A Study on Damping Correction of Response Spectrum for Long Period and High Damping Range

Tetsuya ARAKAWA
Graduate School of Science and Technology, Meiji University, Japan

Masahito KOBAYASHI
Associate Professor, Dept. of Architecture, School of Science and Technology, Meiji University, Dr. Eng., Japan

SUMMARY:
The purpose of this study is to propose the response reduction factor for the long period and high damping range, focusing on damping characteristics to evaluate the effect of reducing the building response. In this study, the response reduction effect is evaluated by using response spectra of earthquake ground motions with a different damping ratio. It is found that the response reduction effect reduces over the predominant periods of strong ground motions. In other words, the response reduction effect is smaller than the current estimation in long period range. The tendency is conspicuous in the pulse-like ground motions. The degree of decrease has tendency to depend on phase characteristics. The proposal of the response reduction factor is made based on the spectral analysis results. A time history analysis of the seismically isolated buildings is carried out to confirm the validity of the proposed equation of the damping correction.

Keywords: Response reduction factor, Response Spectrum Method, Damping

1. INTRODUCTION

There is a Response Spectrum Method as an efficient method to predict the maximum seismic response without a time history analysis. As methods using a Response Spectrum Method, there are the Calculation Method of Response and Limit Strength and the Calculation Method for Seismically Isolated Buildings in Japanese seismic code. Seismic force in the Japanese these methods is calculated by multiplying lumped mass of structures, the site amplification factor, the seismic hazard zone factor, the design acceleration spectrum and the response reduction factor. In particular, the response reduction factor is considered an important element in assessing damping of structures in these methods. The response reduction factor F_h in Japanese seismic code (from now on, we will abbreviate this to ‘F_h (JSC)’) is equivalent to the damping correction factor in United States (IBC2003), China (GB50011-2001), and Eurocode 8. F_h (JSC) is smaller than the other countries factors given similar values, when the effective damping is larger. The F_h (JSC) is considered to overestimate the damping effect in designing seismically isolated buildings with the high damping ratio. In the actual design, the seismic isolated layer has various combinations of material configuration, thus damping of structures can be higher. It is difficult to respond all cases in F_h (JSC). In addition long period ground motions and pulse-like ground motions have a significant impact on seismically isolated buildings having the long natural period. In Japan, earthquakes occur on various types. Actually Tohoku-Chiho Taiheiyo-Oki Earthquake occurred March 11, 2011. Strong motion records with maximum acceleration in excess of 1,000 cm/s2 were observed in several places. This earthquake lasted for a long time, and the aftershock occurred frequently. From these, damping of structures should be properly evaluated. The response reduction factor is also very important in the widely used Equivalent Linearization Analysis Method. The seismically isolated buildings having the long natural period and the high damping ratio are special construction methods. Therefore, in order to evaluate the seismic response of such buildings, it is necessary for an accurate estimation. The purpose of this study is the proposal of the response reduction factor for the long period and high damping range.
2. RESPONSE REDUCTION FACTOR

Seismic force Q_o in the Calculation Method of Response and Limit Strength and the Calculation Method for Seismically Isolated Buildings in Japanese seismic code is calculated by multiplying lumped mass of structures M, the site amplification factor G_s, the seismic hazard zone factor Z, the design acceleration spectrum at engineering bedrock S_0 and the response reduction factor F_h. Seismic force is defined in Eqn. 2.1. $F_{h(JSC)}$ is defined in Eqn. 2.2 by using the effective damping h. The conceptual scheme of a Response Spectrum Method in Japanese seismic code is shown in Fig. 2.1.

$$
Q_o = M \times G_s \times Z \times S_0 \times F_h
$$

$$
F_h = \frac{1.5}{1+10h} \geq 0.4
$$

Figure 2.1. Conceptual scheme of Response Spectrum Method in Japan

$F_{h(JSC)}$ is considered to overestimate the damping effect in designing seismically isolated buildings having the high damping ratio. In Table 2.1, the numerical coefficients related to effective damping of the isolation system design displacement B_D or B_M in United States (IBC2003) are given, which shall be based on linear interpolation for effective damping values other than those given. The damping coefficient B in United States (FEMA 440) is Eqn. 2.3. The response reduction factor η_2 in China (GB50011-2001) is Eqn. 2.4. The value of the damping correction factor η in Eurocode 8 is Eqn. 2.5. These equations are equivalent to $F_{h(JSC)}$.

<table>
<thead>
<tr>
<th>Effective Damping β [%]</th>
<th>≤ 2</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>≥ 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_D or B_M Factor</td>
<td>0.8</td>
<td>1.0</td>
<td>1.2</td>
<td>1.5</td>
<td>1.7</td>
<td>1.9</td>
<td>2.0</td>
</tr>
</tbody>
</table>

$$
B = \frac{4}{5.6 - \ln(100\beta)}
$$

$$
\eta_2 = 1 + \frac{0.05 - \xi}{0.06 + 1.7\xi} \geq 0.55
$$

$$
\eta = \sqrt{\frac{0.1}{0.05 + \xi}} \geq 0.55
$$

where, β, ξ: the effective damping.

As equation of previous, there are several proposed equations of the response reduction factor by Akiyama, Hanson, Kasai and Hisada. Those equations are defined in Eqns. 2.6 to 2.9. Eqn. 2.9 has also natural period parameters. It is verified that those proposed equations are applied to various earthquake ground motions.
\[F_h = \frac{1 + 3h_0 + 1.2\sqrt{h_0}}{1 + 3h + 1.2\sqrt{h}} \] (2.6)

\[F_h = \frac{(1 - e^{-180})h_0}{(1 - e^{-180})h} \] (2.7)

\[F_h = \frac{1 + 25h_0}{1 + 25h} \] (2.8)

\[F_h(T, h) = \begin{cases} \frac{1.0}{\sqrt{1 + 17(1 - 0.05) \cdot \exp(-2.5T/10^{0.3M_d - 1.2})}} & (T = 0.02) \\ - & (T \geq 0.07) \end{cases} \] (2.9)

where, \(h_0 \): initial effective damping, \(M_d \): magnitude of earthquake.

The response reduction factors by Eqns. 2.2 to 2.5 and Table 2.1, by Eqns. 2.2 and 2.6 to 2.8, by Eqn. 2.9, are shown in Fig. 2.2. \(F_{h(ISC)} \) is smaller than other countries and other proposed equations given similar values, when the effective damping is higher.

3. EARTHQUAKE GROUND MOTION CHARACTERISTICS

3.1. Phase Difference Characteristics

A discrete time history \(f(t) \) is expressed by a finite Fourier series, is defined in Eqn. 3.1.

\[f(t) = \sum_{k=0}^{N/2} a_k \cos(\omega_k t + \phi_k) \] (3.1)

where, \(a_k \): denote the Fourier amplitude of the \(k \)th degree, \(\phi_k \): the Fourier phase of the \(k \)th degree, \(\omega_k \): an angular frequency of the \(k \)th degree, \(N \): number of discrete data points.

The difference in the Fourier phase for any adjacent frequencies, which are arranged so as to have the value of an interval \([0, -2\pi]\), is defined as the phase difference. It is said that the convergence of the phase differences corresponds to the envelope of the acceleration waveform. The difference in the Fourier phase \(\Delta \phi_k \) is defined in Eqn. 3.2.

\[\Delta \phi_k = \phi_{k+1} - \phi_k, \quad (k = 1, 2, \cdots, N/2 - 1) \] (3.2)

Examples of a distribution of the phase differences that is represented as a histogram by dividing the interval \([0, -2\pi]\) into 32 are shown in Fig. 3.1. Length of data are unified in 163.84 sec.
The duration of earthquake ground motion \(T_g \) (from now on, we will abbreviate this to ‘the duration \(T_g \)’) is calculated by using the distribution of the phase differences, and is defined in Eqns. 3.3 to 3.5. In addition, the duration of earthquake ground motion \(T_p \) (from now on, we will abbreviate this to ‘the duration \(T_p \)’) is defined as cumulative duration, which is the time interval during which the central 90% of the contribution to the integral of the square of the acceleration take place (Trifunac & Brady 1975). The relationship between the duration \(T_g \) and \(T_p \) is shown in Fig. 3.2. Although the duration \(T_g \) is shorter than the duration \(T_p \), these correlation is comparatively high. This study uses the duration \(T_g \) as an index, which will permit quantitative evaluations of the phase characteristics.

In this study, 30 artificial earthquake ground motions with various phase characteristics for design are shown in Table 3.1.

\[
T_g = \sqrt{\frac{1}{N_c} \sum_{k=1}^{N_c} (t_{g,k} - \bar{t}_{g,T})^2} \quad (3.3)
\]

\[
t_{g,k} = -\Delta \phi_k / 2 \pi f_k, \quad (k = 1, 2, \cdots, N / 2 - 1) \quad (3.4)
\]

\[
\bar{t}_{g,T} = \frac{1}{N_c} \sum_{k=1}^{N_c} t_{g,k} \quad (3.5)
\]

where, \(t_{g,k} \): group delay time corresponding to Fourier frequency \(f_k \) of the \(k \)th degree, \(N_c \): Significant frequency in the number of \(t_{g,k} \).

![Figure 3.1. Comparison of phase difference distribution and envelope characteristics](image1)

![Figure 3.2. Relationship between duration \(T_g \) and \(T_p \)](image2)

3.2 Site Amplification Characteristics

In this study, 3 ground models shown in Fig. 3.3 are used to evaluate site amplification characteristics. 30 artificial earthquake ground motions for design are amplified by using a Single Dimension Wave Propagation Theory on 3 ground models. The nonlinear dynamic soil properties used for the analysis, which are based on the study by Hardin and Drnevich (1972), is defined in Eqns. 3.6, 3.7, and is shown in Fig. 3.4. In the clay layer and the sand layer, the standard shear strain \(\gamma_{0.5} \) is 0.18% and 0.10%, the maximum effective damping \(h_{max} \) is 17% and 21%, respectively. The shear modulus ratio of soils and strain level developed in surface soils are estimated from the record by a simple method.

\[
G / G_0 = \frac{1}{1 + \gamma / \gamma_{0.5}} \quad (3.6)
\]

\[
h = h_{max} (1 - G / G_0) \quad (3.7)
\]

where, \(G/G_0 \): shear modulus ratio, \(\gamma \): shear strain.
In a Response Spectrum Method for seismically isolated building in Japanese seismic code, the final value of first predominant period T_1, second predominant period T_2 and amplification factor G_{S1}, G_{S2}, several convergence calculations are needed to obtain the site amplification factor G_s, because of evaluating especially natural period of the structure, about 2.0 to 5.0 sec. Ground1-2 and Ground3 correspond to the site class 2nd and 3rd in Japanese seismic code, respectively.

Table 3.1 List of artificial earthquake ground motions with various phase characteristics

<table>
<thead>
<tr>
<th>Earthquake name</th>
<th>Observation point</th>
<th>Abbreviation</th>
<th>PGA [m/s²]</th>
<th>Duration T_1[sec]</th>
<th>Duration T_2[sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperial Valley, 1940</td>
<td>El Centro</td>
<td>Elce</td>
<td>3.81</td>
<td>18.9</td>
<td>30.2</td>
</tr>
<tr>
<td>Kerm Country, 1952</td>
<td>Taft</td>
<td>Taft</td>
<td>3.87</td>
<td>12.6</td>
<td>38.0</td>
</tr>
<tr>
<td>Tokachi-oki, 1964</td>
<td>Hachinohe</td>
<td>Hachi</td>
<td>3.25</td>
<td>42.1</td>
<td>102.2</td>
</tr>
<tr>
<td>Hyogo-ken Nanbu, 1995</td>
<td>JMA Kobe</td>
<td>Kobe</td>
<td>3.91</td>
<td>8.9</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>Osaka Gas Fukiai</td>
<td>Fuki</td>
<td>3.29</td>
<td>15.0</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>JR Takatori</td>
<td>Taka</td>
<td>2.91</td>
<td>27.4</td>
<td>15.8</td>
</tr>
<tr>
<td>Tottori-ken Seibu, 2000</td>
<td>Kik-net Hino</td>
<td>TTRH02</td>
<td>3.75</td>
<td>23.5</td>
<td>74.0</td>
</tr>
<tr>
<td>Geiyo, 2001</td>
<td>K-net Yurai</td>
<td>HRS009</td>
<td>4.88</td>
<td>16.5</td>
<td>38.2</td>
</tr>
<tr>
<td>Tokachi-oki, 2003</td>
<td>K-net Tomakomai</td>
<td>HKD129</td>
<td>3.49</td>
<td>27.0</td>
<td>88.2</td>
</tr>
<tr>
<td>Niigata-ken Chuetsu, 2004</td>
<td>NIG019</td>
<td>K-Net Ojiya</td>
<td>4.06</td>
<td>25.7</td>
<td>31.8</td>
</tr>
<tr>
<td></td>
<td>JMA Kagawuchi</td>
<td>Kawa</td>
<td>3.26</td>
<td>31.5</td>
<td>60.9</td>
</tr>
<tr>
<td>Noto-hanto, 2007</td>
<td>ISK005</td>
<td>K-net Torai</td>
<td>4.19</td>
<td>15.4</td>
<td>29.6</td>
</tr>
<tr>
<td>Niigata-ken Chuetsu-oki, 2007</td>
<td>NIG018</td>
<td>K-net Kashiwazaki</td>
<td>4.56</td>
<td>9.3</td>
<td>16.8</td>
</tr>
<tr>
<td>Iwate Miyagi Nairiku, 2008</td>
<td>MYG005</td>
<td>K-net Naruko</td>
<td>3.24</td>
<td>14.3</td>
<td>36.0</td>
</tr>
</tbody>
</table>

Assumption Nagoya

<table>
<thead>
<tr>
<th>Observation point</th>
<th>Abbreviation</th>
<th>PGA [m/s²]</th>
<th>Duration T_1[sec]</th>
<th>Duration T_2[sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opposite Fault</td>
<td>Cg062</td>
<td>3.81</td>
<td>16.5</td>
<td>52.4</td>
</tr>
<tr>
<td>Side Slip Fault</td>
<td>Yoko</td>
<td>5.01</td>
<td>12.5</td>
<td>33.3</td>
</tr>
<tr>
<td>Saphenous Fault</td>
<td>Fukuzai</td>
<td>3.33</td>
<td>16.9</td>
<td>58.8</td>
</tr>
</tbody>
</table>

Assumption Shin-Tokai

<table>
<thead>
<tr>
<th>Observation point</th>
<th>Abbreviation</th>
<th>PGA [m/s²]</th>
<th>Duration T_1[sec]</th>
<th>Duration T_2[sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nagoya Sannomaru</td>
<td>San</td>
<td>3.33</td>
<td>25.8</td>
<td>89.3</td>
</tr>
</tbody>
</table>

Assumption Kanto

<table>
<thead>
<tr>
<th>Observation point</th>
<th>Abbreviation</th>
<th>PGA [m/s²]</th>
<th>Duration T_1[sec]</th>
<th>Duration T_2[sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokyo JMA</td>
<td>TOK</td>
<td>4.05</td>
<td>12.4</td>
<td>32.6</td>
</tr>
<tr>
<td>Yokohama MM</td>
<td>YKL</td>
<td>3.71</td>
<td>36.8</td>
<td>137.6</td>
</tr>
</tbody>
</table>

Assumption Nankai

<table>
<thead>
<tr>
<th>Observation point</th>
<th>Abbreviation</th>
<th>PGA [m/s²]</th>
<th>Duration T_1[sec]</th>
<th>Duration T_2[sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osaka District</td>
<td>OSA</td>
<td>2.48</td>
<td>57.2</td>
<td>274.9</td>
</tr>
<tr>
<td>West Osaka</td>
<td>WOS</td>
<td>2.90</td>
<td>53.1</td>
<td>201.8</td>
</tr>
<tr>
<td>K-net Osaka</td>
<td>OSK005</td>
<td>3.96</td>
<td>47.3</td>
<td>180.4</td>
</tr>
<tr>
<td>Kik-net Konohana</td>
<td>OSKH02</td>
<td>3.35</td>
<td>48.6</td>
<td>176.5</td>
</tr>
<tr>
<td>Osaka Fukushima</td>
<td>FKS</td>
<td>3.33</td>
<td>38.7</td>
<td>136.4</td>
</tr>
<tr>
<td>K-net Kishiwada</td>
<td>OSK008</td>
<td>3.35</td>
<td>33.4</td>
<td>135.6</td>
</tr>
</tbody>
</table>

Envelop functions of The Building Center of Japan (BCJ) Guideline, Level 2

Random phase 1	Ran1	3.71	34.0	69.4
Random phase 2	Ran2	3.29	33.3	68.0
Random phase 3	Ran3	3.42	33.1	70.1
Random phase 4	Ran4	3.77	32.7	69.3

Figure 3.3. Ground models

Figure 3.4. Nonlinear dynamic soil properties
4. PROPOSAL OF RESPONSE REDUCTION FACTOR

A root mean square response displacement σ^2 in a Theory of Random Processes is defined in Eqn. 4.1, when structures have an influence of white noise. Expected value of response displacement spectrum ratio is given in Eqn. 4.2.

$$\sigma^2 = \begin{cases} \frac{\rho \omega_0^2}{4h\omega_n^2} (1 - e^{-2h\omega_n t_i}) & (h \neq 0) \\ \frac{\rho \omega_0^2}{2\omega_n^2} & (h = 0) \end{cases}$$ (4.1)

$$\frac{S_d(h)}{S_d(h=0.05)} = \frac{1}{20h(1-e^{-0.2\pi t_i/T})}$$ (4.2)

where, $\rho \omega_0^2$: power spectrum density, ω_n: natural circular frequency, t_i: duration of earthquake ground motion.

The duration of earthquake ground motion t_i is needed to convert into the equivalent duration of white noise. t_i/T would be about 3 to 5 as the damping effect of the actual earthquake ground motion. In this study, Eqns. 4.3, 4.4 are the proposed equations of the response reduction factor (from now on, we will abbreviate this to ‘$F_{h|\text{propos}}$’). Eqn. 4.3 is improved the format of Eqn. 2.2, is attached the R factor. Eqn. 4.4 is approximated to Eqn. 4.2 by using a Least-Squares Method. The natural period T and the duration T_g are added to Eqn. 4.4.

$$F_h = \begin{cases} \frac{1.5}{1 + 10h} \cdot R & (h > 0.05) \\ \frac{20h - 1}{3} (1 - \frac{T}{T_g}) + 1 & (T < T_g) \\ 1.0 & (T_2 \leq T \leq T_1) \\ \frac{20hT_i}{T_g} (1 - \frac{T_i}{T}) + 1 & (T_1 < T < 5.0) \end{cases}$$ (4.3)

The application range of Eqn. 4.3 is above 5% effective damping h to target high damping range in this study. Eqn. 4.4 is separated into predominant periods of soil T_1 and T_2, the short period range are only advisory. In the predominant period range, Eqn. 4.4 has the equal damping effect of $F_{h|\text{USC}}$. Over predominant period, the natural period T is longer or the duration T_g is shorter, when the damping effect is lower. Eqn. 4.4 uses the duration T_g in order to evaluate the phase characteristics. In addition, the site amplification would not significantly affect the duration of earthquake ground motion.

![Figure 4.1. Comparison of proposed response reduction factor and analysis values](image-url)
Several comparisons of $F_{h(\text{prosposal})}$ and analysis values; the response displacement spectrum ratio $S_d(h)/S_d(h=0.05)$, are shown in Fig. 4.1. Analysis values have phase characteristics of Kobe, Elce and Hachi waves, amplified in Ground I, respectively. The values of $F_{h(\text{prosposal})}$ can be fitted to the analysis values. In phase characteristics with pulse-like ground motions, analysis values are uneven, thus it is necessary to evaluate earthquake ground motions characteristics from various perspectives, such as the pulse period.

5. TIME HISTORY ANALYSIS

A time history analysis of the seismically isolated buildings (from now on, we will abbreviate this to ‘THA’) is carried out to confirm the validity of $F_{h(\text{prosposal})}$. In this study, the seismically isolated buildings are taken up to target long period and high damping range.

5.1. Outline of Analysis

Analytical model is 1-mass-system as base-isolated building with isolator and hysteresis damper or velocity-dependent fluid damper (From now on, we will abbreviate these to ‘Hysteresis model’ and ‘Fluid model’, respectively). The analysis is performed under the following terms. Stiffness of isolator k_f is decided so that the isolation period T_f is set to 3.0, 4.0 and 5.0 sec, and lumped mass of structure M. The hysteresis damper is the perfect elasto-plastic, considered only the horizontally displacement. The fluid damper is bi-linear element with a damper force relief mechanism. Analytical models are shown in Fig. 5.1. In Hysteresis model, the yield displacement of the hysteresis damper δ_i is 1.0cm. The yield strength of the hysteresis damper Q_s is given as the yield shear coefficient of the hysteresis damper α_s set to 0.02, 0.04 and 0.06. The first stiffness k_i is $k_i=k_y+k_c$ (k_c: the stiffness of the hysteresis damper). In Fluid model, the first damping coefficient of the fluid damper C_B is $C_B=Q_s/150$ ($Q_s/150$: damping force at velocity of 150cm/s). The damping force at velocity of 150cm/s $Q_s/150$ is given as the introduction amount of the fluid damper α_i set to 0.03, 0.05 and 0.07. The second damping coefficient ratio ρ is 0.0678.

THA is carried out for 1620 (=2×3×3×30×3) SDOF systems: 2 damper types; 3 amount of the damper; 3 isolation periods; 30 artificial earthquake ground motions shown in Table 3.1; 3 ground models shown in Fig. 3.3.

![Figure 5.1. Outline of analytical model](image)

5.2. Results of Analysis

The relationship between the duration T_g and analysis results of maximum displacement δ_{max} is shown in Fig. 5.2. The fitted curves of each the yield shear coefficient of the hysteresis damper α_s or the introduction amount of the fluid damper α_i are also shown in Fig. 5.2. The analysis results have a tendency that the duration T_g is shorter when the maximum displacement δ_{max} increases. These results suggest the possibility that the maximum displacement δ_{max} depends on the phase characteristics of input earthquake ground motions.
Several comparisons of the maximum displacement δ_{max} using a Equivalent Linearization Analysis Method (from now on, we will abbreviate this to ‘ELM’) and THA, are shown in Fig. 5.3. In results of the ELM, the response values using $F_{(\text{proposal})}$ and $F_{(\text{JSC})}$ are superimposed in Fig. 5.3. ELM is adopted in seismically isolated buildings based on Japanese design standard. The response values using $F_{(\text{JSC})}$ is somewhere smaller than the analysis results in the long period and high damping range, thus the equation of current $F_{(\text{JSC})}$ is considered to overestimate the damping effect in designing seismically isolated buildings having the long natural period and high damping. On the other hand, the response values using $F_{(\text{proposal})}$ agree well with the analysis results in the long period and high damping range, and evaluate as the safe side. The damping effect can be properly evaluated by using $F_{(\text{proposal})}$.

![Figure 5.2. Relationship between duration T_g and maximum displacement δ_{max}](image)

![Figure 5.3. Comparison of Estimated and Numerical maximum displacement δ_{max}](image)

6. CONCLUSIONS

In this study, the response reduction factor F_h for the long period and high damping range is proposed by considering phase and period characteristics of earthquake ground motions. The response reduction factor in the Japanese seismic code is smaller than the other countries codes factors. The spectral analysis and the time history analysis of the seismically isolated buildings are carried out to confirm the validity of the proposed equation in this study. The relationship between phase characteristics of earthquake ground motions and the seismic response of buildings is shown from analysis results. Several comparisons of the maximum displacement using a Equivalent Linearization Analysis Method and a time history analysis are shown, and the validity of the proposed equation is confirmed on buildings having the the long natural period and high damping. In future, the followings are considered to improve the precision of the proposed equation to be tackled: considering more building types and more earthquake ground motion characteristics; defining clearly the duration of the earthquake ground motion.

AKNOWLEDGEMENT
This study was provided with strong motion seismic records by National Research Institute for Earth Science and Disaster Prevention (NIED), Japan Meteorological Business Support Center, Osaka Gas Co., Railway Technical Research Institute and Chubu Regional Bureau Ministry of Land, Infrastructure and Transport.

REFERENCES

