills towards a formal technical
report.

The tentative plan of coverage is as follows.

Part 1:

Mechanism design theory — quick recap

Stable matching theory

Quasi-linear domain

Internet advertising

Auctions

Single-parameter domains

Fair division

Algorithmic aspects of mechanism design

Network games

Part 2: Selected papers from leading conferences
and journals on the topics that deal with research in
mechanismdesign in the paradigm of artificial
intelligence and multi-agent systems.

CS718

Sublinear Algorithms For
Processing Massive Data
Sets

Short Description

Algorithmic techniques for processing massive data
sets in sublinear space and time, with probabilistic
guarantees.

Motivation and Goals of the Course

There has been a spectacular advance in the
capability to acquire data. Applications processing
this data have caused a renewed focus on efficiency
issues of algorithms. Further, many applications can
work with approximate answers and/or with
probabilistic guarantees. This opens up the area of
design of algorithms that are significantly time and
space efficient compared to their exact counterparts.
In this course, we will cover modern developments
in the area of algorithms for efficient processing of
massive data sets.

Topics:

Compressive sensing. fundamental [1/12 sparse
recovery procedure and universality. Fast sparse
recovery: Berinde and Indyk's algorithm. 12/12 sparse
recovery procedures: Algorithms by Gilbert, Li, Porat
and Strauss and by Price and Woodruff.
Communication Complexity: Introduction and appli-
cations: Lower bounds for sparse recovery by Do Ba
etal. and Price and Woodruff. Connection to
Kashin's work.

I2-Dimensionality Reduction: Johnson-
Lindenstrauss's (J-L) Lemma. Fast J-L transforms:
Ailon-Chazelle, Dasgupta et.al., Kane and Nelson.
Randomized algorithms for matrix problems:
Random projections; Matrix multiplication and norm
estimation; Random sampling of columns and
elements from a matrix; Sampling algorithms for L2
regression and relative error low-rank matrix
approximation, Numerical Linear Algebra in
streaming model.

Novel data-motivated matrix factorizations: Sparse
PCA; Matrix rank minimization; CUR and related
decompositions.

(Time permitting) Algorithmic approaches to graph
partitioning problems: Flow-based partitioning
methods. Spectral-based partitioning methods:
Combining spectral and flow-based methods; Local
graph partitioning methods. Embeddings and
geometric structure related to graphs. Expanders for
algorithms and real networks.

CS719

Introduction To Data
Streams

Motivating applications: network monitoring, sensor
networks, need for highly efficient processing of high
speed and high volume data streams, Space and
time efficient randomized algorithms as a candidate
solution, models of data streams. Basics of
randomization: elementary probability theory,
expectation, linearity of expectation, variance,
Markov and Chebychev's inequality, Chernoff and
Hoeffding (CH) tail inequalities, hash functions,
limited independence, CH-bounds for limited
independence.

Finding frequent items in data streams, Estimating
distinct item queries, Estimating frequency
moments, estimating join sizes, Approximate
histograms over data streams, Transforms over data
streams, wavelets, fourier and DCT clustering over
data streams, Applications to graphs.

CS720

VLSI Testing And Fault-
Tolerance

The course is primarily intended to familiarize
students with the problem of testing large and
complex electronic circuits.

Various techniques to solve this problem and
concepts of design for easy testability (DFT) will be
discussed. Topics related to fault-modeling and
fault-simulation to evaluate the fault-coverage of test
vectors will be covered in detail.

The problem of reduced yield and reliability of
circuits in presence of faults will be discussed and
techniques to improve the yield and reliability of
these circuits by introducing fault-tolerance
measures will also be covered.

Various redundancy techniques like structural, time,
information and software redundancy will also be
discussed in detail.

CS724

Sensing, Communications
& Networking For Smart
Wireless Devices

The course will cover different types of sensing,
communication and networking techniques for
current/future smart devices. The focus of this
course is to build the foundations for building real-
world technologies and solutions. The course will
start with some mathematical concepts and then
how to apply them in solving real-life problems. Key
topics of this course include GPS, indoor localization
techniques, motion tracking, applications of different
sensing modalities, low power wireless protocols
etc.

Tentative Topics

Introduction: Technology, scope, applications of
wireless sensing and sensor networks

Localization: GPS localization, indoor localization
challenges, RSSI based localization, fingerprinting
based approaches, Time-of-flight (ToF), Time
difference of arrival (TDoA), Clock synchronization
Signal Processing and applications: Time domain to
frequency domain conversion, DFT basics,
Beamforming basics and applications, Angle-of-
arrival (AoA) based localization

IMU sensor and motion sensing: Understanding
inertial measurement unit (accelerometer,
gyroscope, magnetometer), sensor fusion,
applications of IMUs for motion tracking, gesture
detection, activity tracking etc.

MAC in sensor networks: Requirements,
synchronous vs asynchronous MAC, low-power
MAC, specific examples including IEEE 802.15.4
Routing in sensor networks: Energy aware routing,
geographic routing, attribute based routing etc.
Device-free sensing: Wireless signals and
communication channels for sensing, applications
like human presence detection, digital agriculture
etc.

Dynamic time warping and applications: Basics of
pattern matching, dynamic time warping,
applications like posture detection, hand movement
tracking etc.

CS725

Topics In Networking

Recent developments in various fields in
networking, including but not limited to, routing, flow
control, performance evaluation, transport protocols,
application protocols, real-time protocols, and
network architectures.

Emerging technologies such as, ATM, SMDS,
Frame-relay, SONET, ISDN. Issues in Gigabit
networking.

Network related issues in development of multi-
media applications.

CS726

Topics In Multimedia

Multimedia systems - requirements, technology.
Coding and compression standards - JPEG, MPEG,
etc.

Architecture issues in multimedia. Desk area
networks.

Operating Systems Issues in multimedia - real-time
OS issues, synchronization, interrupt handling, etc.
Database issuses in multimedia - indexing and
storing multimedia data, disk placement, disk
scheduling, searching for a multimedia document.
Networkng issues in multimedia - Quality-of-service
guarantees, resource reservation, traffic

specification, shaping, and monitoring, admission
control, etc. Multicasting issues.

Session directories. Protocols for controlling
sessions.

Security issues in multimedia - digital watermarking,
partial encryption schemes for video streams.
Multimedia applications - audio and video
conferencing, video on demand, voice over IP, etc.
Latest developments in the field of multimedia.

CS727

Topics In Internet
Technologies

The World Wide Web which started as an
application on the Internet has evolved quickly into
a platform on which all applications are built. In this
course we deal with how to design, build and deploy
a contemporary web application.

Perquisites:

Knowledge of: HTTP, HTML, CSS, JavaScript,
Server side scripting(Python/Java/PHP..).
Familiarity with Cloud Computing will help.

Topics

Part 1: Fundamentals

Web Applications: Architecture, Application
Frameworks

Technologies: Cloud computing, Android Apps,
Technology Frameworks, MEAN Stack, XML
Quiality Attributes: Performance, Security

Part 2: Applications
Multilingual Web, Search engines. Semantic Web,
Block Chains, Internet of Things

CS728

Topics In Grid Computing

Overview. Focuses on grid computing as emerging
new computing paradigm for solving complex
collaborative problems that require massive
resources and infinite CPU cycle. The topics
included: Definition of Grid; Basic Building Blocks;
Issues in Management of Grid Models; Evolution of
Grid Models.

Architecture. Deals with grid architecture providing
an anatomical look into fundamental system
components and their functionalities as well as
interactions. Topics: Requirements concerning
abstractions, behaviours, resources, connectivity,
and protocols; Open grid service architectures.
Environment. Talks about grid computing
environments. Topics: Overview of GCE;
Programming models; Middleware for building grid
computing environments; Language support (MPI-
G, MPI-G2, etc) for grid computing; Meta models for
grid programming; Security.

Applications. Deals with case studies, how the
global computing infrastructure has become a reality
for collaborative complex data intensive computing
aid for federated database services, web services,

bioinformatics. It will also include among others
some selection of topics from Seti project, Sun grid
engine, Skyserver and some national grid projects.
Monitoring and evaluation. It will include following:
Monitoring; Scheduling; Performance tuning;
Debugging and performance diagnostic issues;

CS730

Topics In Operating
Systems

3-0-0-0 (9)

The course will primarily focus on
the following topics.

1. Introduction: Operating System concepts
catch-up using Linux kernel as the reference
OS.

2. Linux kernel programming: Customizing the
Linux kernel, design and implementation of
simple kernel modules, and, design of new
kernel features with user space interfacing
using system call APl and character devices.

3. lIsolation enforcement in the Linux kernel:
Isolation between user and kernel space,
process level isolation, process group level
isolation techniques (Linux Cgroups),
application containers (e.g., docker and
LXC), security issues and advanced isolation
techniques.

4. OS design for multi-core machines:
Synchronization challenges and solutions to
address performance and scalability
aspects. /0 scalability using hardware
enhancements like solid state devices
(SSDs), IOMMU, SR-IQV etc.

5. Advanced isolation mechanisms: Design
and implementation of virtualized
systems, hypervisors (KVM and Xen).

CS731

Blockchain Technology And
Applications

3-0-0-0- [9]

Blockchain is an emerging technology platform for
developing decentralized applications and data
storage, over and beyond its role as the technology
underlying the cryptocurrencies. The basic tenet of
this platform is that it allows one to create a
distributed and replicated ledger of events,
transactions, and data generated through various IT
processes with strong cryptographic guarantees of
tamper resistance, immutability, and verifiability.
Public blockchain platforms allow us to guarantee
these properties with overwhelming probabilities
even when untrusted users are participants of
distributed applications with ability to transact on the
platform. Even though, blockchain technology has
become popularly known because of its use in the
implementation of Cryptocurrencies such as
BitCoin, Ethereum, etc., the technology itself holds
much more promise in various areas such as time
stamping, logging of critical events in a system,

recording of transactions, trustworthy e-governance
etc. Many researchers are working on many such
use cases such as decentralized public key
infrastructure, self-sovereign identity management,
registry maintenance, health record management,
decentralized authentication, decentralized DNS,
etc. Also, corporations such as IBM and Microsoft
are developing their own applications in diverse
fields such as the Internet of Things (IoT), etc., even
enabling blockchain platforms on the cloud.

Considering the need to disseminate the emerging
concepts for students, we decided to prepare the a
new course on blockchain technology platforms and
applications.

The students will be exposed to the following topics:

1. Basic Cryptographic primitives used in
Blockchain — Secure, Collison-resistant hash
functions, digital signature, public key
cryptosystems, zero-knowledge proof
systems

2. Basic Distributed System concepts -
distributed consensus and atomic broadcast,
Byzantine fault-tolerant consensus methods

3. Basic Blockchain (Blockchain 1.0) -
concepts germane to Bitcoin and
contemporary proof-of-work based
consensus mechanisms, operations of
Bitcoin blockchain, crypto-currency as
application of blockchain technology

4. Blockchain 2.0 — Blockchains with smart
contracts and Turing complete blockchain
scripting — issues of correctness and
verifiability, Ethereum platform and its smart
contract mechanism

5. Blockchain 3.0 — Plug-and-play mechanisms
for consensus and smart contract evaluation
engines, Hyperledger fabric platform

6. Beyond Cryptocurrency — applications of
blockchain in cyber security, integrity of
information, E-Governance and other
contract enforcement mechanisms

7. Limitations of blockchain as a technology,
and myths vs. reality of blockchain
technology

8. Research directions in Blockchain
technology

The course will be very heavy on projects and
require ability to quickly configure a new

development platform and use it,
applications, and move to a new one. At least
three blockchain platforms will be used in

projects in the course.

develop

The course will consist

of instructor presentations, demonstrations, and
hands-on projects.

Module

Topic

No. of 1
hour
Lectures

Introduction

Need for Distributed
Record Keeping
Modeling faults and
adversaries

Byzantine Generals
problem

Consensus algorithms
and their scalability
problems

Why Nakamoto Came
up with Blockchain
based cryptocurrency?
Technologies Borrowed
in Blockchain — hash
pointers, consensus,
byzantine fault-tolerant
distributed computing,
digital cash etc.

Basic
Distributed
Computing

Atomic Broadcast,
Consensus, Byzantine
Models of fault tolerance

Basic Crypto
primitives

Hash functions, Puzzle
friendly Hash, Collison
resistant hash, digital
signatures, public key
crypto, verifiable random
functions, Zero-
knowledge systems

Blockchain
1.0

Bitcoin blockchain, the
challenges, and
solutions, proof of work,
Proof of stake,
alternatives to Bitcoin
consensus, Bitcoin
scripting language and
their use

Blockchain
2.0

Ethereum and Smart
Contracts, The Turing
Completeness of Smart
Contract Languages and
verification challenges,
Using smart contracts to

enforce legal contracts,
comparing Bitcoin
scripting vs. Ethereum
Smart Contracts
Hyperledger fabric, the
Blockchain | plug and play platform 8
3.0 and mechanisms in
permissioned blockchain
Pseudo-anonymity vs.
anonymity, Zcash and
Zk-SNARKS for
anonymity preservation,
Privacy, attacks on Blockchains —
Security such as Sybil attacks, 8
issues in selfish mining, 51%
Blockchain | attacks - -advent of
algorand, and Sharding
based consensus
algorithms to prevent
these
Total Lecture 40 hours
hours
I\Slc-) Broad Title Topics ngcct)ﬂorfes
y Resource Job scheduling, 4
management Slurm, hwloc
Lustre, I/0
5 Parallel file optimizations, 4
systems I/O parameter
selections
Remote
3 One-sided memory 4
communications | access,
windows
computation
Cs733 Toplos In Parallel 3-0-0-9 4 | Performance | S0 L oon | 4
omputing modeling
models, logP,
logGP models
Profiling and
tracing,
understanding
- popular tools
5 | Parallel profiling such as TAU, 4
HPCToolkit, 110
profiing using
Darshan
Mapping
Topology-aware heuristics,
6 . performance 4
mapping ;
improvement
with mapping,

visual
representation
of topology

Simulation,
visualization
Scientific and analysis
7 simulation and | workflows, 4
visualization large-scale data
movement
optimizations

Apache Spark,
Large-scale

8 | Sparkand MPI | data analysis 4
using Spark and
MPI

Trends from
Grid to Cloud to 4
Fog and Edge

Grid, Cloud, Fog,
Edge

Projects based

on above topics 4

10 | Project review

CS738

Advanced Compiler
Optimizations

Introduction to Advanced topics, Compiler
Algorithms Notation, Symbol table structure,
Intermediate representation, Run time support,
Producing code generators automatically, Control
flow analysis, Data flow analysis, Dependence
analysis and dependence graphs, Alias analysis,
Introduction to optimizations, Early optimizations,
Redundancy elimination, Loop optimizations,
procedure optimizations, Register allocation, Code
scheduling, control flow and low level optimizations,
Inter procedural Analysis and optimizations,
Optimization for memory hierarchy, Case studies.

CS740

Topics In Logic And
Computation

Curry-Howard isomorphism between typed terms of
formal systems representing computable functions
and deductions in certain logics.

Simply typed lambda calculus, Godel's system T
and Girard's system F. Strong normalization.
Semantics. Expressibility of these -- how higher
order functions and polymorphism add to
expressibility.

Connection with provably recursive functions in
systems of arithmetic. Polynomial time logic.

CS741

Structural Complexity

Survey of Dbasic background: models of
computations and resource bounded computations.
Central complexity classes, notion of complete
problems in a class, polynomial time reducibilities
and how these relate to each other.

Structure of NP complete sets, p-isomorphism
conjecture. Sparse sets in NP. Self reducibility.
Relativised classes. Nonuniform complexity.
Uniform diagonalization. Polynomial time hierarchy.
Interactive proof systems.

CS742

Parallel Complexity And
Sub-Logarithmic Time
Algorithms

VLSI theory of complexity. Theory of log-space
completeness. Structure of NC. Unbounded fan-in
circuits. CRAM model and allocated PRAM models.
Sub-logarithmic time algorithms for Parallel
symmetry breaking, parallel prefix computation,
ordered chaining, nearest largers, Delaunay
triangulation and convex hull.

Optimal NC algorithms for deterministic list ranking
triconnectivity and task Scheduling.

CS743

Advanced Graph
Algorithms

Review of important sequential graph algorithms.

Introduction to parallel models for computation.
General techniques for fast parallel computations on
vectors and lists and their applications to design of
efficient parallel graph algorithms.

Parallel dynamic programming and its applications
to expression graphs.

State-of-art algorithms for depth first search of
directed and undirected graphs. NC-algorithms for
st-numbering and open ear decomposition.

Parallel algorithms for graph optimization problems.
Algorithms for graph coloring. Decomposition of
graph into simpler subgraphs. Equivalence relations
and classes in graphs. Parallel planarity testing.

CS744

Pseudo-Random
Generators

Pseudo-random generators are efficiently
computable functions that stretch an input random
string to a much bigger sized string such that the
output string appears random to resource-bounded
computations. These functions have become one of
the fundamental objects to study in complexity
theory because of their utility. They are used to
derandomize randomized algorithms, formalize
notions of cryptographic security, obtain lower
bounds on the complexity of problems etc.
(unfortunately, as of now very few constructions of
pseudo- random generators are provably known
although many are conjectured). In this course, we
study pseudo-random generators and their
connections in depth.

The topics covered in the course are as follows:

Pseudo-random generators: definitions and
Existence.

Pseudo-random generators of small stretch:
Definitions of cryptographic security, Equivalence of
one-way functions and pseudo-random generators,
Some functions conjectured to be one-way
functions, Pseudo-random function generators.

Pseudo-random generators of large stretch:
Equivalence of lower bounds and pseudo-random
generators, Known pseudo-random generators
against small depth circuits and small space
classes, Extractors and pseudo-random generators.
Pseudo-random generators against arithmetic
circuits: Equivalence of lower bounds and pseudo-
random generators, A function conjectured to be
pseudo- random.

Other applications.

Small Space Bounded

In this course we shall study the computational
complexity of space bounded computations. In
particular, we shall focus on the various models and
problems in the logarithmic space domain. We shall
see how some of the complexity classes in this
setting are characterized by natural computational
problems and also study the known relations
between these classes. We shall also lookat some
of the open questions in this area and discuss
potential means to tackle these problems.

Topics:

1. Studying the various models of space
bounded computations.
2. The complexity classes that arise from these

CS745 Computations modelsand the known relations between
them.

3. Natural computational problems that
characterize these classes.

4. Proof techniques in this area such as the
double inductive counting technique,
pebbling technique, derandomization, etc.

5. Some classical results in this area such as
Immerman-Szelepscenyi Theorem,
Barrington's Theorem, circuit lower bound
for parity, etc.

6. Recent results in this area.

7. Open problems and future research
avenues.

Riemann Hypothesis is one of the most important

unresolved conjectures in mathematics. It connects

the distribution of prime numbers with zeroes of Zeta

function, defined on the complex plane. A number of

: : algorithms in algebra and numbertheory rely on the

CS746 Riemann Hypothesis And correctness of Riemann Hypothesis or its

Its Applications

generalizations. This course willdescribe the
connection between prime distributions and Zeta
function leading to the Riemann Hypothesis, prove
Prime Number Theorem along the way, and then
describe the generalizations of Riemann Hypothesis

and their applications to computer science
problems.
Topics:

1. Prime counting and other arithmetic
functions

2. Brief overview of complex analysis

3. Zeta function definition and basic properties

4. Riemann Hypothesis and its relationship with
prime counting

5. Prime Number Theorem

6. Dirichlet L-functions and Generalized
Riemann Hypothesis

7. Applications of Riemann and Generalized
Riemann Hypothesis

8. Further extensions of Riemann Hypothesis
and its proof for function fields, and elliptic
curves over finite fields

CS747

Randomized Methods In
Computational Complexity

In this course, we will study how randomness helps
in designing algorithms and how randomness can
be removed from algorithms.

We will start by formalizing computation in terms of
algorithms and circuits. We will see an example of
randomized algorithms, identity testing, and prove
that eliminating randomness would require proving
hardness results. We then prove a hardness result
for the problem of parity using randomized methods.
We construct certain graphs called expanders that
are useful in reducing randomness in algorithms.
These lead to a surprising logarithmic-space
algorithm for checking connectivity in graphs.

We show that if there is hardness in nature then
randomness cannot exist! This we prove by
developing pseudo-random generators and error-
correcting codes. We show how to extract
randomness from a weakly random source by using
extractors. Finally, we show how to probabilistically
check proofs (PCP) and prove the hardness of
approximating some NP-hard problems.

CS748

Arithmetic Circuit
Complexity

In this course we will study computation by primarily
algebraic models, and use, orin many cases extend,
the related tools that mathematics provides.

We will start with some positive examples--
fast polynomial multiplication, matrix multiplication,
determinant, matching, linear/algebraic
independence, etc. The related tools are FFT (fast
fourier transform), tensor rank, Newton's
identity, ABP (algebraic branching program), PIT
(polynomial identity testing), Wronskian, Jacobian,
etc. One surprising result here is that certain
problems for general circuits reduce to depth-3

circuits. Furthermore, the algorithmic question of PIT
is related to proving circuit lower bounds.
We then move on to proofs, or attempts to
prove, that certain problems are hard and
impossible to express as a small circuit (i.e. hard to
solve in real life too). One such problem is
Permanent. We study the hardness against
restricted models-- diagonal circuits, homogeneous
depth-3, homogeneous depth-4, noncommutative
formulas, multilinear depth-3, multilinear formulas,
read-once ABP, etc. The partial derivatives, and the
related spaces, of a circuit will be a key tool in these
proofs. The holy grail here is the VP/VNP question.
Depending on time and interest, other
advanced topics could be included. One such
growing area is-- GCT (geometric complexity theory)
approach to the P/NP question.

CS749

CS750

Programs, Proof And Types

The course, in its offering next semester, plans to
cover programming language foundations in a
hands-on way through theorem prover Coq. This
simultane- ously covers PL concepts as well
theorem proving in Coq. For more details see the
link:

https://softwarefoundations.cis.upenn.edu/.

The course intends to cover most of volume 1 and
volume 2 listed on this link. If there is interest and
time, we may also cover some other topics.
Evaluation

Evaluation will be mostly based on theorem proving
projects and/or paper presentations.

CS755

Topics In Software
Engineering

This is a research-oriented, seminar type course
which will focus on the state-of-the-art in various
areas of Software Engineering--

Software project management, Metrics and mea
surement, Software

configuration management, Software risk
management, Requirements engineering, Software
quality assurance, Software reliability models,
Object oriented design, Object oriented
programming (with C++), Formal specifications,
Formal verification of programs, Jackson method for
design, CASE tools and technology, Cleanroom
method for software development, Information
system design, Real- time software specification
and design.

CS771

Introduction To Machine
Learning

Machine Learning is the discipline of designing
algorithms that allow machines (e.g., a computer) to
learn patterns and concepts from data without being
explicitly programmed. This course will be an
introduction to the design (and some analysis) of
machine learning algorithms, with a modern outlook

focusing on recent advances, and examples of real-
world applications of machine learning algorithms.
List Of Topics

Preliminaries

Multivariate calculus: gradient, Hessian, Jacobian,
chain rule

Linear algebra: determinants, eigenvalues/vectors,
SVD

Probability theory: conditional probability, marginal
probability, Bayes rule

Supervised Learning

Local/proximity-based methods: nearest-
neighbors, decision trees

Learning by function approximation

Linear models: (multiclass) support vector
machines, ridge regression

Non-linear models: kernel methods, neural
networks (feedforward)

Learning by probabilistic modeling

Discriminative methods: (multiclass) logistic
regression, generalized linear models

Generative methods: naive Bayes

Unsupervised Learning

Discriminative Models:k-means (clustering), PCA
(dimensionality reduction)

Generative Models

Latent variable models: expectation-maximization
for learning latent variable models

Applications: Gaussian mixture models,
probabilistic PCA

Practical Aspects

Concepts of over-fitting and generalization, bias-
variance tradeoffs

Model and feature selection using the above
concepts

Optimization for machine learning: (stochastic/mini-
batch) gradient descent

Additional Topics (a subset to be covered depending
on interest)

Deep learning: CNN, RNN, LSTM, autoencoders
Structured output prediction: multi-label
classification, sequence tagging, ranking

Ensemble methods: boosting, bagging, random
forests

Recommendation systems: ranking methods,
collaborative filtering via matrix completion
Reinforcement learning and applications

Kernel extensions for PCA, clustering, spectral
clustering, manifold learning

Probability density estimation and anomaly
detection

Time-series analysis and modeling sequence data
Sparse modeling and estimation

Online learning algorithms: perceptron, Widrow-
Hoff, explore-exploit

Statistical learning theory: PAC learning, VC
dimension, generalization bounds

A selection from some other advanced topics such
as semi-supervised learning, active learning,
inference in graphical models, Bayesian learning
and inference

CS772

Probabilistic Machine
Learning

Estimating the parameters of the underlying model
that is assumed to have generated the data is
central to any machine Ilearning problem.
Probabilistic modeling offers principled and rigorous
ways to model data of diverse types, characteristics,
and peculiarities, and offers algorithms to uncover
the model parameters and make
inferences/predictions about the data. This course
will expose the students to the basic
concepts/algorithms used in probabilistic modeling
of data and we will gradually work our way up to use
these as building blocks for solving more complex
machine learning problems. We will also, at various
points during this course, look at how the
probabilistic modeling paradigm naturally connects
to other dominant paradigm which is about treating
machine learning problems as optimization
problems, and understand the
strengths/weaknesses of both these paradigms, and
how they also complement each other in many
ways. A rough outline of the course is given below.

1. Introduction to probabilistic modeling of data

2. Basic methods for parameter estimation in
probabilistic models: MLE and MAP
estimation

3. Common probability distributions, conjugate
priors and exponential family

4. Introduction to Bayesian learning

5. Case studies: Bayesian linear regression
and classification, sparse linear models

6. Latentvariable models for clustering: mixture
models

7. Latent variable models for dimensionality
reduction: factor analysis, probabilistic PCA
and matrix factorization

8. Latent variable models for modeling
sequence and time-series data: hidden
Markov models, linear dynamical systems

9. Latent variable models for structured
prediction

10. Learning and inference in probabilistic
graphical models

11. Approximate Bayesian inference (MCMC,
Variational Bayes, Expectation Propagation)

12. Online approximate Bayesian inference

13. Bayesian learning with kernels: Gaussian
Processes (or “Bayesian SVM”)

14. Topic models

15. Deep learning

CS773

Online Learning And

Instructor's consent. Familiarity with basics of
probability and statistics, and linear algebra would
be essential. Prior exposure to machine learning
techniques would be desirable.

Short Description

This is intended to be a course on advanced
techniques used in optimization and learning. The
techniques introduced in this course can be used to
perform tasks such as sequential prediction and
optimization on large-scale streaming data. These
are the methods of choice for massive learning tasks
and form the basis for a large family of optimization
and learning routines. The course will be self
contained but will nevertheless benefit from
familiarity with machine learning as a source of basic
learning theoretic concepts, as well as motivation for
large-scale learning and optimization.

Topics

Introduction to preliminaries in convex and real
analysis, and probability theory

Online Prediction with Full Feedback

Online classification — Perceptron, Winnow

Online regression — gradient descent, exponentiated

Optimization gradient

Learning with expert advice — weighted maijority,
hedge
Online Convex Optimization
Review of batch optimization — batch gradient
descent
Follow the leader — regularized, perturbed
Online gradient descent — polynomial and
logarithmic regret bounds
Online mirror descent — links to OGD, FTL
Stochastic gradient descent — online to batch
conversion and application to batch learning
Online Prediction with Limited Feedback
Stochastic/adversarial multi-armed bandits - EXP3,
UCB, Thompson Sampling
Linear and contextual bandits - lin-UCB, lin-TS
Special Topics (depending on interest and available
time)
Tracking shifting experts
Mini-batch methods
Beyond additive regret
Online second order methods
Derivative-free optimization

CS774 Optimization Techniques Background: convex analysis, linear and matrix

algebra, probability theory

Preliminaries: applications, optimality and duality
conditions

First Order Methods

Subgradient methods

Proximal methods

Multiplicative weights update, mirrored descent
Second Order Methods

Newton method

Quasi-Newton methods, L-BFGS

Stochastic Optimization Problems

Notion of regret, online to batch conversion
Methods offering vanishing regret - OGD, EG, OMD
Non-convex Optimization Problems

Applications - sparse recovery, affine rank
minimization, low-rank matrix completion

Convex approaches - relaxation-based methods
Non-convex approaches - projected gradient
descent, alternating minimization

Special topics (a subset would be chosen
depending on interest and available time)
Accelerated first order methods

Bayesian methods

Coordinate methods

Cutting plane methods

Interior point methods

Optimization methods for deep learning

Parallel and distributed methods

Robust optimization problems and methods
Stochastic mini-batch methods

Submodular optimization problems and methods
Variance reduced stochastic methods

Zeroth order methods

CS775

Topics In Probabilistic
Modeling And Inference

A tentative list of topics to be covered in this course
includes

Fundamentals of probabilistic modeling

Basics of probability distributions and their
properties

Basics of probabilistic inference:
MLE/MAP/Bayesian inference

Hierarchical modeling, multi-parameter models
Bayesian vs frequentist statistics

Probabilistic graphical models (directed and
undirected models)

Probabilistic approaches for linear modeling, Sparse
Bayesian Learning

Latent variable models

Mixture models and latent factor models

Latent variable models for dynamic/sequential data
Latent variable models for networks and relational
data

Latent variable models with covariates
Approximate Inference

Inference in probabilistic graphical models

MCMC methods

Variational methods

Scalable inference with stochastic optimization
Other methods: Likelihood-free methods, spectral
methods, etc.

Nonparametric Bayesian methods

Gaussian Process for function approximation
Dirichlet process and beta processes

Other stochastic processes (gamma/point
processes, etc., and their applications)

Bayesian Optimization

Theory of Bayesian statistics

Probabilistic programming

Other topics based on students’ interests

Treatment of the above topics will be via several
case-studies/running-examples, which include
generalized linear models, finite/infinite mixture
models, finite/infinite latent factor models, matrix
factorization of real/discrete/count data, sparse
linear models, linear Gaussian models, linear
dynamical systems and time-series models, topic
models for text data, etc.

CS776

Deep Learning For
Computer Vision

Prerequisites: No formal prerequisite but knowledge
of basic probability, calculus and linear algebra is
required.

The course will make the students familiar with
basics of learning-based as well as geometric
computer vision. The list of possible topics will be

Convolutional Neural Networks
AutoEncoders

Recurrent Neural Networks
Generative Adversarial Networks
Camera calibration

Epipolar geometry

Structure from motion

NoOGOkWN=

This list will evolve based on the level of students
enrolled and their interests. For each of the topics
we will start with the basics, touch upon some
current applications and then you would be
expected to work on an assignment which would
have a strong programming component. The course
is expected to give you a good foundation if you
would like to work on Computer Vision in the future
either in academic or industrial research and
development.

CS777

Topics In Learning Theory

Pre-Requisites
Instructor’s consent. Fluency in basic results in
probability and statistics would be essential. Prior

exposure to machine learning or signal processing
techniques would be desirable.

Short Description

This is intended to be a course on advanced
techniques used in the design and analysis of
machine learning and statistical estimation
algorithms. The course is divided into two broad
parts, one that primarily looks at the statistical
analysis of learning and estimation algorithms, and
one that explores a variety of algorithm design
techniques currently popular in machine learning
and statistics communities. The course will involve
an intense application of probabilistic models and
techniques and will benefit from prior familiarity with
machine learning/signal processing as a source of
basic learning theoretic concepts, as well as
motivation for large-scale learning and optimization.

Topics

Statistical Learning Theory

Notion of risk, I-risk, Bayes risk, regret, plug-in
predictors, regret-transfer bounds

Empirical risk minimization, PAC learning, uniform
convergence, Glivenko-Cantelli classes

Capacity notions - covering numbers, VC/fat-
shattering dimension, Rademacher complexity
Algorithmic stability, regularized risk minimization
Calibrated loss functions and consistency of
learning methods

Algorithmic Learning Theory

Ensemble learning - boosting, random forests
Non-convex optimization techniques - gradient
descent, alternating minimization, EM

Online optimization techniques - learning with
experts, online mirrored descent, explore-exploit
Fast sampling techniques - hit-and-run, MCMC
Additional Topics (depending on interest and
available time)

Learning with fast rates

PAC-Bayes bounds

Complex prediction tasks - ranking, structured
prediction

Negative results - the no-free-lunch and ugly-
duckling theorems, hardness of learning
Derivative-free optimization

CS779

Statistical Natural
Language Processing

3-0-0-0 (09)

Pre-Requisites

Must: Introduction to Machine Learning (CS771) or
equivalent course, Proficiency in Linear Algebra,
Probability and Statistics, Proficiency in Python
Programming

Desirable: Probabilistic Machine Learning (CS772),
Topics in Probabilistic Modeling and Inference

(CS775), Deep Learning for Computer Vision
(CS776)

Level Of The Course
Ph.D., M.Tech, and 3rd, 4th year UG Students (7xx
level)

Course Obijectives:

Natural language (NL) refers to the language
spoken/written by humans. NL is the primary mode
of communication for humans. With the growth of the
world wide web, data in the form of text has grown
exponentially. It calls for the development of
algorithms and techniques for processing natural
language for the automation and development of
intelligent machines. This course will primarily focus
on understanding and developing linguistic
techniques, statistical learning algorithms and
models for processing language. We will have a
statistical approach towards natural language
processing, wherein we will learn how one could
develop natural language understanding models
from statistical regularities in large corpora of natural
language texts while leveraging linguistics theories.

Course Contents

Introduction to Natural Language (NL) : why is it hard
to process NL, linguistics fundamentals, etc.
Language Models: n-grams, smoothing, class-
based, brown clustering

Sequence Labeling: HMM, MaxEnt, CRFs, related
applications of these models e.g. Part of Speech
tagging, etc.

Parsing: CFG, Lexicalized CFG, PCFGs,
Dependency parsing

Applications: Named Entity Recognition,
Coreference Resolution, text classi cation, toolkits
e.g. Spacy, etc.

Distributional Semantics: distributional hypothesis,
vector space models, etc.

Distributed Representations: Neural Networks (NN),
Backpropagation, Softmax, Hierarchical Softmax
Word Vectors: Feedforward NN, Word2Vec, GloVE,
Contextualization (ELMo etc.), Subword information
(FastText, etc.)

Deep Models : RNNs, LSTMs, Attention, CNNs,
applications in language, etc.

Sequence to Sequence models : machine
translation and other applications

Transformers : BERT, transfer learning and
applications

CS781

Cognition: Memory

Types of memory, Features (esp. behavioural) of
memory, Experimental evidence from: Psychology
(human/animal subjects), nerophysiology,

neurochemistry and imaging, brain lesions and
damage in human animals, Models: Schema,
Sparse distributed memory, pandemonium, Copy
cat, Society of mind, matrix, SAM, TODAM,
connectionist.

CS782

Cognitive Semantics

Cognitive Semantics seeks to relate linguistic
expressions to conceptual structures in the context
of a speech act. The objective of this course is to
explore the cognition-language mappings. The
course will focus on topics such as:

- Conceptual and linguistic structures - Cognition
and grammar - Rules and connections - Lexical
structure and compositionality - Object, event and
relational structures - Spatial and temporal
semantics - Speech acts, rhetorical relations,
intentionality and implicature - Semantic
transference, metonymy and metaphor -
Grounding, embodiment, perceptual processes and
acquisition - Lexicalization patterns and diachronic
processes - Cognitive and linguistic processing in
artificial agents and other

nonhuman systems

- Bilingual and Sign language users

CS783

Visual Recognition

3-0-0-9

In this course we undertake a study of visual
recognition from various aspects related to
computer vision. Visual recognition encompasses a
variety of different tasks, techniques and
assumptions.

Tasks:

The visual tasks could range from instance
recognition to human action recognition. In instance
recognition, we would be answering specific visual
identification questions such as: is this an Airbus
A380? Another relevant question is object
classification, where we aim to answer questions
such as: does this image contain a bike or not?
Another relevant task is that of object detection in
images and videos: where is the bike in the image?
In action recognition we aim at more general tasks
such as: what is going on in the video? In the course
we will undertake a study of different tasks.
Techniques:

In terms of techniques, there have been a wide
range of machine learning techniques ranging from
Adaboost and support vector machines to state of
the art deep learning techniques. Many of the
machine learning techniques have attained
popularity based on their success in visual
recognition tasks. Indeed, the success of adaboost
for face detection has made boosting popular while
deep learning techniques became widely popular
once they succeeded in large scale object
classification. In this course we aim to understand a

few of the machine learning techniques involved as
applied to visual recognition.

Advances:

There have been certain assumptions in visual
recognition such as the need for large number of
manually supervised training samples. While this
has been dominant there are a number of
techniques that aim to relax this assumption by
minimising the need for supervision. These include
learning with latent variables, active learning
techniques, unsupervised machine learning
techniques. In the final part of the course we aim to
study these advanced techniques.

A brief outline of the topics to be covered in the
course are as follows:

Introduction to visual recognition

Features for visual recognition

Object Classification

Face Detection/Pedestrian detection/Object
Detection

Object Segmentation

Instance Recognition

Deep Learning models for the above tasks
Advanced topics like weak supervision, domain
adaptation, active learning

Unsupervised visual recognition

CS784

Language Acquisition

Part A: Child Language Acquisition: Methodology:
Diary studies, Large sample studies, Longitudinal
studies. Developmental stages: Prelinguistic
development: Onset of perception, Phonological
development. Linguistic development: Lexicon,
holophrasis, under/overextensions; Morphology and
syntax (Grammair), telegraphic speech,
compositionality, syntax in lexical development;
universals and parameter setting, Discourse
organization, deictic reference, discourse
dependencies, speech acts and implicature.
Bilingual language development: Syntactic and
semantic processing; Differentiation, transfer and
decay. Non-normal language develop.ment:
Phonological, grammatical and pragmatic
impairments.

Part B: Atrtificial life, agent based and evolutionary
approaches to language acQuisition. Some topics
from the following will be discussed. 1.
Communicative aspects of language. Origins and
use of signs, symbols, words, compositional
structures in communication. Origins of a lexicon in
multiple agent systems, simulation experiments.
Emergence/evolution of syntax in multiple agent
systems, simulation experiments. Learning
mechanisms and constraints from computational
learning theory. Emergence/evolution of language
universals. Grounding of linguistic entities.

Emergence/evolution of intentional and semantic
aspects of language. Optimality theory and
optimality arguments.

We will explore decision making behaviour in
communities of agents and in particular how
information is used, produced and transmitted in
such situations. We will study game theoretic and
evolutionary approaches (with an algorithmic
emphasis) to model such behaviour and try to
understand what implications the results have for
problems in biology and in human and non-human
communities. (The course will not be concerned with
distributed Al or cooperative problem solving by
software agents.)

Topics:

1. Biological and human communities -
structure and properties.

2. Competition, cooperation, evolution.

3

Multiagent Systems: What is a game? Non evolutionary and
CS785 Games, Algorithms, evolutionary games. Numerous examples
Evolution from biology, economics, decision theory,

social choice etc.

4. Payoffs, strategies - pure, mixed,
behavioural. Stability and equilibrium.

5. Information production, transmission and
use in games. Rationality, common
knowledge.

6. Competition, non-cooperation and the
corresponding games.

7. Cooperation and related games.

8. Dynamic models and evolutionary games.

9. Fairness, trust, reputation in decision making
and games.

10. Public goods, the commons and related
problems.

11. Brief introduction to mechanism design.

To what degree functions of the mind can be

reproduced or simulated by a computer is a question

that has become volubly prominent in recent years.

It is often posed for public consumption as a matter

of ends — when will computer performance surpass

human performance on interesting challenges. From

Computational Cognitive a scieptific standpoint, it is more u_seful to ask this

CS786 question from the standpoint of means—

Science

what resources do organisms have available that let
them respond adaptively to situations they
encounter in the world?

This is the question that computational cognitive
scientists seek to answer. Such research frequently
starts from parametric characterizations of empirical

behavior. Theorists then develop computational
models that capture the quantitative relationship
between these parameters and various
experimental conditions. A good empirical fit permits
further questions of biological and epistemic
plausibility to be asked of the model. Models that
pass these quasi-philosophical checks graduate to
the status of theories. These accounts are,
inevitably, challenged as incomplete or erroneous
by further iterations of experiments and models.

The cycle of research in cognitive science,
therefore, encompasses, in order of the workflow
presented above, neuroscience and psychology,
statistics, computer science, and philosophy. This
course is meant to give both UG and PG students
interested in the computational aspects of cognitive
science a relatively comprehensive overview of the
discipline.

Over 4-5 lectures per area, categories of mental
phenomena will be introduced via descriptions of
empirical studies, followed by the chronology of
models seeking to explain them. Instruction in each
topic will conclude with an instructor-mediated
discussion of the merits of competing models,
terminating in an appreciation of promising future
directions of research in the area. The instructor’s
emphasis will slant towards approximate Bayesian
approaches to such challenges.

We will follow a cycle of continuous evaluation —
quizzes will be conducted for each of the 7 topics
covered in the course (see below), each counting for
10% of the course grade. The remaining 30% will
come from a course project, which will require
students to implement, critique and possibly improve
upon a state-of-the-art model in one of the 7 areas
covered in the course

Course Outline

Foundations — evidence for invariants in behavior —
associativity — Pavlovian conditioning — Minsky,
Newell and the strong Al program — the framing
problem — production system architectures of the
mind — the Bayesian revolution — inference, learning
and causation — compositionality and probabilistic
programs — approximate computation in the mind —
algorithmic accounts of sub-optimal inference

Perception — James, Helmholtz, Wundt — classical
psychophysics — perceptual modalities —
quantification and analysis methods — Gestalt

principles — assimilation and contrast effects —
poverty of stimulus — Gibsonian psychophysics —
Anne Treisman’s feature integration account —
recognition by components — David Knill & Eero
Simoncelli’'s Bayesian visual perception work

Memory — early experiments — Miller and the magic
number 7 — classical experiment settings and
analyses — signal detection theory — Tulving’s
memory types — Baddeley and the discovery of
working memory — Rich Shiffrin’s line of models and
their problems — Austerweil’s random walk model —
Standing and the fidelity of visual long-term memory
connecting to Tim Brady’s recent work — Tom Hills
and memory search

Decision-making - von-Neumann and homo
economicus — Rescorla-Wagner, Hall-Pearce and
classical conditioning findings - operant

conditioning and skill learning — Sutton-Barto-Singh
and reinforcement learning building up to skill-
learning — cognitive biases in decision-making —
Tversky’'s non-compensatory models - the
Gigerenzer fast-and-frugal school of heuristics — fast
and slow decisions and their consequences — drift
diffusion models and their competition — frugal
preference learning

Language — semantics and semiotics -
neurobiological foundations of language with
empirical evidence — language universals and

typology — Sapir-Whorf hypothesis, evidence for and
against — pragmatics and social signaling — nativist
vs emergent models of language learning —
Bayesian accounts of structure learning — non-
human languages — Wittgenstein and philosophy as
language games

Motor control and learning — systemic principles,
feedback, redundancy, coordination — physiological
basis — information processing problems — Peter
Dayan’s model-free vs model-based motor models
— Daniel Wolpert’s hierarchical motor control models
— Paul Schrater's Bayesian structure learning —
hierarchical reinforcement learning — Karl Friston’s
free energy approach — Nikolai Bernstein’s beautiful
ideas on the value of noise in the motor system —
Jeff Beck’s rational sub-optimal inference account

Similarity & categorization — Luce, Shepherd and
empirical foundations — exemplars vs prototypes
debate with empirical data — Nosofsky, Shiffrin and
the rise of cluster models — Anderson’s rational
model — Josh Tenenbaum’s Bayesian program —

hierarchical Dirichlet models of categorization
— compositionality and the generation of new
categories — Liane Gabora’s computational models
of creativity

CS789

Special Topics In
Languages Acquistion And
Origins

Child's acquisition of phonology, lexicon, syntax,
semantics, pragmatics, and mappings; Grounding
issues in language acquisition; Origin and evolution
of speech sounds, lexicon, syntax, semantics,
intentional use, Agent and population models,
Bootstrapping, Modularity-nonmodularity debate;
Critical periods; Rules vs connectionist approaches;
Sign language, synchronic and diachronic change,
creolization.

CS797

Special Advance Topics In
Computer Science

CS798D

Algorithms For Bayesian
Networks And Causality

Pre-Requisites:
Basics of Probability and Statistics, Data Structures
and Algorithms, or consent of the instructor

Course Description:

Current machine learning algorithms often deal with
datasets having hundred or thousands of features.
In the unsupervised learning setting, often such
datasets are modelled as random samples from a
highdimensional distribution which we are
interested to learn. Bayesian Networks are a
popular class of probabilistic graphical model that
allows us to succinctly represent high-dimensional
probability distributions owing to a limited
conditional dependence between the component
random variables. These networks have been used
to model large datasets across several practical
topics including Bioinfomatics, Medical Diagnosis,
Information Retrieval, Image Processing. In this
course, we take up a formal algorithmic study of
Bayesian networks. We will look at the central
problem of efficiently learning an unknown Bayesian
network using an optimal number of samples. Along
the way, we will touch upon several information-
theoretic tools which are useful in data science.

In the second part of the course, we will study
Causality using graphical models. Here we
consider the probabilistic dependence of each node
in the Bayesian network as an independent
mechanism subject to manipulation. Specifically,
the causal effect of a set of nodes on another is
formalized by an intervention that fixes a set of
nodes of the Bayes net to particular values ignoring
their parents while all other nodes are still governed
by the usual probabilistic dependence of the Bayes
net. We will discuss several important problems that
includes learning causal effects and causal models
from observational and interventional data.

Course Contents:

Title Hours

Bayesian networks

Revision of Probability Basics 1

Introduction to probabilistic graphical
models

Introduction to Bayesian Networks 1

Learning a Bayes net using hypothesis
selection

Information-theoretic Lower bound 1.5

Fixed-structure discrete Bayes net 1

Tree-structured discrete Bayes net

Fixed structure Gaussian Bayes net

NP-Hardness of Learning Bayes net 1

Learning algorithms: PC and GES

Causal models

Introduction to Causality 2

Pearl’s formalism and do calculus 1

Identifiability and complete conditions 2

Algorithms for Learning Causal Models 1

Causality and Machine learning 2

Additional lectures

Ising models 3
Gaussian graphical models 3
Student presentations 13
Total 39

CS798F

Introduction To Probability
For Computer Science

Course Description:

Introduction to Probability for Computer Science.
The course intends to cover the basics of
probability and then introduce high dimensional
probability. In the later part, we consider
applications from Computer Science.

Course Syllabus:

Basics-0

Random experiments, sample space, sigma-field*,
review of sets theory, probability set function®.
Mutually exclusive events and probability function,
exhaustive events, the inclusion-exclusion formula.
Some inequalities: Boole's or union bound and
generalization, examples. Probability set function
continuity*. Conditional probability, Bayes' theorem,
independence of sets of events.

Basics-1

Random Variables/Functions from the sample
space to reals, discrete random variables and
probability mass function, continuous random
variables and cumulative distribution function (cdf),
properties of cdf, transformation of variables Y =
g(X) and conditions, defining probability density

function (pdf), examples, transformations of
variables. Expectation of random variables,
examples from continuous and discrete domains,
expectation of function of random variables, linearity
of expectation and examples. Basic statistics:
expectation, variance, high order expectations,
moment generating function, Markov, Chebychev
inequalities, exponential moment method,
convexity, Jensen's inequality, examples.

Multivariate Distributions

Random vector, joint cumulative distribution
function, discrete random vectors and joint
probability mass function, continuous cdf and joint
pdf, marginal pdfs and pmfs. Expectations, mgf of
random vectors, transformations of bivariate
random variables, examples. Conditional
distributions and expectations, total variance law.
Correlation coefficient, independent random
variables and connections to product form of joint
pdf, joint cdf, product expectation. Extension to
multiple random variables, mutual independence,
mgfs, simple transformations of multiple random
variables, examples. Covariance matrix, matrices
of random variables, linear combinations of random
variables.

Special Distributions

Bernoulli, Binomial, Rademacher, geometric,
multinomial distributions, sampling with and without
replacement, Poisson, Gamma, chi-square, beta,
normal and multivariate normal distribution and
some of its properties.

Tail Probability Concentration bounds

Markov, Chernoff and Hoeffding’s bounds,
Bernstein bounds, applications, examples,
Johnson-Lindenstrauss' Lemma, applications

Possible additional topics Time permitting:

Martingale and techniques based on them, Azuma-
Hoeffding bound

Lipschitz functions of Gaussian variables

Markov chains, stochastic matrices and its
properties. Applications/Examples

CS798G

Analysis Of Unconventional
Programs

3-0-0-0 (9)

Prerequisites

The course will expect the students to have a good
understanding of the theory of computations
(especially computation models, languages,
decidability etc.), algorithms (especially complexity
analysis, correctness proofs), Discrete Mathematics
(especially proof techniques, linear algebra, lattice
theory, fixpoint theory), Probability and Statistics.
The course will include challenging programming

assignments and projects, so the students will be
expected to be good programmers.

Obijective

Over the last few years, program analysis
techniques have been applied to a variety of
systems. Many of these cannot be perceived as
“conventional” sequential programs written in
languages like C, Python or Java. For example,
there have been attempts at testing and verifying
network routing policies, machine language models,
database schemas, concurrent systems,
probabilistic/randomized systems and
hardware/software co-designs. This course will
explore how program analysis techniques have
been adapted for such “unconventional” programs.

Syllabus

Programming Language Fundamentals: syntax and
semantics, type systems;

Program Analysis of Sequential Programs: control-
flow and dataflow analysis, abstract interpretation,
deductive verification, fuzzing, symbolic execution;
Analysis of concurrent systems: memory
consistency models, duductive techniques (like
Owicki-Gries), vector-clock based dynamic
techniques;

Analysis of probabilistic and reandomised systems:
syntax and semantics of probabilistic operations,
modeling probabilistic distributions, applications
(eg. differential privacy, randomized algorithms
etc.);

Analysis of machine learning systems: relevant
properties (robustness, fainess, safety etc.) in the
context of ML systems, testing/analysis of ML
models;

Parallels between program analysis and analysis of
hardware designs/co-designs;

Analysis of miscellaneous other systems, like
quantum programs, network control planes and
database schemas.

CS798H

Human-Computer
Interaction

3-0-0-0 (9)

What Is The Course About?

Daily we come across several computing devices
and tools (from smartwatch trackers to search
engines). Some of them are a delight to use, and
some are crappy and frustrating to learn,
understand and use — ever wondered what makes
them so? Ever wondered why using a smartphone
or learning to code so easy and natural for some
people, and so hard for others? Is digital
transformation in India going to take off, or no, and
why? All these, and more, are the concerns of
Human-Computer Interaction (HCI) as a field.

In this course, we will cover the basic ground for
HCI, considering how we can study how people
interact with computers (if any) in a given context,
how to identify opportunities for improvements to
their work, and how to systematically design
systems that are a delight.

The field itself is interdisciplinary and borrows
theories and methods from various fields including
psychology, computer science, design, sociology
and anthropology. This course will give a flavor of
this interdisciplinary nature, as well as introduce you
to these methods and theories that will come in
handy in a lot of contexts. We will also consider
some common contexts in which Human-Computer
interaction is tricky, what we can do about it, and
where the open problems lie!

Who Should Take It?

If you are looking to get a job as an interaction
designer, user designer, or any form of design job —
this course would be required.

If you are a researcher in CS and are looking to
understand how people will use the stuff you build,
then you should take this. There is a human aspect
to pretty much every subfield of computer science—
and a lot of work is publishable in all major CS
conferences (Check yours!).

If you are a student in CGS or Design, you will find
the material very relevant, and offering a
complementary set of perspectives than you
normally have.

If you intend to start up, this course is a must-have,
because design is a key differentiator between
competing products.

Anyone else who is curious, wants to better
understand the world we cohabit with computers,
and exercise their creative brain muscles — this will
be a fun course!

What Is The Course Going To Be Like?

HCI is an “applied” discipline, much like software
engineering or design. So expect to do a bunch of
hands-on work—in class, and as part of projects
and assignments.

There will be 3 hours of lectures (2 lectures x 1.5
hours long). Of course there will breaks, videos, etc!
There will be weekly assignments and readings.
This will include paper and design critiques, reading
textbook chapters, designing studies, observing
people, etc.

There will be a group project, running across most
of the term. You will find user needs / problems with
an existing piece of software artifact,
design/redesign it, evaluate the design. At the end
of the course, you will present all of this + write a

paper. There will be periodic milestones building up
to the final version!

There will be bi-weekly quizzes.

What Will You Cover?

Chapter-1: Introduction to HCI. What is HCI —
Interdisciplinary nature of HCI — History of HCI —
Importance of design and HCI — The design process
-- The double diamond of design.

Chapter-2: Need finding. Data collection (interviews,
surveys, observational studies, contextual inquiry).
Sampling. Qualitative data analysis (coding,
thematic analysis/card sorting, focus group, inter-
rater reliability, threads to validity, triangulation).
Quantitative data analysis in need finding. Ethical
considerations in human studies.

Chapter-3: Models, theories and frameworks in HCI.
What are they and why are they useful? Perception
and memory. Model human processor. Information
foraging. Activity theory. Distributed cognition.
Mental models.

Chapter-4: Prototyping (low-fi and hi-fi prototypes,
use of metaphors). Evaluation (quantitative —
controlled experiments, measures, statistical
comparisons; qualitative — heuristics, cognitive
walkthroughs, desirability and reaction toolkits,
hallway usability study).

Chapter-5: Recurring problems in HCI and ideas on
how to approach them:

Human-information interaction (search and
browsing, information seeking and sensemaking,
minimal learning);

Human-Al interaction (role of the Al agent,
challenges of non-determinism, explanation, trust,
principles, wizard of 0z methods);

Human-robot interaction (Verbal and non-verbal
interaction, embodiment, emotions, social robots
and robots for autism);

HCI for creativity support (nature of creative tasks
and supporting them, focus and interruptions,
cognitive load, case of programming);

HCI for development (the minimum common
denominator, constraints, the next billion users,
cultural aspects);

HCI for collaboration (social mechanisms in collab,
facilitating communication and coordination,
awareness and catching up, personal vs.
professional)

HCI for learning and education (if time permits).
Inclusive design (if time permits)

CS799 PhD Thesis
CS899 MS Thesis
cs888 Introduction to Profession 2-0-0-0 (6) a. Objectives: The course will skill students on

and Communication

effective research communication as well as

introduce them to some commonly used research
methodologies and paper-writing techniques used
in various sub-areas of computer science including
theory, systems

and data science.

b. Logistics: The course will be offered once every
academic year by a team of 4 faculty members, one
of whom will assume the position of instructor-in-
charge and the other three members representing
the areas of theory, systems and data science. All
PhD students will be required to register for this
course in their second year.

c. Content: The course will have 5 parts

Part 1 (Communication): students will be
introduced to effective research communication.
Specifically, the students will be given general
guidelines on preparing posters and oral
presentations and writing a research paper. The
students may be asked to prepare a short poster,
presentation and write-up followed by a discussion
on these topics that highlight general
communication guidelines such as grammatical
correctness, precision, effective use of images and
the importance of legible figures, organization, flow
of argument, pace of

presentation, and others.

Part 2 (Research Methodology and Paper writing
in Theory): Introduction to proof techniques
(deduction, induction, contrapositive, contradiction,
diagonalization) with some examples, power of
randomization in algorithm design, notions of
intractability, and how hardness can be a boon. The
difference between Conjecture, Axiom, Hypothesis
and Theorem; The difference between an efficient
algorithm and an efficient heuristic. How to survey
the literature, do research, and prove something
new and publicationworthy. How to structure a
theory paper and make it readable for non-experts.

Part 3 (Research Methodology and Paper writing
in Systems): Overview of different dimensions of
system research:

A. Problem formulation — Building/evolving
hypotheses and problem statements, motivating
problems and proposed solution ideas.

B. Empirical analysis — experiment design,
analysis, reporting, tools and techniques
C. Design and implementation — Root cause

analysis and development involving existing
systems, tools and techniques for navigating large

code bases, integration of proposed ideas, checking
correctness, bug
fixing approaches and tools.

Part 4 (Research Methodology and Paper writing
in Data Science): Much of the theoretical and
empirical aspects of data science are already
covered in the earlier two parts. This part will
additionally introduce students to more specialized
aspects relevant for data science research pipelines
such as:

A. Typical research design: problem definition,
mathematical solution, algorithmic implementation,
evaluation.

B. Considerations for evaluation: cross-validation,
leaderboards, data leakage, hypothesis testing,
dataset decay.

Part 5 (Hands-on Application): This part will
require students to prepare an extended abstract
(around 4 pages) for a research paper.

d. Evaluation: An S/X grade will be awarded based
on satisfactory completion of assignments and
preparation of an extended abstract for a research
paper.

Tentative breakup of Lectures: Topics in the
course may he shifted across parts as deemed fit by
the instructors. For each of the first four parts,
assignments would be provided to help students
appreciate research methodologies and
communication skills. For instance, the 1%t lecture of
the week may conclude with an assignment, and the
2nd lecture of the week may focus on discussing
that assignment. A suggestive breakup of lectures
for each part is given below with parts 1 and 5 being
overseen by the instructor in-charge and the rest
being overseen by instructors representing the
areas of theory, systems, and data science.

Part 1: Week 1-3 (6 Lectures)

Part 2: Week 4-6 (6 Lectures)

Part 3: Week 7-9 (6 Lectures)

Part 4. Week 10-11 (4 Lectures)

Part 5: Week 12-13 (4 Lectures)

Short summary for inclusion in the Courses of
Study booklet: the course is intended to infroduce
CSE PhD students to effective research
communication and common research
methodologies and paper-writing technigues used
in theory, systems, and data science.

CS714

Secure Computation

3-0-0-0- [9]

Prerequisite: CS201, CS202, and CS203 or
equivalent. CS 641 or equivalent would be useful,

but not necessary. C8670 would be useful, but not
necessary. The instructor will try making the course
as self-contained as possible. Main prerequisite is
mathematical maturity.

Who can take the course: Ph.D., Masters, 3rd and
4th year UG Students

Departments that may be interested: CSE,
Mathematics and Statistics Course Rationale: The
early pioneers of the Internet envisioned it would be
the great equalizer and lead to the complete
democratization of the online world—nearly four
decades since the reality has diverged considerably
from their grand vision. Rather than the bastion of
freedom and free speech, which the early
visionaries envisioned, the Internet has become a
dangerous place. Data theft leading to identity theft
has become commonplace. Despite these
challenges, it is undeniable that the Internet has
revolutionized our lives by making day-to-day tasks
easier and connecting people worldwide —
however, the risks associated with the Internet loom
large. Secure Computation is a promising technique
that allows users to keep their data private without

sacrificing the Internet's benefits. Interestingly, the
origins of Secure Computation were during the
exact times when the Internet was in its nascent
stages. The early researchers of Secure
Computation studied it mainly as a theoretical
endeavor. However, nearly four decades after its
inception, Secure Computation is more than just a
problem of theoretical importance; it can solve
practical privacy problems many of which arise due
to the expansion of the Internet.

Course Objectives: On completion of this course,
a student should be able to: (i) articulate the
definition of Secure Multiparty Computation (i}
articulate different MPC constructions, prove their
security and correctness; (i) articulate the
definitions of Oblivious Random Access; (iv)
articulate the construction of different types of
Oblivious RAM protocols; (v) build cryptographically
secure systems using Secure Computation.

CS801

Innovations in Computer
Science and Engineering

(0-0-0-0) (S/X
mode)

Objectives: The PG seminar course will expose
students to research directions being pursued by
various groups within the department and help them
make an informed choice of thesis topic. The course
will also give them an opportunity to develop
technical presentation skills by presenting their
work.

Logistics: The PG seminar course will be offered
once every academic year with the DPGC convener
and one other faculty member as co-instructors. Al
PG students (MTech, MS, PhD) will be required to
register for this course in their first year. Additionally,
PhD students will be required to register for this
course a second time in their 3rd year.

Content: The course will have 2 parts

i. Weekly seminars: PG students along with their
supervisor(s) will make presentations on research
directions being pursued by their group.

ii. Research colloquium: PG students will present
their past and ongoing work. PhD students
registering for the course a second time will be
required to present their work at the colloquium
although others will be welcome too.

Evaluation: PG students registering for the first
time will be evaluated on the basis of attendance at
the seminars and colloquium. PhD students
registering for a second time will be evaluated on
the basis of presentation at the research
colloguium. Short summary for inclusion in the
Courses of Study booklet: the course is intended to
introduce CSE PG students to cutting edge
research directions as well as give them a chance
to develop presentation skills by presenting work
done by them/their research group to their peers
and others.

