Department of Physics

Indian Institute of Technology Kanpur

PHY604: Review of Statistical Mechanics

Course content:

S. No.	Topics	No. of Lecture and Tutorial Hours
1	Problem oriented review of Statistical Mechanics. Review of thermodynamics: Laws of thermodynamics; thermodynamics of phase transitions and phase diagram.	3
2	Review of Ensembles and rules of calculation: Micro-canonical, canonical, grand-canonical and other ensembles; applications to models of ideal classical and quantum gases.	12
3	Models of classical interacting systems: Ising model in 1-dimension: exact solution by transfer matrix; Peierls-Griffiths argument for Ising model in 2-dimensions; Mean-field approximation for magnets and fluids, Landau Theory, critical exponents, upper and lower critical dimensions.	12
4	Models of quantum interacting systems: Density matrix, Transverse Ising model, exact solution by Jordan-Wigner transformation, Heisenberg model- magnons; Mermin-Wagner theorem; general theory of quantum phase transitions	9
5	Brief overview of Non-equilibrium statistical mechanics: Random walk and diffusion, Markov processes and master equation; Systems near equilibrium- Linear Response Theory, Fluctuation-Dissipation Theorem; Escape over a barrier- relaxation phenomena; critical dynamics.	6
6	Supplementary reading materials for term papers: Momentum-space Renormalization Group, Real-space Renormalization Group, Duality in Statistical mechanics, Various types of series expansions, Boltzmann equation, Molecular hydrodynamics, BBGKY hierarchy; Random and glassy systems, Linear and branched Polymers, Percolation; XY model and vortices-superfluidity.	N.A

Reference books:

- 1. M. Kardar, "Statistical Physics of Particles" (CUP, 2007).
- 2. R.K. Pathria, "Statistical Mechanics" (Academic Press, 2007).
- 3. D. Chowdhury and D. Stauffer, "Principles of Equilibrium Statistical Mechanics" (Wiley, 2000).
- 4. B.K. Chakrabarti et al. "Quantum Phase Transitions in Transverse Ising Models" (Springer, 1996).
- 5. S.K. Ma, "Statistical Mechanics" (World Scientific, 1985).
- 6. L.D. Landau and E.M. Lifshitz, "Statistical Mechanics" (Academic Press, 1975)
- 7. K. Huang, "Statistical Mechanics" (Wiley, 1987)