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Abstract--A scheme for location of transmission line faults 
based on Radial Basis Function based Artificial Neural 
Networks is presented. Post-fault current and voltage samples 
are considered as inputs to ANNs. To validate the proposed 
scheme simulation studies have been carried out using EMTP 
and MATLAB on a power system model considering wide 
variations in fault inception angle, fault location and fault 
resistance. 
 

Index Terms-- Fault location, transmission line, Radial Basis 
Function, Neural   Network.  

I. INTRODUCTION 

RANSMISSION lines are vital links in a power system, 
which provide the essential continuity of service from 

generating plants to the end users. Fast and accurate detection 
and classification of transmission line faults are required in 
order to maintain a reliable power system operation. Accurate 
location of the fault point is necessary to ensure quick service 
restoration. 

Two types of algorithms, the differential equation based 
algorithms [1-5] and the Fourier analysis based algorithms 
[1,6,7] are widely accepted for transmission line fault 
location. However, both types of algorithms are affected by 
the presence of fault resistance (RF). Travelling wave based 
algorithms are also capable of accurately locating faults but 
implementation of these schemes becomes complicated 
because of difficulty in accurate detection of signals. 

The multilayer feedforward network with back 
propagation (BP) training algorithm is the most widely used 
neural network model for pattern classification applications 
[8]. However, BP is not well suited for distance protection as 
the algorithm does not work satisfactorily when a case to be 
diagnosed falls in a region with no training data. The radial 
basis function (RBF) based neural network is well suited for 
such cases [9,10].  

A RBF neural network based fault location scheme is 
presented. Large number of patterns has been generated by 
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means of EMTP. Some of these have been used for training 
and some have been used for testing. Simulation studies have  
 
been carried out on a power system model, considering wide 
variations in fault inception angle, fault location and fault 
resistance. 

II. R B F NEURAL NETWORK 
The radial basis function network (RBFN) has a feedforward 
structure consisting of three layers, an input layer, a nonlinear 
hidden layer and a linear output layer, as shown in Fig. 1. 
The hidden nodes are the radial basis function units and the 
output nodes are simple summations. The number of input, 
output and hidden nodes are nI, no and nh respectively. This 
particular architecture of RBFN has proved to directly 
improve training and performance of the network [9]. Any of 
the functions viz. spline, multiquadratic, Gaussian function 
may be used as transfer function for the hidden neurons. The 
Gaussian RBF, which is the most widely used one, has been 
considered for the proposed fault location application. 

  

 
Fig. 1  Architecture of RBF neural network 

 
The response of the j th hidden neuron to the input xxk is 

expressed as [10]:  
 

φ j (xxk ) = 












−−

2

2
1

jk
j

xxexp µ
σ

             (1) 

 

Location of Transmission Line faults using 
Radial Basis Function based Artificial Neural 

Networks 
Rabindra N. Mahanty and P. B. Dutta Gupta 

T 



INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR 721302, DECEMBER 27-29, 2002 103 

where µj is the center for the j th hidden neuron and σj is the 
spread of the Gaussian function,  denotes the Euclidian 
norm. The output of each node in the output layer is defined 
by [10] 
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where XX is the input vector and θ ji represents the weight 
from the jth hidden node to the ith output node. 

The performance of a RBF neural network depends on the 
choice of the values of the centers. In the proposed work, the 
simulation studies have been carried out by means of 
MATLAB’s “neural network toolbox” [14], which makes use 
of the orthogonal least squares (OLS) learning procedure 
[11,12] for determining the RBF centers. 

III. POWER SYSTEM MODEL 
The power system model considered for simulation study is 
shown in Figure 2. As shown in the figure fault occurs on 
transmission line 1.  
 
 

 
 

 
Fig. 2 : A faulted transmission line fed from both ends 

 
The line parameters and other relevant data are as shown   

below. 
Transmission  line 1 

Line length = 100Km 
Positive sequence line parameters: R = 2.34 Ω, L = 95.10     
mH, C = 1.24 µF. 
Zero sequence line parameters: R = 38.85 Ω, L = 325.08 mH, 
C = 0.845 µF.   

Transmission  line 2 
Line length = 130 km 
R2 =1.3 R1, L2 =1.3 L1, C2 =C1, where suffixes 1 and 2 refer 
to transmission line-1 and transmission line-2 respectively. 
vS1= 400 kV, vS2 = 0.95 vS1, where vS1and vS2 are the voltages 
of source 1 and source 2. 
δ (phase difference between vS1 and vS2 )=200  with vS1 
leading.     

Source impedances: ZS1 = (0.2 + j4.5) Ω per phase, ZS2 = (0.3 
+ j8) Ω per phase.     

IV. THE FAULT LOCATOR   
The proposed ANN based fault locator is shown in Fig. 3. As 
shown in the figure, the proposed fault locator consists of 

two ANNs: ANN-I and ANN-II for each type of fault i. e. 
two ANNs for L-G faults, two ANNs for L-L faults and so 
on. The two ANNs are trained with different values of 
spread. The operating principle of the fault locator is as 
follows. After the type of fault has been identified, ANN-I 
assigned for the particular type of fault estimates the fault 
location. In case this estimate is less than a specified 
predetermined value (corresponding to 50% of line length) 
then a second estimate is found out using ANN-II for the type 
of fault. In case the first estimate is equal to or greater than 
the specified value, then there is no need to find second 
estimate. The training and testing data are generated using 
EMTP [13] considering a sampling interval of 1ms. The fault 
location is carried out by a MATLAB program, which makes 
use of the ‘Neural Network Toolbox’ [14]. The prerequisite 
of the fault location program is that the fault type should be 
known. There are several established methods by which this 
can be done [8,9,10]. 
 

 
 

Fig. 3  The proposed ANN based fault locator 

V. SIMULATION STUDY   
The input to each ANN consists of ten post-fault samples of 
each of the three phase currents and voltages, taken at one 
end of line (bus 1 of Fig. 2). The input data are all normalized 
and are presented   in the form of a single input vector to 
ANN. Corresponding to the input vector an output is 
obtained in terms of fraction of the line length up to the fault 
point. 

In order to achieve high degree of accuracy in fault 
location, large number of training data have been generated 
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using EMTP, considering fault at 10%, 20%, 
30%……60%,70%, 75%, 80%, 85% and 90% of the line. For 
each fault location, fault inception angles of 00, 200, 400, 600 
and 800 and fault resistances of 0.5Ω, 20Ω, 75Ω and 150Ω 
have been considered. A per phase load impedance of 500Ω 
at 0.8 p. f. lagging has been considered for all training cases. 

After carrying out a number of simulation studies, it has 
been observed that instead of a single value of spread for the 
entire line if two different values of spread are used, one for 
faults within about 50% of line and another for faults beyond 
this range, more accurate estimates of fault location  are 
obtained. The above mentioned strategy  of  estimating  fault 
location is implemented by using two ANNs: ANN-I ( for 
faults occurring beyond 50% of line) and ANN-II ( for faults 
occurring within 50% of line) for each type of fault, the two 
ANNs being trained with  different values of spread. The 
selected values of the spreads for various ANNs for location 
of L-L and L-G faults are shown in Table I. The number of 
neurons in the hidden layer, the number  of epochs 
(iterations)  and the training time  of  each ANN are also 
shown  in  these 
 

TABLE I  
SPREADS RELATING  TO VARIOUS ANNS OF  FAULT  LOCATOR  

 

 
 
tables. The error goal was fixed at 0.001 for all ANNs. The 
error convergence of the various ANNs used for locating L-G 
and L-L faults are shown in Fig. 4 through Fig. 7.  
 After the training phase was over, each ANN was tested 
for different types of faults considering wide variations in 
fault  
 
 

 
Fig. 4 Error convergence of ANN-I for L-L faults in training 
 

 
Fig. 5 Error convergence of ANN-II for L-L faults in training 
 

 
 
Fig. 6 Error convergence of ANN-I for L-G faults in training 
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Fig. 7 Error convergence of ANN-II for L-G faults in training 

 
location, fault resistances, fault inception angle and pre-fault 
load. A variation of 0-200Ω in fault resistance (RF), 0-3600 in 
fault  inception  angle (FIA) and  0-90% of  transmission  line  
length in fault location (α) have been considered. The above 
variations were combined with a per phase load (ZL) variation 
of 300-1200Ω with variation of 0.7–0.9 in power factor 
(lagging). A comparison of results obtained with the two 
selected values of spread are shown in Table II. αe represents 
the estimate of fault location obtained through ANN.As 
shown in Table II, for L-L/L-G faults at 15% of line, results 
obtained with ANN-II are generally better than those 
obtained with ANN-I. Similarly, for L-L/L-G faults at 82% 
of, the results obtained with ANN-I are generally more 
accurate. The other results shown in Tables II also depict the 
fact that the use of two values of spread is justified.  

Some representative test results are presented in Table III 
and Table IV, which confirm the feasibility of the proposed 
ANN based fault location scheme.  

 
TABLE II 

COMPARISON  OF  FAULT  LOCATION  ESTIMATES  FOR THE TWO SELECTED 
VALUES OF SPREAD  

 

 

VI. CONCLUSION   
A Methodology for location of transmission line faults based 
on RBF neural network have been presented. Samples of 
three phase voltages and currents are used as inputs to the 
ANNs of the fault locator. In order to obtain accurate 
estimates, two ANNs with different values of spread have 
been used for each type of fault. Simulation studies carried 
out considering wide variations in fault location, fault 
inception angle, fault resistance and pre-fault load, show that 
the proposed methods are suitable for location of 
transmission line faults including the high impedance ones. 

 
TABLE III 

TEST RESULTS FOR AG  FAULT  AT 15% OF LINE  
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TABLE IV 
TEST RESULTS FOR AB FAULT AT 55% OF LINE 
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