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SUMMARY

Over the last decade the amount of population ésjudtue to overturning of furniture is around 40%l #mis

trend is expected to continue. Therefore a furetdal topic in the seismic protection is to linfietexcessive
motion of non-anchored bodies. The aim of this wtigdto analyze the behaviour of a rigid body undesine
pulse, particularly the rocking behaviour that sablished during the pulse.The results are shawthé

acceleration-frequency plane which can be congtduftdr all types of geometry and provides informatbn the
type of wave that can cause the overturning.
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1. INTRODUCTION

Although a strong earthquake motion does not alwayse severe damage of structures,there may be
a possibility that a lot of people are injured by averturning accident of furnitureinside
structures.Therefore a fundamental topic in thersiei protection is to limit the excessive motion of
non-anchored bodies.

The motion of a non-anchored body can be partitlone6 basic conditions: rest, slide, rock, slide-
rock, free flight and impact. These motions haverbanalysed by different authors (Ishiyama,
Housner, Shenton, Yim).

The purpose of this study is to analyze the behavid a rigid body under a sine pulse, particularly
the rocking behaviour that is established durirg gthise. As demonstrated by the analysis after the
input excitation a rigid body can have differenh&@ours depending on the system parameters. In
particular we can distinguishif a rigid body startrocking motion but it doesn’t overturn or if it
overturn with distinct modes: by exhibiting onenaore impacts, and without exhibiting any impact.

The results obtained are shown in the accelerfiteaniency plane that can be created for any
geometry, where there are two main areas: a safewbere the free-standing block doesn’t overturn,
and the other where the rigid body overturn extpitmpacts or without exhibiting any impact.

2. REVIEW OF ROCKING RESPONSE OF FREE-STANDING BLOCK
Consider the model shown in Figure 1, which carillage about the centers of rotatiéh and O’

when it is set to rocking. Its center of gravityramades with the geometric center, which is at tadise
R from any corner. The angteof the block is given byan(a) = b/h.



Depending onthe value of the ground acceleratiahtae coefficient of frictiony, the block may
translate withthe ground, enter a rocking motioraaliding motion. A necessary condition for the
block toenter a rocking motion > b/h (Aslam et al. 1980, Scalia and Sumbatyan 1996 Th
possibilityfor a block to slide during the rockimgotion has been investigated by Zhu and Soong
(1997),and Pompei et al. (1998). In this studys iassumed that the coefficient of friction between
theblock and its base is sufficiently large to emsliding at any instant in the rocking motion.

Figure 1.Schematic of rocking block.

Under a positive horizontal ground acceleratiai, the block will initially rotate with a
negativerotationg<0, and, if it does not overturn, it will eventualigsume a positive rotation and so
forth.Assuming zero vertical base acceleratigy{#) = 0 ), the equations of motion are

I, +mgRsin(—a—0)=-m iigR cos(—a — 6) , 60<0 (2.1)
and

I, + m g R sin(a—6) = —m iiyR cos(a — 0) , 6>0 (2.2)
where for rectangular blocks,
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and equations (2.1) and (2.2) can be expresséa iodmpact form

6(t) = —p? {sin(a sgnlO(t)] — H(t)) + il;‘"cos (a sgnl6(t)] — B(t))} (2.4)

Wherep = /i—i is a quantity with units in rad/sec. The largex bhock is (largeR), the smallep is.

The oscillation frequency of a rigid block undegdrvibration is not constant, since itstrongly dejse
on the vibration amplitude (Housner, 1963). Newadhs, the quantity is ameasure of the dynamic
characteristics of the block.

When the block is rocking, it is assumed that titation continues smoothly from point O to O'.



3. ROCKING RESPONSE UNDER ONE-SINE PUL SE

The analysis presented in this section focuseb®o\erturning potential of a one-sine pulse shimwn
Figure 2, therefore the ground acceleration is

iy (t) = ap sin(wp t+ 1/)), ¥ << Qr— Y)/w, (3.2)

Wp
iiy(t) = 0, otherwise (3.2)

where) = sin_l(ag/ap) is the phase angle when rocking starts.
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Figure 2.0ne-sine pulse.

With one-sine pulse input is possible to solve &gua(2.4) and to observe the variation of the
position of the center of gravity, and consequetitly variation of the anglé During this phase the
rocking response is determined by the ratio betweemngle) and anglex. If the ratio is smaller than

1 the rigid body is in a condition of rocking buttlife ratio become bigger tharthe center of gravity

is out of the base of the rigid body so the eqriilitm is not satisfied and the object overturns.

For certain acceleration and frequency valuesitfid body can start the rocking response with one
bouncing before overturning.

The problem is therefore governed by three majoiakbes: the geometric nature of the system, the
acceleration and the frequency of the input. Theabielr of a free standing bodycan be defined after
defining these variables.

This type of problem is independent from the mdsthe rigid body, in fact the mass is present in

all the terms of equation (2.1) and (2.2), and eqaoently results are equally valid for each rigidiy
with this particular geometry.

3.1. Nonlinear formulation

Considering the non linear nature of the problem,fvaluating the various overturning
boundaries,equation (2.4) must be rewritten inshesy:

(O} = {ZEB} (3.3)

and the time-derivate vector is

o(t)
fO =0m}= {—Pz [sin[a sgn [0(t)] —0(t)] + ﬁgT(t)cos[a sgn [0()] — H(t)]]} (34)

This system can be solved by a numerical integratime option for performing this integration is to



use the standard Ordinary Differential Equation E2B) solver available in MATLAB,
thereforeequation (3.4) was implemented in Matdatul results found for a given geometry have been
shown in the acceleration-frequency plane.

4. ANALYSISOF THE RESULTS

In order to obtain results is necessary determittiieggeometry of the problem. If a slender block is
considered, therr0.25 rad can be assumed. This means that the value of ¢élasure of the dynamic
characteristics of the block is

p=214rad/s 4.1)

Thenthe other two variables (acceleration and #aqy) that govern the system are ranged and results
are summarized in the acceleration-frequency plane.

The results obtained can be grouped into seveealsek: (i) overturning without bouncing, (ii)
overturning with one bouncing, (iii) overturningttvitwo bouncing, (iv) no overturning.

Overturning without bouncing: in this case the input doesn’t enable the rockimagion of the rigid
body and the absolute value of the r&jarquickly becomes greater than 1. This means thatigiak
body overturns because the equilibrium is not SatisA cross is placed in the acceleration-fregqyen
plane where overturning occurs. For example, resldtained with a normalized acceleration equal to
a,/ag = 2 and with the normalized frequenay,/p = 1 are shown in Figure 3, where the y-axis is
the ratiof/a, while the x-axisshows the time.
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Figure 3.0verturning without bouncing.

Overturning with bouncing: in this case rigid body bounces on a vertex ttleanges direction of
motion and overturns on the other side. This behavbccurs in a specific area of the acceleration-
frequency plane, between the previous zones whereeversal occurs and a safe zone where the rigid
body doesn't overturn. In Figure 4 are shown tiseilte obtained witl,,/ag = 2andw, /p = 2.

In few places there is a different behaviour frorevinus ones. With a normalized acceleration
a,/ag =12 and a normalized frequenay,/p = 10 Figure 5; the overturn occurs after two impact
and this is represented in the acceleration-freqquplane with a filled circle. Despite this behawias
important to note that even in this case the rigidy overturns, hence these points must be inserted
the area unsafe of the acceleration-frequency plane
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Figure 4.0Overturning with one bouncing.

[

Ola
o
Il

Figure 5.0verturning with two bouncing

No overturning: in this case the rigid body starts a rocking motand the absolute value of the ratio
6/a remains always less than one, therefore the hgdl does not overturn. It happens in the third
main area of the acceleration-frequency plane. bhlsaviour is represented in the plane by a little
circle. An example of this result is shown in Fig realized with the value of acceleratigyyag =

2 and the frequency, /p = 5.
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Figure 6.Rocking motion.

Figure 7 is the acceleration-frequency plane, wigetecan clearly distinguish three different zones.
The first area is situated in the lower left of fllane and represents the safe area where thaiovert
does not occur. In the rest of the plane a freedatg block can overturn with two different modbg:
exhibiting one or more impacts; and without exfiilgjtany impact.

The area where the bouncing overturning occursetsvden the rocking area and the overturning
without bouncing area and the transition betweesdhmodes is abrupt.

Another way of approaching the problem may be toy \he type of integration by using other
differential equation solver, in fact, as you cae & Figure 7, the result obtained for high agetien

and high frequencies can be affected by severaftation errors, one on all the integration step
because the input in this zone of the accelerdteuency plane is very strong and develops in a
short amount of time, so it would be appropriatentwease the integration step.
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Figure 7.Acceleration-frequency plane.



5. CONCLUSION

The paper reviews the rocking motion and overtigtiahaviour of a rigid block subject to sinusoidal
pulses. Furniture inside a building, an importantseum art craft, or any object that can overturns
during an earthquake can be assumed as a rigid,thiecefore is very important to analyze the
behaviour of this object under a dynamic force.

This study reveals that, under one-sine pulsege-gtanding block can overturn with two distinct
modes, bouncing on the vertex or without bounciyertheless it's easy to determinate a safe region
in the domain of frequencies and acceleration agusily rocking motion.

An important development of this work can be thenparison between the results of different rigid
body shapes by varying the slendernesd the block; and using different waves input as tbsine
function, or more realistic time history floor atamtions. Also further research should be done
related to the interaction between the structumdlr@on-structural components.
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