DRUG

Any chemical compound used in the treatment, or prevention of disease or other abnormal condition.

Aspirin

Acetylsalicylic Acid

 $C_9H_8O_4$

All new chemical entities, 01/1981-06/2006, by source (N = 1184).

B" Biological; usually a large (>45 residues) peptide or protein either isolated from an organism/cell line or produced by biotechnological means in a surrogate host.

"N" Natural product.

"ND" Derived from a natural product and is usually a semisynthetic modification.

"S" Totally synthetic drug, often found by random screening/modification of an existing agent.

"S*" Made by total synthesis, but the pharmacophore is/was from a natural product.

"V" Vaccine.

- Average time from project inception to drug launch: 13-14 year
- Average total investment per LAUNCHED drug = \$1 billion
- Average chance of project success:
- 1-3% at inception
- 7-8% if drug reaches preclinical testing

Reasons For Drug Failure

Source: 198 NCEs in clinical development by large UK companies, 1964–1985.

Drug Discovery and Development Process

Expensive, time consuming, numerous bottlenecks

Economical, time sparing, least bottlenecks

Disease Mechanism

Understanding the disease mechanism directs research and formulates a possible treatment to slow or reverse the disease process.

Disease mechanisms can be broadly classified into the following groups

- Defects in distinct genes—genetic disorders
 - Infection by bacteria, fungi, or viruses
 - Immune/autoimmune disease
 - Trauma and acute disease based on injury or organ failure
 - Multicausal disease

Genes - A gene is a section of the DNA strand that carries the instructions for a specific function.

Target Type and 'Drugability'

Targets for therapeutic intervention can be broadly classified into these categories:

- Receptors
- Proteins and enzymes
- DNA
- RNA and ribosomal targets

Target Validation

Requires a demonstration that a molecular target is critically involved in a biological process

- **o Knock-out/Knock-in/Gain-of-function, Transgenic Models**
- o Pathways
- o Clinical Data
- Antisense DNA/RNA and RNAi

Protein-structure and -function prediction is one of the most important fields in the post-genomic era.

Overview of key factors impacting research programs in structural proteomics

as well as their desired outcome.

TRENDS in Biotechnology

Strategies employed for Designing Drugs

Part I

Screen in a nut shell

known active(s) (ligand based design)

known receptor (structure based design)

ChemAxon

Aim: find 'better' structures

- higher activity
- not toxic
- fewer side effects
- etc.

The need for virtual screening

corporate

database (targets)

structures found (virtual hits)

query structure (known active)

Thebaine R1=R2=R3=CH3 Northebaine R1=H R2=R3=CH3 6-Acetylmorphine R1=CH3 R2=H R3=CH3CO Diamorphine R1=CH3 R2=R3=CH3CO

Veratramine

Lysergamide R=NH₂

Lysergic acid R=OH

Benzosampangine

OCH-Papaveraldine R=O (S)-Papaverinol R=OH (S)-Papaverinol N-oxide R=OH, N-oxide

Sampangine

Ajmaline

Jervinone 3-Epi-jervine

(S)-N-Methylcoclaurine

(S)-Nicotine R=H 6-Hydroxy-(S)-nicotine R=OH

Lupanine

Theobromine R1=H R2=R3=CH3 Theophylline R1=R2=CH3 R3=H

H₃CO. 40 OCH

Sanguinarine Current Opinion in Microbiology

Natural Products as drugs

MtaIPMS

TIM barrel domain

TIM barrel domain (magenta), subdomain I(red) subdomainII(yelow), regulatory domain (cyan)

Metal cations induced differential effect on the functional activity of $Mt\alpha IPMS$ and TIM barrel domain

MtaIPMS

TIM barrel domain

TIM barrel domain (magenta), subdomain I(red) subdomainII(yelow), regulatory domain (cyan)

Calcium ions essential for functional activity of HL

Calcium interacts with the C-terminal domain inducing outside movement relative to N-terminal domain

Possible Polyelectrolyte Condensation Modes for Hyaluronan

Why Ca⁺⁺ dependent activity?

Activity

SagHL + $HA_{6-10} \pm CaCl_2 / \pm NaCl / \pm EDTA$ 100%

Akhtar MS, Krishnan MY & Bhakuni V (2006) J. Biol. Chem 281, 28336-28344

Screening

- In vitro/Cell-based
- In vivo/Animal Models
- HTS

Test optimized leads in animals

[NOTE: Rats are not just "small humans"]

- Nevertheless, must establish safety in animals (mice, rats, pigs, dogs, etc...)
- Check for metabolism of drug
- Check for toxicity, adverse reactions
- Perhaps, check for signs of efficacy.
- Get indication of dosage ranges (mg/kg)