AE 666 Combustion Diagnostics

A.KUSHARI PROPULSION LAB PH: 7126 EMAIL: akushari@iitk.ac.in

Course Objectives

- ▶ To prepare students for Experimental Research in Combustion
 - To develop an understanding of the instruments and measurement techniques pertaining to combustion
 - Understanding the correlation between various parameters
 - Understanding data analysis and error estimates

Course Content

- Error estimates and uncertainty analysis
- Dynamic pressure measurement in combustors
- Temperature measurement in flames using thermocouple
- Pollutant and species measurement using gas sampling
- Non-intrusive optical diagnostics for species
- Temperature and Velocity measurement in flames
- Flow visualization

Course Structure

 Introduction Thermal and flow measurement in reacting flows Elements of measurement systems Error estimates and uncertainty analysis 	4
 Static and dynamic pressure measurement Pressure transduces, operating principle, time response and application to unsteady combustion systems Time series analysis and signal processing Sound pressure level measurements 	2
 Flow metering and velocity probes Obstruction and variable area flow meters Thermal mass flow meters Pitot static tubes, hot wire anemometers 	4

Course Structure (Cont.)

 Temperature measurement in flames using thermocouple Operating principle of a thermocouple Radiation correction in flames Unsteady temperature measurement in flames 	2
 Pollutant and species measurement using gas sampling Sampling probes Electrochemical methods Gas chromatography Mass spectroscopy 	4
 Atomic/molecular structure, optical emissions, scattering Molecular spectroscopy Optical emissions, fluorescence, chemiluninescence Mie, Rayleigh and Raman scattering 	5

Course Structure (cont.)

Lasers, detectors and optics

 Operating principle of laser, types of lasers 	
 Charge couple device (CCD), complementary metal-oxide-semiconductor (CMOS) camera, 	
image intensifiers	
 Lenses, beam splitters, frequency doubling crystals 	
Velocity field measurement in flames	6
 Particle seeding and flow following 	
 Laser Doppler Velocimetry (LDV) 	
 Particle Image Velocimetry (PIV) 	
Image processing	
Species measurement in flames	6
 Spontaneous Raman scattering (SRS) 	
 Absorption spectroscopy 	
 Laser induced fluorescence (LIF) 	
 Laser induced incandescence (LII) 	
lemperature measurement	3
 Rayleigh thermometry (RT) 	
 Coherent anti-stokes Raman spectroscopy (CARS) 	

2

2

Other optical techniques

Schlieren, shadowgraph, interferometry

Text Books and Reference Material

- 1. Experimental Combustion: An Introduction, D. P. Mishra, 2014
- 2. Thermal and Flow Measurements, T. W. Lee, 2008
- 3. Laser Diagnostics for Combustion Temperature and Species, A. C. Eckbreth, 1996
- 4. Combustion Measurements, N. Chigier, 1991
- 5. Measurement Systems, Doeblin, 1984.

Grading Policy

- ▶ Mid semester exam: 40%
- ▶ End semester exam: 60%