Department of Physics, IIT Kanpur

PHY441A/ PHY647A (Electronics) 2-1-3-0-11

31/07/2017

Objectives:

- To make students understand concepts in basic electronics (Analog and Digital) from a physicist's point of view along with hands on experience in circuit building and troubleshooting.
- The knowledge and experience gained during the course should help the student in handling and understanding electronic instruments in research laboratories.

Prerequisites:

There are no prerequisites for the course, however it is expected that the student is familiar with working of semiconductor diodes and transistors. A basic understanding of computer programming at the beginner level is also desirable.

Course Contents:

Lecture Topics (each topic will be dealt in 3~4 lectures):

- <u>Analog electronics</u>
 - 1. Basics and network analysis

Thevenin theorem, Norton theorem, Power dissipation

2. Operational amplifiers - I

Operational amplifiers (IC-741), Negative feedback amplifiers, Math operations

3. Operational amplifiers - II

Opamp limitations (bias current, offset voltage, slew rate etc.), RC oscillator

4. Opamp + Diodes

Circuits with diodes and OpAmps, Regulators and power supplies

5. Opamp + Transistors

Current source, CE amplifier, Push-pull amplifier, Schmitt trigger

- 6. MOSFETs, CMOS (Optional)
- Digital Electronics
 - 7. Digital electronics I

Number system, Boolean algebra, Logic gates, Adder

8. Digital electronics - II

Flip-flops, registers, counters, AD/DA Conversion

- 9. Architecture of 8051 microcontroller
- 10. Assembly language programming
- 11. Applications of 8051 microcontroller

Course organization - Schedule

Instructor	:	Aditya H. Kelkar (email: akelkar@iitk.ac.in)		
Day & time	:	Lectures	:	Mon & Thu @ 11:00 hrs
		Tutorial	:	Tue @ 11:00 hrs
		Lab	:	Mon & Tue 14:00hrs – 16:00hrs
Venue	:	L-12 (lecture and tutorial)		
	:	Electronics lab (New core building) (Lab sessions)		

Course organization – Evaluation

Total marks = 400

a) Surprise quizzes (4) : 10 marks each (15-20 mins)
b) Mid Sem exam (theory) : 80 Marks (2 hrs)
c) End Sem exam (theory) : 120 Marks (3 hrs)
d) Lab exam (Mid + End) : 40 + 40 Marks (2+2 hrs)
e) Lab performance : 80 Marks

Course Policies:

- Minimum **90% attendance** is compulsory to appear in the end-semester examination.
- Attendance in the End semester examination is necessary to secure a passing grade. Failing to do so will automatically lead to an F grade irrespective of your performance in previous exam components.
- No make-up will be offered for quizzes, mid-sem and lab exam.

Books & References:

- 1. *The art of electronics* by P. Horowitz and W. Hill (Cambridge university press, 2nd Ed., 2008)
- 2. Electronics principles by A. P. Malvino and D. J. Bates
- 3. Electronic devices by T. L. Floyd (Pearson education, 2005)
- 4. Student manual for the art of electronics by T. C. Hayes and P. Horowitz (Cambridge university press)
- Op-Amps and linear integrated circuits by R.A. Gayakwad (Pearson education, 4th Ed., 2000)
- 6. Digital fundamentals by T. L. Floyd (Pearson education, 2006)
- Digital principles and applications by D. P. Leach, A. P. Malvino and G. Saha (Tata McGraw- Hill, 7th Ed., 2011)
- The 8051 Microcontroller: architecture, programming and applications" by K. J. Ayala (West publishing Co., 1991)

Aditya H. Kelkar

31/07/2017