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SUMMARY:  
Nonlinear dynamic analysis of very short period buildings indicates that these structures have probabilities of 
collapse that are much higher than that of longer period buildings, even though the short and long period 
buildings are designed under the same design rules.  The higher probabilities of collapse for the shorter period 
buildings are related to the extremely high ductility demands that are computed for these systems.  Observation 
of the performance of short period buildings that have been subjected to actual ground shaking does not indicate 
an unusual propensity of collapse for these systems.  Potential reasons for the difference in computed and 
observed behaviour are explored in this paper, and recommendations are given for improved analysis and design 
of these systems. 
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1. INTRODUCTION 
 
FEMA P-695 (FEMA, 2009) provides a computational methodology for determining the Seismic 
Performance Factors, R, Cd, and Ωo, for buildings designed in conformance with the ASCE 7-10 
(ASCE, 2010) minimum loads standard.  In this methodology, a “Performance Group” of several 
mathematical “archetypes” of a given design procedure are systematically re-analyzed for 44 different 
ground motion records with increasing intensity.  The ground motion intensity at which 22 out of the 
44 archetypes collapse produces a dimensionless quantity called the Collapse Margin Ratio (CMR). 
The CMR is mathematically equal to the ratio of the ground motion intensity that caused the 22nd 
collapse, to the Maximum Considered Earthquake (MCE) ground motion intensity.  The CMR is then 
adjusted to account for the spectral shape, producing the Adjusted Collapse Margin Ratio (ACMR).  
Finally, the ACMR, together with information related to uncertainty in the testing, analysis and design 
process, can be used to determine the conditional probability of collapse.  An acceptable structural 
design is achieved when the probability of collapse, conditional on the occurrence of MCE ground 
motions, is no larger than 20% for individual archetypes, nor greater than an average 10 percent for all 
of the archetypes within the performance group.  The MCE motion has a 2% probability of being 
exceeded in 50 years (or a 2475 year mean recurrence interval). 
 
Initial analytical studies using the FEMA P-695 Methodology found that there was a general trend that 
structures with shorter fundamental periods of vibration (T ≤ 0.6 sec.) had a higher probability of 
collapse and were more likely to fail the acceptance criteria than longer period structures (T > 0.6 sec.) 
of the same basic structural material and configuration.  In the FEMA P-695 report, none of the shorter 
period systems actually failed the acceptance criteria, but these systems tended to have the lowest ratio 
ACMR to the acceptable ACMR for individual archetypes of a given performance group.  Problems 
with short-period archetypes were particularly evident in subsequent exercising of the P-695 
methodology, wherein several special reinforced masonry and special reinforced concrete shear wall 
systems were evaluated and reported in NIST Report GCR 10-917-8 (NIST, 2010). Several of the one 
and two-story systems with very short periods failed to meet the collapse related performance criteria 



or came very close to failing the acceptance criterion.   All of the taller archetypes, with longer periods 
of vibration, passed the acceptance criterion. 

The trends in the P-695 analyses indicate that it might be advisable to reformulate the ASCE 7 seismic 
provisions such that R becomes period dependent. This approach was suggested by authors of relevant 
sections of GCR 10-917-8, in which the results of P-695 analyses of reinforced masonry shear wall 
systems were investigated. The authors stated the following:  

“Current code provisions do not adequately distinguish between the wide range of 
performance characteristics of different masonry wall systems for which the use of 
the same R factor might not be appropriate.  In particular, current codes do not 
account for the fact that the ductility demand induced by an earthquake ground 
motion on low-rise walls and high-rise walls can be very different.  Their ductility 
capacities can be very different as well, so that different R factors may be needed for 
low-rise and high-rise walls.” 

 
As shown later in this paper, the design R value would need to trend towards 1.0 for very short period 
systems (T< 0.2 seconds) to eliminate the unacceptable collapse performance.  This approach seems 
extreme given the lack of physical evidence (behavior of low period systems in real earthquakes) that 
there are a disproportionate number of collapses among shorter period systems.   
 
The discrepancy between analysis that indicates poor performance and field observations that 
do not indicate poor performance may be related to assumptions made in the modeling of the 
structure and in how collapse was defined in the analysis.  The authors of the masonry section 
of GCR 10-917-8 made this point, as follows: 

“Observed results were sensitive to assumptions made about the collapse behavior of 
reinforced masonry walls and decisions made in nonlinear modeling.  Because of 
difficulties in quantifying collapse for low-rise walls, it was decided that collapse 
would be defined as excessive crushing of the masonry cross section or rupture of a 
significant percentage of the cross section. Neither of these conditions would 
necessarily lead to collapse in the low-rise shear walls system.  Rather, collapse 
would more likely be expected to occur when drifts are so large that other gravity-
load carrying systems lose their ability to carry vertical loads.” 

 
The authors of the section on reinforced concrete shear walls in GCR 10-917-8 had similar 
observations: 
 

“One and 2-Story archetypes failed to achieve the acceptable collapse margin ratios 
primarily because shear failures used as a proxy for collapse occurred at relatively 
low drift levels (below 1.5 %).  In general, collapse of low-rise shear wall buildings 
has not been observed in an earthquake except in cases where the floor system failed 
(e.g. precast parking structures). This suggests that findings related to low-rise walls 
were biased by the modeling assumptions and potentially conservative criteria used 
to assess collapse.  At this time, however, insufficient information exists to establish 
more liberal failure criteria.” 

 
Subsequent to the GCR 10-917-8 report, NIST supported an additional project, ATC 84, which dealt 
primarily with possible reformulation of the basic design values R, Cd, and Ωo (NIST, 2012) in ASCE 
7.  A significant part of this project specifically addressed Short-Period systems.  In this report, the 
following possible approaches for dealing with the “Short Period Problem” were forwarded: 

1. Make no modifications to current specifications (and therefore accept a higher computed 
probability of collapse), justified on the basis that there is a not a substantial body of field 
evidence that short-period buildings utilizing a given lateral load resisting system have a 
greater tendency to collapse than do longer period buildings of the same system type.  



2. Make modifications to detailing requirements such that the modes of failure of the lateral 
load resisting system (e.g., rocking or sliding in the reinforced masonry shear wall systems) 
are accommodated or controlled in such a way that the integrity of building structure is not 
jeopardized after the ductility limit has been reached.  

3. Make modifications to the design specifications such that the probability of collapse of the 
short period systems is the same as that of longer period buildings using the same system.  
Such modifications would require a substantial reduction in the value of R used to establish 
the required strength of the system.  For the purpose of predicting inelastic displacements, it 
would also be necessary to introduce a short period deflection multiplication factor, Cds.  
This factor is needed because the computed ratio of inelastic displacement to elastic 
displacement increases well beyond that predicted by the “equal displacement” or “equal 
energy” concepts when the period of vibration falls below about 0.4 seconds.   

 
Ultimately, none of the above recommendations were made because it was felt that the mathematical 
models and the definitions of collapse used in the prior analysis were insufficient to properly 
determine if the Short-Period problem is real or is merely a relic of the analysis.  These notions, as 
well as the preceding points, are further discussed in the remainder of this paper. 
 
 
2. BACKGROUND  
 
The fundamental problem with the very short-period systems is that such systems do not adhere to the 
“equal displacement” rule, which is the underlying principle for the R and Cd factors used for design 
(Newmark and Hall, 1982). This rule, based on observation rather than theory, indicates that 
displacements for elastic-plastic inelastic systems are approximately equal to the displacements 
computed for the same system responding elastically.  However, it is well known that the rule is 
applicable only to systems with periods greater than about 1.0 second.  As the period decreases below 
1.0 second, an “equal energy” design basis might be more appropriate, and for very short period 
systems, with periods less than about 0.2 seconds, there is no observational relationship between 
elastic and inelastic displacements. 

2.1. The sliding block analogy 
 
For these very short period systems, ductility demands become very large and are impossible to 
accommodate with traditional detailing.  This can be shown by use of a simple physical model, 
illustrated in Fig. 2.1.  In the figure, an elastic-plastic system is represented as a block resting on a 
frictional interface.  When subjected to ground shaking, the total displacement of the block (relative to 
its initial position) is equal to the elastic shear deformation in the block plus the “inelastic” sliding 
deformation.  As the stiffness of the block increases (and the period decreases), the elastic deformation 
in the block decreases, while the sliding deformation stays relatively constant.  Thus, it is impossible 
for the inelastic and elastic displacements to be similar.  The ductility demand of the system will 
approach infinity as the block becomes stiffer, because the yield deformation approaches zero, while 
the total displacement demand stays relatively constant (and is nonzero).   
 
For the sliding block of Fig. 2.1 there is virtually no recoverable elastic deformation in the block, thus 
it is likely that there will be significant residual deformation at the end of the event. Such behavior was 
reported in the dissertation by Jennings (1963) but is rarely mentioned in other studies dealing with 
computation of R.  
 
 



 

Figure 2.1.  Rigid Block Sliding on a Frictional Plane 

2.2 Response history analysis of a simple bilinear system 
 
The trends indicated in the sliding block are manifested when a simple bilinear system is analyzed.  
Table 2.1 shows the results that were obtained when a structure of constant strength, but increasing 
initial stiffness is subjected to a recorded component of the Loma Prieta ground motion.  In the 
analysis the system stiffness was adjusted to produce periods from 1.0 second to 0.1 seconds, in 0.1 
second increments.  For each system, an elastic analysis was run, followed by an inelastic analysis 
assuming elastic-plastic properties.  As the period decreased from 1.0 seconds to 0.1 seconds, the ratio 
of the inelastic displacement to the elastic displacement increased from an average of about 1.0 for the 
first three systems (T=1.0, 0.9, and 0.8 sec) to a high of 45.6 for the system with T=0.1 seconds.   The 
ductility demand increased from an average of about 5.0 for the first three systems to a high of nearly 
150 for the system with T=0.1 seconds.   
 
Table 2.1.  Response of Elastic-Plastic System to the Loma Prieta Ground Motion when Fy= 40 kips 

T 
(sec) 

K 
(k/in.) 

Elastic 
 Disp. (in.) 

Inelastic 
Disp. (in.) 

Residual 
Disp. (in.) 

Ductility 
Demand 

Yield 
Excursions 

Inelastic to 
Elastic Disp. 

Ratio 

1.0 39.5 4.42 5.92 3.84 5.84 8 1.34 

0.9 48.7 3.61 4.27 1.68 5.20 9 1.18 

0.8 61.7 5.18 3.10 0.79 4.79 7 0.60 

0.7 80.6 5.54 2.97 0.56 5.99 11 0.54 

0.6 108.7 4.20 2.66 0.52 7.28 24 0.63 

0.5 159.7 1.56 2.43 1.57 9.58 21 1.55 

0.4 246.7 1.12 3.07 2.27 18.9 23 2.73 

0.3 438.6 0.60 2.18 1.26 23.9 39 3.63 

0.2 987.0 0.23 1.83 1.31 45.2 39 7.97 

0.1 3984.8 0.03 1.51 0.96 148.6 13 45.6 

 
 
Additionally, the response of the short period systems is dominated by residual deformations.  This 
can be seen from Fig. 2.2, which shows the elastic and inelastic displacement histories for the system 
with T=0.8 seconds (top), and for the system with T=0.2 seconds (bottom).  The response for the 
elastic and inelastic system with T=1.0 seconds is mostly transient in nature, whereas the behavior of 
the system with T=0.2 seconds is impulsive.  This again illustrates that it is impossible to predict the 
displacement history of a very short period system using elastic analysis, because the elastic analysis 
cannot represent the impulsive behavior and the dominating residual deformation.  
 
    

Inelastic Deformation (Sliding) 

Virtually no shear deformation 



 

 
 

Figure 2.2.  Response Histories for Systems with T=0.8 seconds (top) and T=0.2 seconds (bottom) 
 
2.3. FEMA P-695 analysis of simple bilinear systems 
 
In order to obtain an understanding of the influence of short period on collapse probability, a “design 
space” of simple bilinear Single Degree of Freedom (SDOF) systems was designed with system R 
values ranging from 1 to 10 and with system periods ranging from 0.1 second to 1.0 second in 0.1 sec. 
intervals.  Other variables included strain hardening stiffness (in terms of initial stiffness) and the 
ductility demand at which “collapse” was defined.  Each model in the design space was analyzed 
using the P-695 methodology with Adjusted Collapse Margin Ratios (ACMRs) and probabilities of 
collapse reported for each model.  Also reported in the analysis was the ratio of the median computed 
inelastic displacement to the median elastic displacement for each model. 
 
A typical set of results from the SDOF study is shown in Fig. 2.3.  For this set of results the system 
strain hardening (slope of second branch of bilinear response relative to initial branch) was 0.1, and 
“collapse” was assumed when the ductility demand reached 10.0.  Part (a) of the figure shows the 
probability of collapse on the vertical axis, and the period of vibration on the horizontal axis.  Results 
are collected in terms of R values, with one curve being plotted for each R value.  As may be observed, 
only the R=1 system has a probability of collapse of less than 0.1 at all periods.   
 
Part (b) of Fig. 2.3 shows the ratio of computed adjusted collapse margin ratio to the acceptable 
collapse margin ratio for 10% collapse probability, plotted against period, with one curve for each R 
value.  Ratios less than 1.0 indicate a greater than 10% probability of collapse, and hence, a failure to 
meet the P-695 acceptance criterion for a given performance group.  As may be observed, the R=1 
system passes for all period values, and the R=6, 8, and 10 systems fail at all period values.    
 
The curves in Fig. 2.3(b) can be used to interpolate the value of R at which the ACMR ratio is exactly 
1.0 for each period analyzed.  The resulting interpolated curve, shown in Fig. 2.3(c), indicates that the 



value of R required to meet the P-695 criteria approaches 1.0 as the period decreases towards zero and 
is approximately 1.0 for systems with a period of 0.1 second.  R could be as high as 5.0 for systems 
with periods greater than 0.6 seconds.  If desired, a curve such as that shown in Fig. 2.3 (c) could be 
used to establish a period dependent formula for R. 

Part (d) of Fig. 2.3 shows the computed ratios of inelastic displacement to elastic displacement for the 
different systems.  This ratio is approximately 1.0 for systems with periods greater than 0.6 seconds 
but increases exponentially as the period decreases from 0.6 seconds to 0.1 seconds.  Note the very 
high ratios (greater than 8) for the larger R value systems with periods less than 0.2 seconds.  Such 
results indicate that if the current R values are maintained (regardless of the computed probability of 
collapse), it might be necessary to make significant adjustments to Cd to accommodate the higher 
computed displacements.  This is in stark contrast to the recommendation given in the P-695 report, 
where it is recommended that Cd be taken as equal to R for all systems. 
 

 

                  (a) Probability of Collapse                        (b) ACMR Ratios for 10% Prob. of Collapse                

 

             (c) R Values for 10% Prob. of Collapse                 (d) Inelastic to Elastic Drift Ratios 

Figure 2.3.  Results for SDOF systems with 10% hardening and a ductility of 10 

2.4 Analysis of special reinforced masonry and steel buckling restrained brace archetypes 

More traditional P-695 systematic studies of reinforced masonry archetypes were also run, and the 
results followed trends very similar to that shown above for the SDOF systems.  In this study, 1-, 2-, 
and 4-story archetypes, subjected to heavy gravity load and Seismic Design Category (SDC) Dmin and 
Dmax shaking, were redesigned using R values of 1, 2, 4, 6, and 8 and analyzed using the FEMA P-695 
methodology to determine how the collapse margin ratios and probability of collapse vary with design 
R values.  Also computed in the analysis were the ratios of the peak computed inelastic displacement 



to the peak elastic displacement.  A sample of the results of the analysis is shown graphically in Fig. 
2.4.  As may be observed form the graph on the left side of the figure, the probability of collapse 
exceeds 0.1 (10%) at periods less than about 0.25 seconds for the R=2, 4, 6, and 8 systems and is 
barely above 10% for the R=1 system with a period of 0.2 seconds.  The right side of the figure shows 
greatly increased ratios of inelastic to elastic displacement, which is consistent with the SDOF results. 
 

      

Figure 2.4.  Results for Special Reinforced Masonry Wall Systems 

It is important to note that the mathematical models for the masonry walls consisted of a simple 
cantilever representation, with a fixed base condition and did not include inelastic shear deformation 
or sliding at the wall foundation interface. The constitutive modeling provided restrained rocking of 
the wall.  For these walls collapse was based on exceeding certain limiting strains in the concrete and 
reinforcement in the wall cross sections.  This “nonsimulated” collapse often occurred at lateral drifts 
that were less than 1% of the story height.  A detailed description of the modeling approach can be 
found in (NIST, 2010 and NIST, 2012). 
 
Short period steel buckling restrained brace frames were also studied.  The design space consisted of 
one- and two-story systems designed for SDC Dmax and Dmin ground motions and for R=2, 4, 8, and 8.  
Thus a total of sixteen systems were designed and evaluated. The buckling-restrained brace systems 
had a clear trend of increased probability of collapse as the system period decreases, and there was 
some tendency for the ratios of inelastic to elastic displacement to increase as the design period 
decreased.  It is noted, however, that none of the BRB systems failed the FEMA P-695 acceptance 
criteria, and the ratios of inelastic to elastic displacement never exceeded 1.1, even for the shortest 
period system. Detailed descriptions of the modeling approach and the results of these studies are 
presented in (NIST, 2012).  
 
 
3. SUMMARY OF KEY FINDINGS 
 
The study of SDOF systems and reinforced masonry archetypes demonstrated consistent behavior as 
follows: 

1. If it is desired to maintain a probability of collapse of 10% under MCE ground motions, the 
design R values should range from about 1 for systems with periods less than about 0.2 
seconds and increase to about 5 for systems with periods of about 0.6 seconds.  The probability 
of collapse is not strongly sensitive to the R value for periods from 0.6 seconds to 1.0 seconds.   

 
2. The ratio of computed inelastic displacement to computed elastic displacement is about 1.0 for 

systems with periods ranging from 0.6 seconds to 1.0 seconds but increases exponentially as 
the period decreases from about 0.6 seconds to 0.1 seconds.  In the period range of 0.1 to 0.2 
seconds, the computed ratios of inelastic to elastic displacement far exceed those predicted 
using the “equal energy” concept. 



If it is desired to maintain a 10% probability of collapse under MCE shaking across all periods less 
than 0.6 seconds (given a constant collapse metric, such as a limiting strain in shear wall 
reinforcement), it is necessary to reduce the design R value as the period decreases, with a limiting 
value of R=1 being required when the period is less than about 0.2 seconds.  It is very important to 
note, however, that the reduction in R towards the limiting value of 1.0 is needed because the ratio of 
inelastic displacement to elastic displacement increases exponentially as the period decreases.  For 
very short systems it is impossible to provide sufficient ductility to accommodate this behavior, so a 
design R value of 1.0 is needed.  
 
As noted in NIST GCR 10-917-8, it is doubtful that exceeding the collapse metric for the reinforced 
masonry and reinforced concrete shear walls systems would lead to a true collapse of the system, 
where collapse in this sense would include the loss of the gravity load resisting system.  If, for 
example, the wall reaches its strain-based collapse at an interstory drift of 1.0 percent of the story 
height, and the system loses its gravity load resisting capacity at an interstory drift of 2.5 percent of the 
story height, there is a range of 1.5 percent drift in which the wall must be able to continuously rotate 
or slide after the strain limit is reached.  If the wall is detailed to accommodate that additional 
deformation, the system will not collapse so long as the 2.5 percent drift limit is not exceeded.  If the 
P-695 collapse metric is adjusted to represent the full system failure and not the wall failure, the 
probability of true collapse could be determined.  It is recognized that this is not the intent of P-695, 
and thus the use of P-695 in this context is debatable. 
 
3.1. Discussion of Results Pertinent to Reformulation of the ASCE 7 R and Cd Factors 

A possible reformulation for R and Cd for short-period systems is proposed in Fig. 3.1. Fig. 3.1(a) 
shows a period-dependent R factor, and Fig. 3.1(b) shows a period dependent Cds factor, where Cds 
represents the “Short Period Displacement Multiplication Factor.  Cd would be taken as Cds times R.  
FEMA P-695 essentially uses Cds=1, because that document recommends that Cd be taken as equal to 
R.  In these figures a series of lines, labeled A through E, are provided that represent a range of 
approaches for varying the parameters.  
 
If it is desired to have a uniform probability of collapse across all periods, the relationship between R 
and period would look like line “E” on Fig. 3.1(a).  Line “A” on the same figure represents the current 
approach wherein the same reduction value is used for all periods and where the probability of 
collapse theoretically increases significantly at very short periods.  Lines B, C, and D represent 
intermediate approaches. 
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               (a) Variation in R with Period                                          (b) Variation in Cds with Period 
 

Figure 3.1   Empirical expressions for Period-Dependent Design Parameters 
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For a system designed using line “E” the value of Cds, would be 1.0 for all periods.  This is shown in 
Fig. 3.1(b). A constant value of Cds is used because for low periods (T<0.2 sec) the system is 
responding elastically (Cd=R=1), and for periods greater than 0.6 seconds, the value of Cds is also 1.0.  
There is no basis for varying the value of Cds above 1.0 in the intermediate period range. 
 
However, if the value for R is not period dependent (the probability of collapse of greater than 10% for 
a performance group is accepted), it is theoretically necessary to provide a short period displacement 
amplifier in the very short period range T < 0.2 seconds and to transition this multiplier to 1.0 for 
periods greater than 0.6 seconds. Such a transition is provided graphically by line “A” on Fig. 3.1(b).  
Here the maximum short-period deflection multiplier is 5.0 for very low periods.  This value is in the 
general range of inelastic to elastic deflection ratios determined from the analysis of SDOF systems.  
Note that line “E” on Fig. 3.1(b) corresponds to the case where R is modified to produce a constant 
probability of collapse across all periods.  
 
Lines “B”, “C”, or “D” on Figures 3.1 (a) and (b) could be used if an intermediate design was desired.  
Note, however, that the same alphabetically designated line would be used from each figure (for 
example, one would use lines D from each figure, and not line D from Fig. 3.1(a) and Line B from 
Fig. 3.1(b). 
 
Clearly, the use of lines “E” would have a great impact on the required strength of structures and may 
not be economically justifiable given the scarcity of evidence that short period systems are indeed 
problematic.  The use of Line “A”, which increases displacements at short periods, but may not be as 
severe a penalty, because short period systems are rarely drift controlled.  In all cases, significant 
research would be required to determine the appropriate period bounds and upper and lower limits on 
R and Cds in Figures 3-1(a) and 3-1(b).  Another factor in the research is whether the period limits 
should be based on empirical or computed periods of vibration. The use of expressions as illustrated in 
Fig. 3.1 would, of course, be system dependent, and in some cases (e.g. steel moment frames), the 
figures would probably not be needed, because even 1-story systems often have periods exceeding 0.4 
seconds.  
 
 
4.  SUMMARY and CONCLUSIONS 
 
Given the lack of clear evidence that short-period systems are problematic outside of the 
computational/theoretical arena, it seems unwise to proceed with a recommendation to make 
significant adjustments to R for short period systems.  However, adjustments to the computed 
deflection of short period systems might be warranted.  Thus, the principal preliminary 
recommendation is to make no modification to R but to further develop a period dependent 
relationship for Cds. 
 
It is essential to note that any final recommendation to provide period dependent expressions for Cds 
(or for R) must come only if additional studies on short period systems indicate that this is necessary, 
and that such formulas represent the best approach for “solving” the short-period problem.  Key 
features of such studies should include improved modeling of material behavior, improved component 
modeling, improved system modeling, refined definitions and metrics for collapse, and re-thinking of 
the pure ductility-based design paradigm for very short period structures (in which post-yielding loss 
of strength accompanied by limited sliding and rocking does not necessarily indicate collapse).  
 
A second approach (not discussed herein but described in NIST, 2012) that has been recommended for 
short-period systems is to increase the ductility supply of the systems as the period reduces.  This 
concept, adopted in Eurocode 8 (BSI, 2005), does not seem reasonable for very short period systems 
given the extremely high ductility demands. 
 
In both of the above approaches, the solution attempts to force short-period systems to be designed on 
the basis of assumptions that perhaps can be successfully applied only to longer period systems, such 



as models that respond to masses lumped at floors levels, bases that are fixed against sliding and 
rotation, and rigid diaphragms.  Thus, a third way to resolve the short-period problem is to recognize 
that the traditional approach of dissipating energy entirely through inelastic material behavior is not 
viable for systems with extremely short periods.  Instead, these systems could be designed by a 
completely different set of rules, not yet developed. 
 
A final possible approach is to make no modifications to design rules or system behavior and accept 
the increased probability of collapse (from the perspective of the analysis of FEMA P-695) on the 
basis that there is little experimental or post-earthquake evidence that the short-period problem exists 
outside of the theoretical arena.  Additionally, the “make no modification” approach may be made on 
the basis of arguments that the nonsimulated collapse metrics used in FEMA P-695 and NIST GCR 
10-917-8 analyses were not particularly realistic for these buildings because a total system collapse 
(complete loss of the structure, including the gravity system) would probably not occur as a result of 
the nonsimulated collapse parameter being exceeded.  
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