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Abstract— A neural network based fuzzy controller of load 
frequency control is proposed in this paper. In this approach, a 
fuzzy controller is designed at first to adaptively decide the PI 
like controller gains according to the area control errors and 
their changes. Case studies justify that the limitations of PI 
controller can be overcome by including Fuzzy concept and 
thereby the response of frequency and tie line power can be 
improved substantially following a load change in any area. 
Unfortunately, it is difficult for systems designers to obtain 
optimal fuzzy rules because these are most likely to be influenced 
by the intuitiveness of the operators and the system designers.  
Neural network implementation to fuzzy systems is proposed as a 
possible approach for overcoming the limitations of generating 
fuzzy rules in fuzzy controller. The approach is to realize the 
process of fuzzy reasoning by the structure of a neural network 
and to express the parameters of fuzzy reasoning by the 
connection weights to the neural network. The resulting Fuzzy 
neural network (FNN) can automatically identify the fuzzy rules 
and tune membership functions by modifying the connection 
weights of the network using Widro-Hoff learning algorithm. The 
proposed controller has been tested for a two area single reheat 
system with considering the practical aspect of the problem such 
as Deadband and Generation Rate Constraint (GRC). 

 Keywords-: Load Frequency Control, PI like Fuzzy Logic 
Control, Fuzzy Neural Network, Widro-Hoff   Algorithm 

  

I. INTRODUCTION  

Large-scale power systems are normally composed of 
control areas or regions representing coherent groups of 
generators. The various areas are interconnected through tie 
lines. Successful operation of a power system is the process of 
properly maintaining several sets of balances. Two of these 
balances are between load and generation and scheduled tie 
line flows and actual tie line flows. These two balances are 
predominant factors to keep frequency constant. Both of these 
balances are maintained by adjusting generation keeping load 
demand in view. A number of control strategies have been 
employed in the design of load frequency controllers in order to 
achieve better dynamic performance. The most widely 
employed controller is the conventional proportional integral 

(PI) controller. The advantages of PI controller is that it can 
reduce the steady state error to zero but generally gives large 
frequency deviations[1-5]. The optimal control is quite often 
impractical for the implementation because it is a function of 
all the states of the system but in practice, all the states may not 
be available [6-7]. In variable structure or sliding mode control 
system [8-10], the structure of the control law may change (e.g. 
jump of controller parameter values, change of the form of the 
function) during the course of action in accordance with the 
state, output or error measurement. The major difficulties of 
such work are the selection of switching vector and the 
uncertainty of hitting switching hyper plane. The choice of 
switching hyper plane makes very difficulty for practical 
implementation. In recent years-modern intelligent methods 
such as Artificial Neural Networks (ANN) and Fuzzy Logic 
(FL) have been successfully applied to the load frequency 
control problem with promising results [11-14]. The salient 
feature of these techniques is that they provide a model-free 
description of control systems and do not require any model 
identification. But the main drawbacks of ANN include large 
number of neurons in the hidden layers for complex function 
approximation, and very large training time required. The 
shortcoming in Fuzzy logic is the lacking of any systemic 
procedure for the design of fuzzy systems. It is difficult for 
systems designers to obtain optimal fuzzy rules because these 
are most likely to be influenced by the intuitiveness of the 
operators and the system designers. Some information will be 
lost when human operators express their experience by 
linguistic rules. This results in a set of less than optimal 
linguistic rules. It is therefore important to establish a 
mechanism for adjusting the fuzzy rules automatically in order 
to make the controller perform robustly. Here comes the 
necessity of the learning capability of neural networks.  

In this paper, a technique of neural network implementation 
in Fuzzy system design is developed in order to identify fuzzy 
rules and the memberships for the corrective signal to the 
governor following a load change. In practice, there exist 
different types of physical constraints such as GRC and 
Governor Deadband. This work also incorporates the above 
constraints to get the effect in the system dynamic response. 
The superiority of the proposed controller over commonly used 
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integral controller and Variable Structure System (VSS) are 
verified . 

II. DYNAMIC MATHEMATIC MODEL 

Electric power systems are complex, nonlinear dynamic 
system. The load frequency controller controls the control 
valves associated with High Pressure (HP) turbine at very small 
load variations [15,16]. Here it is assumed that small variations 
of load permit the linearization of system equations. The 
system under investigation has tandem-compound single reheat 
type thermal system. Each element (Governor, turbine and 
power system) of the system is represented by first order 
transfer function at small load variations in according to the 
IEEE committee report [16]. Two system nonlinearities likely 
Governor Deadband and Generation Rate Constraint (GRC) are 
considered here for getting the realistic response. Figure 1 
shows the transfer function block diagram of a two area 
interconnected network .The parameters of two area model is 
defined in Appendix. The governor deadband is represented by 
the nonlinear backlash block and the GRC is taken into account 
by adding a limiter to the turbine to prevent the excessive 
control action as shown in the Figure 1. 

 

Figure 1.   Transfer function model of a two area reheat thermal system 

III. APPLICATION OF  PI   LIKE  FUZZY LOGIC 
CONTROLLER FOR LOAD FREQUENCY CONTROL 

 
The selection of the control variables (controller input and 

controller outputs) depends on the nature of the controlled 
system and the desired output. In this work we have designed 
PI- like Fuzzy Knowledge Based Controller. The basic 
structure of the conventional PI controller is 

 dteeu IP ∫+= κκ                                                    ...(1) 

where κp and  κI are the proportional and integral gains 
respectively and e is the error signal(i.e. e=process set point –
process output variable). Taking the derivative with respect to 
time, the above expression 1 is transformed into equivalent 
expression 

.
u =κp

.
e +κI e .                                                      …(2) 

The inputs to the Fuzzy controller for ith area at a particular 
instant ‘t’ are  ACEi(t) and ∆ACEi(t) , where  ACEi(t)=∆Ptiei+Bi 
∆fi and ∆ACEi(t) = ACEi (t)- ACEi(t-1) and output of the fuzzy 
controller is ∆u .This is in accordance with the  eqn. (2) for PI 
like controller. The inputs and output are transformed to seven 
linguistic variables  NB, NM, NS, Z, PS, PM and PB which 
stand for Negative Big , Negative Medium, Negative small, 
Zero, Positive Small, Positive Medium and Positive Big 
respectively is shown in Figure 2. Symmetrical triangular 
(expect of the two outermost ones which have a trapezoidal 
shape) membership function is considered here for all the three 
variables of ACE, ∆ACE and ∆u. 

 

Figure 2.   Membership functions for the fuzzy variables of ACE 

The control policy is established in the rule base and Table-
1 shows the 49 rules that are generated through the knowledge 
of the system. 

TABLE I.  FUZZY RULES FOR TWO-AREA SYSTEM 

   

 The control output u∆  is determined using the center 
of gravity by the following expression, 
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Where, jµ  is the membership value of the linguistic 

variable recommending the fuzzy controller action, and ju is 

the precise numerical value corresponding to that fuzzy 
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controller action. This ∆u is added with the existing previous 
signal will be the actually output signal u which goes to the 
governor.  

IV. DRAWBACKS  OF FUZZY LOGIC CONTROLLER 

There is no such systemic procedure for the design of fuzzy 
systems. Usually the linguistic rules are generated by 
converting the human operator’s experience into linguistic 
from directly or by summarizing the sampled input-output pairs 
of the systems to be dealt with. Unfortunately, it is difficult for 
systems designers to obtain optimal fuzzy rules because these 
are most likely to be influenced by the intuitiveness of the 
operators and the system designers. Moreover, some 
information will be lost when human operators express their 
experience by linguistic rules. This results in a set of less than 
optimal linguistic rules. Therefore, fuzzy systems capable of 
developing and improving the linguistic rules and structures 
automatically are highly desired. 

V. DESIGN OF FNN CONTROLLER 

To overcome the basic limitation of a fuzzy controller i.e 
inability to learn and adapt in a changing environment, an 
amalgamation of fuzzy logic and neural network (FNN) is 
proposed. The proposed FNN method has been developed 
based on type-I method among the proposed three methods for 
identifying the structure of fuzzy model of a nonlinear system 
by Harikawa et al. [19].  The resulting Fuzzy neural network 
(FNN) can automatically identify the fuzzy rules and tune 
membership functions by modifying the connection weights of 
the network using Widro-Hoff learning algorithm [18]. The 
FNN model will consist of the same three stages i.e. 
fuzzification, Database (Knowledge base and rule base) and 
Defuzzification of a conventional fuzzy controller, but the if-
then rules in the rule base are adjusted by iterative learning 
algorithms similar to neural network learning. 

A. Fuzzification 
 

In this design, Area Control Error (ACE) and Governor signal 
∆Pc has been taken as input and output respectively. Area control 
error is taken as only input to FNN controller but both area 
control error and rate of change of area control error (∆ACE) are 
considered as inputs while designing fuzzy logic controller. ACE 
is considering as only input in FNN since the control signal is 
more dependent on the value ACE than ∆ACE. By considering 
ACE as input to FNN controller we have obtained the same 
performance as Fuzzy Logic controller though both the variables 
can also be considered in the computational process of FNN. In 
the present work the entire possible input and output values are 
converted into seven triangular membership functions with each 
membership representing different linguistic variables which are 
Negative Big(NB), Negative Medium(NM), Negative small(NS), 
Zero(ZE), Positive Small(PS), Positive Medium (PM) and 
Positive Big(PB) as shown in the Figure 3 . The membership 
function would perform a mapping from the crisp value to a 
fuzzified value. As shown in Figure 3, one particular crisp input 

ACE is converted to fuzzified value i.e. 
NMNS

2.8.
+ ,where 0.8 

and 0.2 are membership grades corresponding to the linguistic 
variable NS and NM in FNN system. The membership grades 
are zero for all other linguistic values except NS and NM. The 
crisp value input to the system in this way will be converted to a 
fuzzified value consisting of several membership grades 
corresponding to each linguistic variable. As input is fuzzified 
by seven linguistic variables so the neural network consists of 
seven nodes in the input layer as shown in Figure 4. Each node 
represents a particular input linguistic variable. 
Thus the input crisp value of ACE is converted to fuzzify 
value as ],[ 7,6,5,4,3,21 xxxxxxx  .Where, ],[ 7,6,5,4,3,21 xxxxxxx  are 

seven nodes representing NB, NM, NS, Z, PS, PM, PB 
respectively as shown in Figure 4. Like the input layer, the 
nodes in the output layer corresponds to all the linguistic 
concepts i.e. seven in the present case, of the output variable. 
So y1 in the output layer represents membership grade for the 
linguistic variable NB. Thus output fuzzy set can also be 
represented as [y1 ,y2,…….  y7] . 

 
Figure 3.  Membership Functions for the fuzzification mappings 

 

Figure 4.  Fuzzy Neural Network (FNN) model 

B. Formation of rule base 
Each synaptic weight between the input and output layer 
represents the strength of the relation between the 
corresponding linguistic concepts e.g. wij =0.7 means that for 
the ith neuron i.e. input linguistic concept in the input layer, the 
jth neuron i.e.  output linguistic concept in the output layer 
would be activated to an extent of 70%. The resulting weight 
matrix is called as Fuzzy Relation matrix (FRM). The seven 
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membership grades coming out of the seven neurons from the 
input layer are multiplied with the concerned synaptic weight 
to arrive at seven output values. The fuzzified value for each 
node in the output layer is calculated as follows.  

)1,7()1,6()1,5()1,4()1,3()1,2()1,1( 76543211 wxwxwxwxwxwxwxy ×+×+×+×+×+×+×=

 
)2,7()2,6()2,5()2,4()2,3()2,2()2,1( 76543212 wxwxwxwxwxwxwxy ×+×+×+×+×+×+×=

. 

. 
)7,7()7,6()7,5()7,4()7,3()7,2()7,1( 76543217 wxwxwxwxwxwxwxy ×+×+×+×+×+×+×=

       Thus, ij
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j

j xy W
7

1

7

1
∑∑
==

= .The seven yj values thus obtained  

correspond to seven linguistic outputs at seven output neurons. 
These seven linguistic values as obtained would be 

compared with the fuzzified desired output. The desired output 
d
cP∆   is fuzzified by seven linguistic values, d

jy , j=1 to 7, as  

shown  in the  Figure 4 , in a manner similar to the fuzzification 
of the input crisp ACE value. The error εj between each 

linguistic value of d
jy and jy as shown in Figure 4.The Least 

Squared Error ( ∑
=

×=
7

1

25.0

j

jLSE ε ) is calculated using errors. If 

the LSE falls outside the tolerance limit, the weights are 
updated through Widro-Hoff algorithm as follows, 

 Wij (n+1) = wij (n) + ∆ wij(n+1)                          …(4) 

Where, 

 ∆wij(n+1) = η * εj  * xj + α * wij (n)          …(5) 

    wij (n)  =         the current weight 

  wij (n+1)  =  the updated weight 

∆ wij(n+1)  =   the change in weight (initially                                        
it is taken as Zero). 

 η  =  the Learning rate Coefficient. 

α  = Momentum factor. 

 The weight updating procedure is carried out till a 
certain termination criterion (tolerance limit) is fulfilled. 

C. Defuzzification in FNN: 
After offline training the final FRM establishes the accurate 

relation between the input and output nodes. In real time 
operation, the linguistic values coming out from the 7 neurons 
of the input layer when multiplied with the final FRM will give 
7 linguistic outputs at 7 output neurons as shown in the Figure 
5. Defuzzification is required to convert these seven linguistic 
outputs into a real value. Moment method [18] is used here for 
defuzzification where the output value of jth node 

( ij

i

i

j

j xy W
7

1

7

1
∑∑
==

= ) multiplied with the centre value (fj) of the 

corresponding triangular membership function gives the real 
value corresponding to the related variable. The summation of 

such real values of all nodes divided by the sum of output 
values at output node gives the final defuzzified value i.e  
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Figure 5.  Fuzzy Neural Network (FNN) structure in real time operation 

VI. SIMULATION AND RESULTS 

 
The proposed Fuzzy Neural Network Controller has been 

applied to a two area reheat thermal system and simulation has 
been conducted with Simulink in MATLAB 6.1. The input data 
used here is shown in Table II.  

TABLE II.   INPUT SYSTEM PARAMETERS 

                    
The limiting value of deadband is specified as 0.06% and a 

specific value of generation rate limitation is 0.1 p.u. per  

minute [4] i.e. |
dt

Pd gi∆
|≤0.1pu/min=.0017pu/sec. The 

continuous output from the conventional integral controller at 
0.005 p.u. load change is sampled at a rate of 0.05 sec. The 
outputs at corresponding inputs generates four hundred input 
and output patterns.  Out of which, 300 patterns are used for 
training the FRM and remaining patterns are utilized for testing 
the robustness of FNN. Learning rate, momentum constant and 
error convergence criterion are considered as 0.1, 0.01,10-7 
respectively The  Fuzzy  Relation  Matrix (FRM) is shown in 
Table III are used as the initial FRM. The initial values of FRM 
may be chosen randomly but the more or less accurate 
initialization will reduce the number of iterations performed to 
train the FRM. The final Fuzzy relation matrix has been 
generated from the initial FRM after training the FNN, which 
represents the new rule base as given in Table IV. The results 
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of FNN based controller is compared with the conventional 
fixed gain integral controller [4] and Variable structure system 
(VSS) [8] . 

TABLE III.  INITIAL FRM CONSIDERED FOR TRAINING. 

 

TABLE IV.  FINAL FRM  AFTER TRAINING 

 

 

Figure 6.  System response with GRC and Governor Deadband (a) Frequency 
deviation in area 1(∆f1)  (b) Frequency deviation in area 2(∆f2) (c) Tie-line 
power deviation (∆Ptie)(d) Deviations in generated power in area 1(∆Pg1) 

Figure 6 shows the comparison between Fuzzy and FNN 
controller for the same load change of 0.005 p.u. in area 1 with 
considering GRC and Governor Deadband. From this, it is 
clear that the performances of FNN controller and Fuzzy Logic 
Controller are of similar nature. The proposed FNN controller 
is thus able to create the rule base automatically and is not user 
defined as like Fuzzy controller. For fuzzy logic controller, 
substantial time and efforts are necessary to create rules by trail 
and error, which is no longer, require in FNN controller.  

Chun-Feng Lu et al. [4] have developed fixed-gain integral 
controller for load frequency in same two area reheat thermal 
system considered in this study. The gain setting (KI) of 
integral controller is optimized by least square error criterion 

and reported as 0.48 for  0.005  p.u.  step load  change of  area 
1 [4] .  Figure 7  shows  the deviations  of  system variables  in 
response to the 0.005 p.u.  load change by fixed-gain integral 
control and FNN. It is observed turbine power output ∆Pg1 and 
∆Pg2 in integral controller reaches lower and upper bound 
which leads the system oscillations sustain for a long period in 
integral controller as shown in Figure 7. Whereas result 
designed by the proposed FNN approach achieves better 
performance because of the generation of proper FRM, 
according to which the gain changes for every incoming error 
signal. 

 

Figure 7.  Responses of power system by fixed Integral gain (dotted curve) 
and FNN (solid curve)  with load change ∆PD1=0.005 p.u. MW  and ∆PD2=0 in 

area 1 and area 2. a) Frequency deviation in area 1(∆f1)  (b) Frequency 
eviation in area 2(∆f2) (c) Tie-line power deviation (∆Ptie)(d) Deviations in 
generated power in area 1(∆Pg1) e) Deviations in generated power in area 

2(∆Pg2) 

TABLE V.  COMPARISON OF PERFORMANCE FOR THE CASE OF 
REHEAT TURBINE WITH GENERATION RATE CONSTRAINT AND DEADBAND 

 
The results obtained from the proposed FNN controller are 

compared with VSS controller reported in reference [8] and 
presented in Table V. It can be observed that great 
improvements in system performance have been obtained by 
using the proposed FNN control scheme. VSS controller is 
quite often impractical for the implementation in real time 
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because this technique is a function of all the states of the 
system [8]. In practice all the states may not be available. The 
inaccessible states or missing states are required to be estimated 
[10]. Again, this control technique which is a function of the 
states in turn is dependent on the load demand. 

VII. CONCLUSIONS 

 Fuzzy Neural Network based proposed structure has 
been successfully applied to a load frequency control system. 
The fuzzy logic based neural network has been trained at first 
using known input-output sets, in which the knowledge of rules 
is explicitly expressed in weights of the neural network and 
inferences are executed efficiently at a high rate on off-line.  
The trained FRM only needs to be placed at real time operation 
between input and output layer. Thus, using neural network as 
a structure for the fuzzy controller is significantly reducing the 
designing effort and time of conventional fuzzy controller 
model and does not depend only on the experience and 
intuitiveness of the system designer. The computer simulation 
has been conducted for the two-area reheat system with GRC 
and Governor Deadband. The simulation results justified that 
the proposed FNN controller yields more improved control 
performance than the fixed integral controller and VSS. 

APPENDIX 

∆Pgi      = incremental generation change, 

∆XEi      =         incremental governor valve position change 

∆PDi      =         incremental load demand change 

∆fi       =        incremental frequency deviation 

∆P tiei   =        incremental change in tie-line power 

∆PCi     =         incremental change in speed changer position 

 f        =        nominal system frequency 

 Hi     =        inertia constant 

Di    =       load frequency constant  (KPi=
iD

1 , Tpi=
i

i
fD
H2 ) 

Tij
0   =      synchronizing coefficient 

Ri      =       speed regulation parameter 

Tgi    =       governor time-constant 

Tti   =        turbine time constant 

Kri ,Tri   =  reheat coefficient and reheat time constant  

Tpi    =        Power System time constant 

The area control error (ACE) for the ith area is defined as 

ACEi= ∆Ptie i+Bi∆fi   , Where Bi is the frequency bias 
constant.                             
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